1
|
Nishimoto R, Inokuchi H, Fujiwara S, Ogata T. Implicit learning provides advantage over explicit learning for gait-cognitive dual-task interference. Sci Rep 2024; 14:18336. [PMID: 39112521 PMCID: PMC11306735 DOI: 10.1038/s41598-024-68284-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 07/22/2024] [Indexed: 08/10/2024] Open
Abstract
Dual-task performance holds significant relevance in real-world scenarios. Implicit learning is a possible approach for improving dual-task performance. Analogy learning, utilizing a single metaphor to convey essential information about motor skills, has emerged as a practical method for fostering implicit learning. However, evidence supporting the effect of implicit learning on gait-cognitive dual-task performance is insufficient. This exploratory study aimed to examine the effects of implicit and explicit learning on dual-task performance in both gait and cognitive tasks. Tandem gait was employed on a treadmill to assess motor function, whereas serial seven subtraction tasks were used to gauge cognitive performance. Thirty healthy community-dwelling older individuals were randomly assigned to implicit or explicit learning groups. Each group learned the tandem gait task according to their individual learning styles. The implicit learning group showed a significant improvement in gait performance under the dual-task condition compared with the explicit learning group. Furthermore, the implicit learning group exhibited improved dual-task interference for both tasks. Our findings suggest that implicit learning may offer greater advantages than explicit learning in acquiring autonomous motor skills. Future research is needed to uncover the mechanisms underlying implicit learning and to harness its potential for gait-cognitive dual-task performance in clinical settings.
Collapse
Affiliation(s)
- Ryoki Nishimoto
- Department of Rehabilitation Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-Ku, Tokyo, 113-8655, Japan
- Department of Rehabilitation Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, 113-8655, Japan
| | - Haruhi Inokuchi
- Department of Rehabilitation Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-Ku, Tokyo, 113-8655, Japan
| | - Sayaka Fujiwara
- Department of Rehabilitation Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-Ku, Tokyo, 113-8655, Japan
| | - Toru Ogata
- Department of Rehabilitation Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-Ku, Tokyo, 113-8655, Japan.
- Department of Rehabilitation Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, 113-8655, Japan.
| |
Collapse
|
2
|
Ogaya S, Suzuki M, Yoshioka C, Nakamura Y, Kita S, Watanabe K. The effects of trunk endurance training on running kinematics and its variability in novice female runners. Sports Biomech 2024; 23:997-1008. [PMID: 33906577 DOI: 10.1080/14763141.2021.1906938] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 03/17/2021] [Indexed: 10/21/2022]
Abstract
The functional importance of trunk muscle strength for running movement is widely recognised, but the kinematic effects of undertaking specific training are unclear. This study investigated the change in joint angle and its variability during running following trunk muscle training. Eighteen young female and novice runners participated. Using Plug-in-gait model with infrared markers attached to the body surface, the lower limb and lumber angles during running were measured, and the variability was examined by calculating the coefficient variation and Lyapunov exponent. Measurements of trunk endurance were also performed. Over four weeks of training, the subjects performed trunk muscle endurance trainings three times a week. Following this intervention, trunk endurance was found to have significantly increased. The Lyapunov exponent of lumbar flexion-extension angle also significantly increased. Moreover, a decreased range of the ankle angle and increased range of the hip angle were observed following the training. These results demonstrate that the trunk training promoted adjustments to lumbar movement and altered the movement patterns of the participants' lower limbs during running.
Collapse
Affiliation(s)
- Shinya Ogaya
- Department of Physical Therapy, Health and Social Services, Saitama Prefectural University, Koshigaya, Saitama, Japan
| | - Minami Suzuki
- Department of Physical Therapy, Health and Social Services, Saitama Prefectural University, Koshigaya, Saitama, Japan
| | - Chiori Yoshioka
- Department of Physical Therapy, Health and Social Services, Saitama Prefectural University, Koshigaya, Saitama, Japan
| | - Yumi Nakamura
- Department of Physical Therapy, Health and Social Services, Saitama Prefectural University, Koshigaya, Saitama, Japan
| | - Shunsuke Kita
- Graduate Course of Health and Social Services, Graduate School of Saitama Prefectural University, Koshigaya, Saitama, Japan
| | - Kento Watanabe
- Department of Rehabilitation, Higashi Saitama General Hospital, Satte, Saitama, Japan
| |
Collapse
|
3
|
Winter L, Taylor P, Bellenger C, Grimshaw P, Crowther RG. The application of the Lyapunov Exponent to analyse human performance: A systematic review. J Sports Sci 2023; 41:1994-2013. [PMID: 38326239 DOI: 10.1080/02640414.2024.2308441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 01/15/2024] [Indexed: 02/09/2024]
Abstract
Variability is a normal component of human movement, allowing one to adapt to environmental perturbations. It can be analysed from linear or non-linear perspectives. The Lyapunov Exponent (LyE) is a commonly used non-linear technique, which quantifies local dynamic stability. It has been applied primarily to walking gait and appears to be limited application in other movements. Therefore, this systematic review aims to summarise research methodologies applying the LyE to movements, excluding walking gait. Four databases were searched using keywords related to movement variability, dynamic stability, LyE and divergence exponent. Articles written in English, using the LyE to analyse movements, excluding walking gait were included for analysis. 31 papers were included for data extraction. Quality appraisal was conducted and information related to the movement, data capture method, data type, apparatus, sampling rate, body segment/joint, number of strides/steps, state space reconstruction, algorithm, filtering, surrogation and time normalisation were extracted. LyE values were reported in supplementary materials (Appendix 2). Running was the most prevalent non-walking gait movement assessed. Methodologies to calculate the LyE differed in various aspects resulting in different LyE values being generated. Additionally, test-retest reliability, was only conducted in one study, which should be addressed in future.
Collapse
Affiliation(s)
- Lachlan Winter
- UniSA Allied Health and Human Performance, University of South Australia, Adelaide, South Australia, Australia
- Alliance for Research in Exercise, Nutrition & Activity (ARENA), University of South Australia, Adelaide, South Australia, Australia
| | - Paul Taylor
- School of Behavioural and Health Sciences, Australian Catholic University, North Sydney, New South Wales, Australia
| | - Clint Bellenger
- UniSA Allied Health and Human Performance, University of South Australia, Adelaide, South Australia, Australia
- Alliance for Research in Exercise, Nutrition & Activity (ARENA), University of South Australia, Adelaide, South Australia, Australia
| | - Paul Grimshaw
- College of Health and Life Sciences, Hamad Bin Khalifa University, Doha, Qatar
- Faculty of Sciences, Engineering and Technology, Computer and Mathematical Sciences, University of Adelaide, Adelaide, South Australia, Australia
| | - Robert G Crowther
- UniSA Allied Health and Human Performance, University of South Australia, Adelaide, South Australia, Australia
- Alliance for Research in Exercise, Nutrition & Activity (ARENA), University of South Australia, Adelaide, South Australia, Australia
- School of Behavioural and Health Sciences, Australian Catholic University, Melbourne, Victoria, Australia
| |
Collapse
|
4
|
Winter L, Bellenger C, Grimshaw P, Crowther RG. Analysis of Movement Variability in Cycling: An Exploratory Study. SENSORS (BASEL, SWITZERLAND) 2023; 23:4972. [PMID: 37430887 DOI: 10.3390/s23104972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 05/12/2023] [Accepted: 05/16/2023] [Indexed: 07/12/2023]
Abstract
The purpose of this study was to determine the test-retest repeatability of Blue Trident inertial measurement units (IMUs) and VICON Nexus kinematic modelling in analysing the Lyapunov Exponent (LyE) during a maximal effort 4000 m cycling bout in different body segments/joints. An additional aim was to determine if changes in the LyE existed across a trial. Twelve novice cyclists completed four sessions of cycling; one was a familiarisation session to determine a bike fit and become better accustomed to the time trial position and pacing of a 4000 m effort. IMUs were attached to the head, thorax, pelvis and left and right shanks to analyse segment accelerations, respectively, and reflective markers were attached to the participant to analyse neck, thorax, pelvis, hip, knee and ankle segment/joint angular kinematics, respectively. Both the IMU and VICON Nexus test-retest repeatability ranged from poor to excellent at the different sites. In each session, the head and thorax IMU acceleration LyE increased across the bout, whilst pelvic and shank acceleration remained consistent. Differences across sessions were evident in VICON Nexus segment/joint angular kinematics, but no consistent trend existed. The improved reliability and the ability to identify a consistent trend in performance, combined with their improved portability and reduced cost, advocate for the use of IMUs in analysing movement variability in cycling. However, additional research is required to determine the applicability of analysing movement variability during cycling.
Collapse
Affiliation(s)
- Lachlan Winter
- UniSA Allied Health and Human Performance, University of South Australia, Adelaide, SA 5001, Australia
- Alliance for Research in Exercise, Nutrition & Activity (ARENA), University of South Australia, Adelaide, SA 5001, Australia
| | - Clint Bellenger
- UniSA Allied Health and Human Performance, University of South Australia, Adelaide, SA 5001, Australia
- Alliance for Research in Exercise, Nutrition & Activity (ARENA), University of South Australia, Adelaide, SA 5001, Australia
| | - Paul Grimshaw
- College of Health and Life Sciences, Hamad Bin Khalifa University, Doha P.O. Box 34110, Qatar
- Faculty of Sciences, Engineering and Technology, Computer and Mathematical Sciences, University of Adelaide, Adelaide, SA 5005, Australia
| | - Robert George Crowther
- UniSA Allied Health and Human Performance, University of South Australia, Adelaide, SA 5001, Australia
- Alliance for Research in Exercise, Nutrition & Activity (ARENA), University of South Australia, Adelaide, SA 5001, Australia
- School of Behavioural and Health Sciences, Australian Catholic University, Melbourne, VIC 3065, Australia
| |
Collapse
|
5
|
Fohrmann D, Hamacher D, Sanchez-Alvarado A, Potthast W, Mai P, Willwacher S, Hollander K. Reliability of Running Stability during Treadmill and Overground Running. SENSORS (BASEL, SWITZERLAND) 2022; 23:347. [PMID: 36616946 PMCID: PMC9823852 DOI: 10.3390/s23010347] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 12/22/2022] [Accepted: 12/23/2022] [Indexed: 06/17/2023]
Abstract
Running stability is the ability to withstand naturally occurring minor perturbations during running. It is susceptible to external and internal running conditions such as footwear or fatigue. However, both its reliable measurability and the extent to which laboratory measurements reflect outdoor running remain unclear. This study aimed to evaluate the intra- and inter-day reliability of the running stability as well as the comparability of different laboratory and outdoor conditions. Competitive runners completed runs on a motorized treadmill in a research laboratory and overground both indoors and outdoors. Running stability was determined as the maximum short-term divergence exponent from the raw gyroscope signals of wearable sensors mounted to four different body locations (sternum, sacrum, tibia, and foot). Sacrum sensor measurements demonstrated the highest reliabilities (good to excellent; ICC = 0.85 to 0.91), while those of the tibia measurements showed the lowest (moderate to good; ICC = 0.55 to 0.89). Treadmill measurements depicted systematically lower values than both overground conditions for all sensor locations (relative bias = -9.8% to -2.9%). The two overground conditions, however, showed high agreement (relative bias = -0.3% to 0.5%; relative limits of agreement = 9.2% to 15.4%). Our results imply moderate to excellent reliability for both overground and treadmill running, which is the foundation of further research on running stability.
Collapse
Affiliation(s)
- Dominik Fohrmann
- Institute of Interdisciplinary Exercise Science and Sports Medicine, Faculty of Medicine, MSH Medical School Hamburg, 20457 Hamburg, Germany
- Institute of Biomechanics and Orthopedics, German Sport University Cologne, 50933 Cologne, Germany
| | - Daniel Hamacher
- Institute of Sports Science, Friedrich Schiller University Jena, 07749 Jena, Germany
| | - Alberto Sanchez-Alvarado
- Department of Sports and Exercise Medicine, Institute of Human Movement Science, University of Hamburg, 20148 Hamburg, Germany
| | - Wolfgang Potthast
- Institute of Biomechanics and Orthopedics, German Sport University Cologne, 50933 Cologne, Germany
| | - Patrick Mai
- Institute of Biomechanics and Orthopedics, German Sport University Cologne, 50933 Cologne, Germany
- Department of Mechanical and Process Engineering, Offenburg University of Applied Sciences, 77652 Offenburg, Germany
| | - Steffen Willwacher
- Department of Mechanical and Process Engineering, Offenburg University of Applied Sciences, 77652 Offenburg, Germany
| | - Karsten Hollander
- Institute of Interdisciplinary Exercise Science and Sports Medicine, Faculty of Medicine, MSH Medical School Hamburg, 20457 Hamburg, Germany
| |
Collapse
|
6
|
Nguyen AP, Gillain L, Delieux L, Detrembleur C, Mahaudens P, Esculier JF. Opinions about running shoes in runners and non-runners. FOOTWEAR SCIENCE 2022. [DOI: 10.1080/19424280.2022.2144468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- Anh Phong Nguyen
- Institut de Recherche Expérimentale et Clinique, NeuroMusculoSkeletal Lab (NMSK), Université catholique de Louvain, Secteur des Sciences de la Santé, Brussels, Belgium
- The Running Clinic, Quebec, Canada
| | - Loris Gillain
- Institut de Recherche Expérimentale et Clinique, NeuroMusculoSkeletal Lab (NMSK), Université catholique de Louvain, Secteur des Sciences de la Santé, Brussels, Belgium
| | - Louise Delieux
- Institut de Recherche Expérimentale et Clinique, NeuroMusculoSkeletal Lab (NMSK), Université catholique de Louvain, Secteur des Sciences de la Santé, Brussels, Belgium
| | - Christine Detrembleur
- Institut de Recherche Expérimentale et Clinique, NeuroMusculoSkeletal Lab (NMSK), Université catholique de Louvain, Secteur des Sciences de la Santé, Brussels, Belgium
| | - Philippe Mahaudens
- Institut de Recherche Expérimentale et Clinique, NeuroMusculoSkeletal Lab (NMSK), Université catholique de Louvain, Secteur des Sciences de la Santé, Brussels, Belgium
- Service d’orthopédie et de traumatologie de l’appareil locomoteur, Cliniques universitaires Saint-Luc, Brussels, Belgium
- Service de médecine physique et réadaptation, Cliniques universitaires Saint-Luc, Brussels, Belgium
| | - Jean-François Esculier
- The Running Clinic, Quebec, Canada
- Department of Physical Therapy, University of British Columbia, Vancouver, Canada
| |
Collapse
|
7
|
An Externally-Applied, Natural-Mineral-Based Novel Nanomaterial IFMC Improves Cardiopulmonary Function under Aerobic Exercise. NANOMATERIALS 2022; 12:nano12060980. [PMID: 35335795 PMCID: PMC8950011 DOI: 10.3390/nano12060980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/09/2022] [Accepted: 03/11/2022] [Indexed: 11/28/2022]
Abstract
Nanotechnology has widespread applications in sports; however, there are very few studies reporting the use of nanotechnology to enhance physical performance. We hypothesize that a natural-mineral-based novel nanomaterial, which was developed from Japanese hot springs, might overcome the limitations. We examined if it could enhance physical performance. We conducted a treadmill exercise test on 18 students of athletic clubs at Fukushima University, Japan, and measured heart rate, oxygen consumption, maximal oxygen consumption, CO2 production, and respiratory quotient 106 times in total. The results showed that the elevation of heart rate was significantly suppressed in the natural-mineral-based nanomaterial group, while no differences were observed in oxygen consumption, maximal oxygen consumption, CO2 production, and respiratory quotient between groups. To our knowledge, this result is the first evidence where an improvement of cardiovascular and pulmonary functions was induced by bringing a natural-mineral-based nanomaterial into contact with or close to a living body without pharmacological intervention or physical intervention. This could open new avenue of biomedical industries even in an eco-friendly direction. The precise mechanisms remain a matter for further investigation; however, we may assume that endothelial NO synthase, hemoglobin and endothelium-derived hyperpolarizing factor are deeply involved in the improvement of cardiovascular and pulmonary functions.
Collapse
|
8
|
Gait Retraining With Visual Biofeedback Reduces Rearfoot Pressure and Foot Pronation in Recreational Runners. J Sport Rehabil 2021; 31:165-173. [PMID: 34697250 DOI: 10.1123/jsr.2021-0091] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 06/19/2021] [Accepted: 08/10/2021] [Indexed: 11/18/2022]
Abstract
CONTEXT Running is a popular sport globally. Previous studies have used a gait retraining program to successfully lower impact loading, which has been associated with lower injury rates in recreational runners. However, there is an absence of studies on the effect of this training program on the plantar pressure distribution pattern during running. OBJECTIVE To investigate the short-term effect of a gait retraining strategy that uses visual biofeedback on the plantar pressure distribution pattern and foot posture in recreational runners. DESIGN Randomized controlled trial. SETTING Biomechanics laboratory. PARTICIPANTS Twenty-four recreational runners were evaluated (n = 12 gait retraining group and n = 12 control group). INTERVENTION Those in the gait retraining group underwent a 2-week program (4 sessions/wk, 30 min/session, and 8 sessions). The participants in the control group were also invited to the laboratory (8 times in 2 wk), but no feedback on their running biomechanics was provided. MAIN OUTCOME MEASURES The primary outcome measures were plantar pressure distribution and plantar arch index using a pressure platform. The secondary outcome measure was the foot posture index. RESULTS The gait retraining program with visual biofeedback was effective in reducing medial and lateral rearfoot plantar pressure after intervention and when compared with the control group. In the static condition, the pressure peak and maximum force on the forefoot and midfoot were reduced, and arch index was increased after intervention. After static training intervention, the foot posture index showed a decrease in the foot pronation. CONCLUSIONS A 2-week gait retraining program with visual biofeedback was effective in lowering rearfoot plantar pressure, favoring better support of the arch index in recreational runners. In addition, static training was effective in reducing foot pronation. Most importantly, these observations will help healthcare professionals understand the importance of a gait retraining program with visual biofeedback to improve plantar loading and pronation during rehabilitation.
Collapse
|
9
|
Hollander K, Hamacher D, Zech A. Running barefoot leads to lower running stability compared to shod running - results from a randomized controlled study. Sci Rep 2021; 11:4376. [PMID: 33623054 PMCID: PMC7902604 DOI: 10.1038/s41598-021-83056-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 01/28/2021] [Indexed: 12/24/2022] Open
Abstract
Local dynamic running stability is the ability of a dynamic system to compensate for small perturbations during running. While the immediate effects of footwear on running biomechanics are frequently investigated, no research has studied the long-term effects of barefoot vs. shod running on local dynamic running stability. In this randomized single-blinded controlled trial, young adults novice to barefoot running were randomly allocated to a barefoot or a cushioned footwear running group. Over an 8-week-period, both groups performed a weekly 15-min treadmill running intervention in the allocated condition at 70% of their VO2 max velocity. During each session, an inertial measurement unit on the tibia recorded kinematic data (angular velocity) which was used to determine the short-time largest Lyapunov exponents as a measure of local dynamic running stability. One hundred running gait cycles at the beginning, middle, and end of each running session were analysed using one mixed linear multilevel random intercept model. Of the 41 included participants (48.8% females), 37 completed the study (drop-out = 9.7%). Participants in the barefoot running group exhibited lower running stability than in the shod running group (p = 0.037) with no changes during the intervention period (p = 0.997). Within a single session, running stability decreased over the course of the 15-min run (p = 0.012) without differences between both groups (p = 0.060). Changing from shod to barefoot running reduces running stability not only in the acute phase but also in the longer term. While running stability is a relatively new concept, it enables further insight into the biomechanical influence of footwear.
Collapse
Affiliation(s)
- Karsten Hollander
- Faculty of Medicine, MSH Medical School Hamburg, Am Kaiserkai 1, 20457, Hamburg, Germany.
| | - Daniel Hamacher
- Department of Sport Science, Friedrich Schiller University Jena, Jena, Germany
| | - Astrid Zech
- Department of Sport Science, Friedrich Schiller University Jena, Jena, Germany
| |
Collapse
|
10
|
Hoitz F, Mohr M, Asmussen M, Lam WK, Nigg S, Nigg B. The effects of systematically altered footwear features on biomechanics, injury, performance, and preference in runners of different skill level: a systematic review. FOOTWEAR SCIENCE 2020. [DOI: 10.1080/19424280.2020.1773936] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- Fabian Hoitz
- Biomedical Engineering, University of Calgary, Calgary, Alberta, Canada
- Human Performance Laboratory, University of Calgary, Calgary, Alberta, Canada
| | - Maurice Mohr
- Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
- Department of Sports Science, University of Innsbruck, Innsbruck, Austria
| | - Michael Asmussen
- Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
- Department of Health and Physical Education, Mount Royal University, Calgary, Alberta, Canada
| | - Wing-Kai Lam
- Li Ning Sports Science Research Center, Beijing, China
| | - Sandro Nigg
- Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
| | - Benno Nigg
- Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
11
|
Kiely J, Pickering C, Collins DJ. Smoothness: an Unexplored Window into Coordinated Running Proficiency. SPORTS MEDICINE-OPEN 2019; 5:43. [PMID: 31707492 PMCID: PMC6842378 DOI: 10.1186/s40798-019-0215-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Accepted: 09/12/2019] [Indexed: 01/08/2023]
Abstract
Over the expanse of evolutionary history, humans, and predecessor Homo species, ran to survive. This legacy is reflected in many deeply and irrevocably embedded neurological and biological design features, features which shape how we run, yet were themselves shaped by running. Smoothness is a widely recognised feature of healthy, proficient movement. Nevertheless, although the term ‘smoothness’ is commonly used to describe skilled athletic movement within practical sporting contexts, it is rarely specifically defined, is rarely quantified and remains barely explored experimentally. Elsewhere, however, within various health-related and neuro-physiological domains, many manifestations of movement smoothness have been extensively investigated. Within this literature, smoothness is considered a reflection of a healthy central nervous system (CNS) and is implicitly associated with practiced coordinated proficiency; ‘non-smooth’ movement, in contrast, is considered a consequence of pathological, un-practiced or otherwise inhibited motor control. Despite the ubiquity of running across human cultures, however, and the apparent importance of smoothness as a fundamental feature of healthy movement control, to date, no theoretical framework linking the phenomenon of movement smoothness to running proficiency has been proposed. Such a framework could, however, provide a novel lens through which to contextualise the deep underlying nature of coordinated running control. Here, we consider the relevant evidence and suggest how running smoothness may integrate with other related concepts such as complexity, entropy and variability. Finally, we suggest that these insights may provide new means of coherently conceptualising running coordination, may guide future research directions, and may productively inform practical coaching philosophies.
Collapse
Affiliation(s)
- John Kiely
- Institute of Coaching and Performance, School of Sport and Health Sciences, University of Central Lancashire, Preston, UK.
| | - Craig Pickering
- Institute of Coaching and Performance, School of Sport and Health Sciences, University of Central Lancashire, Preston, UK.,Athletics Australia, Brisbane, Queensland, Australia
| | - David J Collins
- Grey Matters Performance Ltd., Birmingham, UK.,Moray House School of Education and Sport, University of Edinburgh, Edinburgh, UK
| |
Collapse
|