1
|
Krishnan C, Augenstein TE, Claflin ES, Hemsley CR, Washabaugh EP, Ranganathan R. Rest the brain to learn new gait patterns after stroke. J Neuroeng Rehabil 2024; 21:192. [PMID: 39472911 PMCID: PMC11520392 DOI: 10.1186/s12984-024-01494-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 10/18/2024] [Indexed: 11/02/2024] Open
Abstract
BACKGROUND The ability to relearn a lost skill is critical to motor recovery after a stroke. Previous studies indicate that stroke typically affects the processes underlying motor control and execution but not the learning of those skills. However, these studies could be confounded by the presence of significant motor impairments. Furthermore, prior research involving the upper extremity indicates that stroke survivors have an advantage in offline motor learning when compared with controls. However, this has not been examined using motor acuity tasks (i.e., tasks focusing on the quality of executed actions) that have direct functional relevance to rehabilitation. OBJECTIVE Investigate how stroke affects leg motor skill learning during walking in stroke survivors. METHODS Twenty-five participants (10 stroke; 15 controls) were recruited for this prospective, case-control study. Participants learned a novel foot-trajectory tracking task on two consecutive days while walking on a treadmill. The task necessitated greater hip and knee flexion during the swing phase of the gait. Online learning was measured by comparing tracking error at the beginning and end of each practice session, offline (rest-driven) learning was measured by comparing the end of the first practice session to the beginning of the second, and retention was measured by comparing the beginning of the first practice session to the beginning of the second. Online learning, offline learning, and retention were compared between the stroke survivors and uninjured controls. RESULTS Stroke survivors improved their tracking performance on the first day (p = 0.033); however, the amount of learning in stroke survivors was lower in comparison with the control group on both days (p ≤ 0.05). Interestingly, stroke survivors showed higher offline learning gains when compared with uninjured controls (p = 0.011). CONCLUSIONS Even stroke survivors with no perceivable motor impairments have difficulty acquiring new motor skills related to walking, which may be related to the underlying neural damage caused at the time of stroke. Furthermore, stroke survivors may require longer training with adequate rest to acquire new motor skills.
Collapse
Affiliation(s)
- Chandramouli Krishnan
- Department of Physical Medicine and Rehabilitation, Neuromuscular and Rehabilitation Robotics Laboratory (NeuRRo Lab), Michigan Medicine, University of Michigan, 325 E Eisenhower Parkway (Room 3013), Ann Arbor, MI, 48108, USA.
- Department of Robotics, University of Michigan, Ann Arbor, MI, USA.
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI, USA.
- School of Kinesiology, University of Michigan, Ann Arbor, MI, USA.
- Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA.
- Department of Physical Therapy, University of Michigan-Flint, Flint, MI, USA.
| | - Thomas E Augenstein
- Department of Physical Medicine and Rehabilitation, Neuromuscular and Rehabilitation Robotics Laboratory (NeuRRo Lab), Michigan Medicine, University of Michigan, 325 E Eisenhower Parkway (Room 3013), Ann Arbor, MI, 48108, USA
- Department of Robotics, University of Michigan, Ann Arbor, MI, USA
| | - Edward S Claflin
- Department of Physical Medicine and Rehabilitation, Neuromuscular and Rehabilitation Robotics Laboratory (NeuRRo Lab), Michigan Medicine, University of Michigan, 325 E Eisenhower Parkway (Room 3013), Ann Arbor, MI, 48108, USA
| | - Courtney R Hemsley
- Department of Physical Medicine and Rehabilitation, Neuromuscular and Rehabilitation Robotics Laboratory (NeuRRo Lab), Michigan Medicine, University of Michigan, 325 E Eisenhower Parkway (Room 3013), Ann Arbor, MI, 48108, USA
| | - Edward P Washabaugh
- Department of Physical Medicine and Rehabilitation, Neuromuscular and Rehabilitation Robotics Laboratory (NeuRRo Lab), Michigan Medicine, University of Michigan, 325 E Eisenhower Parkway (Room 3013), Ann Arbor, MI, 48108, USA
- Department of Biomedical Engineering, Wayne State University, Detroit, MI, USA
| | - Rajiv Ranganathan
- Department of Kinesiology, Michigan State University, East Lansing, MI, USA
- Department of Mechanical Engineering, Michigan State University, East Lansing, USA
| |
Collapse
|
2
|
Johnson AK, Brown SR, Palmieri-Smith RM, Krishnan C. Functional Resistance Training After Anterior Cruciate Ligament Reconstruction Improves Knee Angle and Moment Symmetry During Gait: A Randomized Controlled Clinical Trial. Arthroscopy 2022; 38:3043-3055. [PMID: 35690253 DOI: 10.1016/j.arthro.2022.04.021] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 02/07/2022] [Accepted: 04/27/2022] [Indexed: 02/02/2023]
Abstract
PURPOSE The purpose of this study was to determine 1) whether progressive functional resistance training (FRT) during walking would improve knee biomechanical symmetry after anterior cruciate ligament (ACL) reconstruction and 2) whether the mode of delivery of FRT would have a differential effect on symmetry. METHODS Thirty individuals who underwent primary ACL reconstruction at a single institution volunteered for this study. Participants were randomized into one of three groups: 1) BRACE, 2) BAND, or 3) CONTROL. The BRACE group received FRT with a novel robotic knee brace along with real-time kinematic feedback. The BAND group received FRT with a custom resistance band device along with real-time kinematic feedback. The CONTROL group received only real-time kinematic feedback. Participants in all groups received training (2-3/week for 8 weeks) while walking on a treadmill. Knee angle and moment symmetry were calculated immediately prior to beginning the intervention and within 1 week of completing the intervention. Statistical Parametric Mapping was used to assess differences in biomechanical symmetry between groups across time. RESULTS There was a significant interaction in knee moment symmetry from 21 and 24% of the stance phase (P = .046), in which the BAND group had greater improvements following training compared with both BRACE (P = .043) and CONTROL groups (P = .002). There was also a significant time effect in knee angle symmetry from 68 to 79% of the stance phase (P = .028) and from 97 to 100% of the swing phase (P = .050) in which only the BRACE group showed significant improvements after the intervention (stance: P = .020 and swing: P < .001). CONCLUSION The results of this randomized controlled clinical trial indicate that 8 weeks of progressive FRT during treadmill walking in individuals with ACL reconstruction improves knee angle and moment symmetry during gait. The findings suggest that FRT could serve as a potential therapeutic adjuvant to traditional rehabilitation after ACL reconstruction and can help restore knee joint biomechanical symmetry. LEVEL OF EVIDENCE Level II, randomized controlled trial.
Collapse
Affiliation(s)
- Alexa K Johnson
- School of Kinesiology, University of Michigan, Ann Arbor, Michigan, U.S.A
| | - Scott R Brown
- Department of Kinesiology, Aquinas College, Grand Rapids, Michigan, U.S.A
| | - Riann M Palmieri-Smith
- School of Kinesiology, University of Michigan, Ann Arbor, Michigan, U.S.A; Department of Orthopedic Surgery, University of Michigan, Ann Arbor, Michigan, U.S.A.
| | - Chandramouli Krishnan
- School of Kinesiology, University of Michigan, Ann Arbor, Michigan, U.S.A; Physical Medicine and Rehabilitation, University of Michigan, Ann Arbor, Michigan, U.S.A; Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan, U.S.A.
| |
Collapse
|
3
|
Palmieri-Smith RM, Brown SR, Wojtys EM, Krishnan C. Functional Resistance Training Improves Thigh Muscle Strength after ACL Reconstruction: A Randomized Clinical Trial. Med Sci Sports Exerc 2022; 54:1729-1737. [PMID: 35551165 PMCID: PMC9481660 DOI: 10.1249/mss.0000000000002958] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
PURPOSE Quadriceps weakness is common after anterior cruciate ligament (ACL) reconstruction, resulting in prolonged disability and increased risk for reinjury and osteoarthritis. Functional resistance training (FRT) combines resistance training with task-specific training and may prove beneficial in restoring quadriceps strength. The primary purpose of this study was to determine if a walking-specific FRT program (e.g., resisted walking) improves knee strength in individuals after ACL reconstruction. METHODS Thirty participants were randomized into one of three groups: 1) FRT with a customized knee BRACE applied to the ACL leg, 2) FRT with elastic BAND tethered to the ankle of the ACL leg, or 3) a TARGET MATCH condition where no resistance was externally applied. Participants in all groups received training while walking on a treadmill 2-3 times per week for 8 wk. Isometric knee extension and flexion strength were measured before the start of the intervention, after the intervention (POST), and 8 wk after intervention completion (POST-2). RESULTS The BRACE group had greater knee extensor strength compared with the TARGET MATCH group at POST and POST-2 ( P < 0.05). The BRACE group had greater knee flexor strength than the TARGET MATCH group at POST and POST-2 ( P < 0.05) and the BAND group at POST ( P < 0.05). CONCLUSIONS FRT applied via a customized knee brace results in improvements in knee extensor and flexor strength after ACL reconstruction. FRT is a beneficial adjuvant to ACL rehabilitation and leads to better strength compared with standard of care.
Collapse
Affiliation(s)
- Riann M. Palmieri-Smith
- School of Kinesiology, University of Michigan; Ann Arbor, MI
- Orthopedic Rehabilitation and Biomechanics Laboratory, University of Michigan, Ann Arbor, MI
- Department of Orthopaedic Surgery, Michigan Medicine, Ann Arbor, MI
| | - Scott R. Brown
- Department of Kinesiology, Aquinas College, Grand Rapids, MI
- Department of Physical Medicine and Rehabilitation, University of Michigan; Ann Arbor, MI
| | - Edward M. Wojtys
- Department of Orthopaedic Surgery, Michigan Medicine, Ann Arbor, MI
| | - Chandramouli Krishnan
- School of Kinesiology, University of Michigan; Ann Arbor, MI
- Department of Physical Medicine and Rehabilitation, University of Michigan; Ann Arbor, MI
- Neuromuscular and Rehabilitation Robotics Laboratory, University of Michigan; Ann Arbor, MI
- Robotics Institute, University of Michigan, Ann Arbor, MI
| |
Collapse
|
4
|
Novel insights on the bottom–up rise strength transfer: investigating massed vs. distributed exercise training. SPORT SCIENCES FOR HEALTH 2021. [DOI: 10.1007/s11332-021-00810-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
5
|
Mokhtari P, Tayebi Meybodi A, Lawton MT. Learning microvascular anastomosis: Analysis of practice patterns. J Clin Neurosci 2021; 90:212-216. [PMID: 34275552 DOI: 10.1016/j.jocn.2021.06.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 05/25/2021] [Accepted: 06/02/2021] [Indexed: 10/21/2022]
Abstract
BACKGROUND Performing a successful microsurgical vascular anastomosis (MVA) is challenging and requires lots of practice. However, the most efficient practice protocol is yet to be found. We aimed to compare and analyze two major practice patterns for fine motor tasks as applied to learning MVA: distributed and mass practice protocols. Ten neurosurgeons with comparable experience in microsurgery (but no experience in vascular anastomosis) were randomized to practice MVA either using a distributed (1 session/day) or a mass practice (6 sessions/day) protocol. A total of 24 sessions of practice and 2 recall test sessions were given. Anastomosis score, time to complete a single stitch and the total time to complete an anastomosis were recorded. Mass practice protocol caused a clear fatigue effect observed toward the end of each mass practice trial block. Statistical comparison using one-way analysis of variance showed significantly higher anastomosis scores and shorter times to place a single stitch as well as to complete the anastomosis in distributed practice group for the last 3 acquisition practice trials, and the 2 recall tests (p < 0.05). The relative advantage of the distributed practice protocol could be attributed to forgetting/spacing effect. Although mass practice protocol resulted in worse performance, it still showed a gradual improvement trend in performance from beginning to the end. Therefore, certain adjustments to a mass practice protocol (such as increasing the number of practice blocks) could potentially lead to an eventual performance level comparable to a distributed protocol. This point is a subject of further investigation.
Collapse
Affiliation(s)
- Pooneh Mokhtari
- Department of Neurological Surgery, Rutgers New Jersey Medical School, Newark, NJ, USA.
| | - Ali Tayebi Meybodi
- Department of Neurological Surgery, Rutgers New Jersey Medical School, Newark, NJ, USA; Division of Neurological Surgery, Barrow Neurological Institute, Phoenix, AZ, USA
| | - Michael T Lawton
- Division of Neurological Surgery, Barrow Neurological Institute, Phoenix, AZ, USA
| |
Collapse
|
6
|
Charlton JM, Eng JJ, Li LC, Hunt MA. Learning Gait Modifications for Musculoskeletal Rehabilitation: Applying Motor Learning Principles to Improve Research and Clinical Implementation. Phys Ther 2021; 101:pzaa207. [PMID: 33351940 PMCID: PMC7899063 DOI: 10.1093/ptj/pzaa207] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Accepted: 10/04/2020] [Indexed: 12/11/2022]
Abstract
Gait modifications are used in the rehabilitation of musculoskeletal conditions like osteoarthritis and patellofemoral pain syndrome. While most of the research has focused on the biomechanical and clinical outcomes affected by gait modification, the process of learning these new gait patterns has received little attention. Without adequate learning, it is unlikely that the modification will be performed in daily life, limiting the likelihood of long-term benefit. There is a vast body of literature examining motor learning, though little has involved gait modifications, especially in populations with musculoskeletal conditions. The studies that have examined gait modifications in these populations are often limited due to incomplete reporting and study design decisions that prohibit strong conclusions about motor learning. This perspective draws on evidence from the broader motor learning literature for application in the context of modifying gait. Where possible, specific gait modification examples are included to highlight the current literature and what can be improved on going forward. A brief theoretical overview of motor learning is outlined, followed by strategies that are known to improve motor learning, and finally, how assessments of learning need to be conducted to make meaningful conclusions.
Collapse
Affiliation(s)
- Jesse M Charlton
- Graduate Programs in Rehabilitation Sciences, University of British Columbia, Vancouver, BC, Canada
- Motion Analysis and Biofeedback Laboratory, University of British Columbia, Vancouver, BC, Canada
| | - Janice J Eng
- Rehabilitation Research Program, Vancouver Coastal Health Research Institute, Vancouver, BC, Canada
- Department of Physical Therapy, University of British Columbia, Vancouver, BC, Canada
| | - Linda C Li
- Department of Physical Therapy, University of British Columbia, Vancouver, BC, Canada
- Arthritis Research Canada, Richmond, BC, Canada
| | - Michael A Hunt
- Motion Analysis and Biofeedback Laboratory, University of British Columbia, Vancouver, BC, Canada
- Department of Physical Therapy, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
7
|
GARDI AZ, VOGEL AK, DHARIA AK, KRISHNAN C. Effect of conventional transcranial direct current stimulation devices and electrode sizes on motor cortical excitability of the quadriceps muscle. Restor Neurol Neurosci 2021; 39:379-391. [PMID: 34657855 PMCID: PMC8926458 DOI: 10.3233/rnn-211210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND There is a growing concern among the scientific community that the effects of transcranial direct current stimulation (tDCS) are highly variable across studies. The use of different tDCS devices and electrode sizes may contribute to this variability; however, this issue has not been verified experimentally. OBJECTIVE To evaluate the effects of tDCS device and electrode size on quadriceps motor cortical excitability. METHODS The effect of tDCS device and electrode size on quadriceps motor cortical excitability was quantified across a range of TMS intensities using a novel evoked torque approach that has been previously shown to be highly reliable. In experiment 1, anodal tDCS-induced excitability changes were measured in twenty individuals using two devices (Empi and Soterix) on two separate days. In experiment 2, anodal tDCS-induced excitability changes were measured in thirty individuals divided into three groups based on the electrode size. A novel Bayesian approach was used in addition to the classical hypothesis testing during data analyses. RESULTS There were no significant main or interaction effects, indicating that cortical excitability did not differ between different tDCS devices or electrode sizes. The lack of pre-post time effect in both experiments indicated that cortical excitability was minimally affected by anodal tDCS. Bayesian analyses indicated that the null model was more favored than the main or the interaction effects model. CONCLUSIONS Motor cortical excitability was not altered by anodal tDCS and did not differ by devices or electrode sizes used in the study. Future studies should examine if behavioral outcomes are different based on tDCS device or electrode size.
Collapse
Affiliation(s)
- Adam Z. GARDI
- NeuRRo Lab, Department of Physical Medicine and Rehabilitation, Michigan Medicine, Ann Arbor, MI, USA
| | - Amanda K. VOGEL
- NeuRRo Lab, Department of Physical Medicine and Rehabilitation, Michigan Medicine, Ann Arbor, MI, USA
| | - Aastha K. DHARIA
- NeuRRo Lab, Department of Physical Medicine and Rehabilitation, Michigan Medicine, Ann Arbor, MI, USA
| | - Chandramouli KRISHNAN
- NeuRRo Lab, Department of Physical Medicine and Rehabilitation, Michigan Medicine, Ann Arbor, MI, USA
- Michigan Robotics Institute, University of Michigan, Ann Arbor, MI, USA
- School of Kinesiology, University of Michigan, Ann Arbor, MI, USA
- Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
8
|
Brown SR, Washabaugh EP, Dutt-Mazumder A, Wojtys EM, Palmieri-Smith RM, Krishnan C. Functional Resistance Training to Improve Knee Strength and Function After Acute Anterior Cruciate Ligament Reconstruction: A Case Study. Sports Health 2020; 13:136-144. [PMID: 33337984 DOI: 10.1177/1941738120955184] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Thigh muscle weakness after anterior cruciate ligament reconstruction (ACLR) can persist after returning to activity. While resistance training can improve muscle function, "nonfunctional" training methods are not optimal for inducing transfer of benefits to activities such as walking. Here, we tested the feasibility of a novel functional resistance training (FRT) approach to restore strength and function in an individual with ACLR. HYPOTHESIS FRT would improve knee strength and function after ACLR. STUDY DESIGN Case report. LEVEL OF EVIDENCE Level 5. METHODS A 15-year-old male patient volunteered for an 8-week intervention where he performed 30 minutes of treadmill walking, 3 times per week, while wearing a custom-designed knee brace that provided resistance to the thigh muscles of his ACLR leg. Thigh strength, gait mechanics, and corticospinal and spinal excitability were assessed before and immediately after the 8-week intervention. Voluntary muscle activation was evaluated immediately after the intervention. RESULTS Knee extensor and flexor strength increased in the ACLR leg from pre- to posttraining (130 to 225 N·m [+74%] and 44 to 88 N·m [+99%], respectively) and increases in between-limb extensor and flexor strength symmetry (45% to 92% [+74%] and 47% to 72% [+65%], respectively) were also noted. After the intervention, voluntary muscle activation in the ACLR leg was 72%, compared with the non-ACLR leg at 75%. Knee angle and moment during late stance phase decreased (ie, improved) in the ACLR leg and appeared more similar to the non-ACLR leg after FRT training (18° to 14° [-23.4] and 0.07 to -0.02 N·m·kg-1·m-1 [-122.8%], respectively). Corticospinal and spinal excitability in the ACLR leg decreased (3511 to 2511 [-28.5%] and 0.42 to 0.24 [-43.7%], respectively) from pre- to posttraining. CONCLUSION A full 8 weeks of FRT that targeted both quadriceps and hamstring muscles lead to improvements in strength and gait, suggesting that FRT may constitute a promising and practical alternative to traditional methods of resistance training. CLINICAL RELEVANCE FRT may serve as a viable approach to improve knee strength and function after ACL reconstruction.
Collapse
Affiliation(s)
- Scott R Brown
- Neuromuscular and Rehabilitation Robotics Laboratory (NeuRRo Lab), Department of Physical Medicine and Rehabilitation, Michigan Medicine, University of Michigan, Ann Arbor, Michigan
| | - Edward P Washabaugh
- Neuromuscular and Rehabilitation Robotics Laboratory (NeuRRo Lab), Department of Physical Medicine and Rehabilitation, Michigan Medicine, University of Michigan, Ann Arbor, Michigan.,Biomedical Engineering, University of Michigan, Ann Arbor, Michigan
| | - Aviroop Dutt-Mazumder
- Neuromuscular and Rehabilitation Robotics Laboratory (NeuRRo Lab), Department of Physical Medicine and Rehabilitation, Michigan Medicine, University of Michigan, Ann Arbor, Michigan
| | - Edward M Wojtys
- Department of Orthopaedic Surgery, Michigan Medicine, University of Michigan, Ann Arbor, Michigan
| | - Riann M Palmieri-Smith
- Neuromuscular and Rehabilitation Robotics Laboratory (NeuRRo Lab), Department of Physical Medicine and Rehabilitation, Michigan Medicine, University of Michigan, Ann Arbor, Michigan.,Department of Orthopaedic Surgery, Michigan Medicine, University of Michigan, Ann Arbor, Michigan.,School of Kinesiology, University of Michigan, Ann Arbor, Michigan
| | - Chandramouli Krishnan
- Neuromuscular and Rehabilitation Robotics Laboratory (NeuRRo Lab), Department of Physical Medicine and Rehabilitation, Michigan Medicine, University of Michigan, Ann Arbor, Michigan.,Biomedical Engineering, University of Michigan, Ann Arbor, Michigan.,School of Kinesiology, University of Michigan, Ann Arbor, Michigan.,Michigan Robotics Institute, University of Michigan, Ann Arbor, Michigan
| |
Collapse
|
9
|
Senserrick C, Lawler K, Scroggie GD, Williams K, Taylor NF. Three short sessions of physiotherapy during rehabilitation after hip fracture were no more effective in improving mobility than a single longer session: a randomised controlled trial. Physiotherapy 2020; 112:87-95. [PMID: 34052569 DOI: 10.1016/j.physio.2020.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Indexed: 11/29/2022]
Abstract
OBJECTIVES To determine if three short daily sessions of physiotherapy for rehabilitation inpatients after hip fracture is more effective than providing one long daily session in improving mobility. DESIGN A single-blinded randomised controlled trial. SETTING Two inpatient rehabilitation wards at a hospital in Melbourne, Australia. PARTICIPANTS Seventy-six rehabilitation inpatients after hip fracture. The key exclusion criterion was not being allowed to weight bear. INTERVENTIONS All participants received multidisciplinary rehabilitation. Experimental participants received three 15-minute sessions of physiotherapy 5 days per week until discharge. Control participants received one 45-minute session of physiotherapy 5 days per week until discharge. MAIN OUTCOME MEASURES The primary outcome, mobility, was assessed with the de Morton Mobility Index 2 weeks after admission and at discharge. Secondary outcomes were Functional Independence Measure mobility (transfers, ambulation, steps), physical activity measured with an accelerometer, length of stay, discharge destination, readmissions within 30 days of discharge, and patient and physiotherapist satisfaction. RESULTS Sixty-seven (88%) participants completed mobility assessment at discharge and 34 (45%) at 2 weeks. There were a greater proportion of missed sessions in the experimental group (84% adherence vs 95%). There was no between-group difference in mobility at discharge (MD -1.9 points, 95%CI-6.9 to 3.2) or at 2 weeks (MD -3.5 points, 95%CI-15.4 to 8.4). There were no between-group differences in any secondary outcomes. CONCLUSIONS Providing inpatient physiotherapy rehabilitation in three shorter sessions resulted in more missed sessions and likely did not improve mobility outcomes compared with providing one longer session for patients recovering from hip fracture. CLINICAL TRIAL REGISTRATION NUMBER ACTRN 12617000863336.
Collapse
Affiliation(s)
- Catherine Senserrick
- Physiotherapy Department, Peter James Centre, Eastern Health, Burwood East, Victoria, 3151, Australia.
| | - Katherine Lawler
- Allied Health Clinical Research Office, Eastern Health, Box Hill, Victoria 3128, Australia; Wicking Dementia Research and Education Centre, University of Tasmania, Hobart, Tasmania, 7005, Australia.
| | - Grant D Scroggie
- Physiotherapy Department, Peter James Centre, Eastern Health, Burwood East, Victoria, 3151, Australia.
| | - Kim Williams
- Physiotherapy Department, Peter James Centre, Eastern Health, Burwood East, Victoria, 3151, Australia.
| | - Nicholas F Taylor
- Allied Health Clinical Research Office, Eastern Health, Box Hill, Victoria 3128, Australia; College of Science, Health and Engineering, La Trobe University, Melbourne, Victoria, 3086, Australia.
| |
Collapse
|