1
|
Bavil AY, Eghan-Acquah E, Diamond LE, Barrett R, Carty CP, Barzan M, Nasseri A, Lloyd DG, Saxby DJ, Feih S. Effect of different constraining boundary conditions on simulated femoral stresses and strains during gait. Sci Rep 2024; 14:10808. [PMID: 38734763 PMCID: PMC11088641 DOI: 10.1038/s41598-024-61305-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Accepted: 05/03/2024] [Indexed: 05/13/2024] Open
Abstract
Finite element analysis (FEA) is commonly used in orthopaedic research to estimate localised tissue stresses and strains. A variety of boundary conditions have been proposed for isolated femur analysis, but it remains unclear how these assumed constraints influence FEA predictions of bone biomechanics. This study compared the femoral head deflection (FHD), stresses, and strains elicited under four commonly used boundary conditions (fixed knee, mid-shaft constraint, springs, and isostatic methods) and benchmarked these mechanics against the gold standard inertia relief method for normal and pathological femurs (extreme anteversion and retroversion, coxa vara, and coxa valga). Simulations were performed for the stance phase of walking with the applied femoral loading determined from patient-specific neuromusculoskeletal models. Due to unrealistic biomechanics observed for the commonly used boundary conditions, we propose a novel biomechanical constraint method to generate physiological femur biomechanics. The biomechanical method yielded FHD (< 1 mm), strains (approaching 1000 µε), and stresses (< 60 MPa), which were consistent with physiological observations and similar to predictions from the inertia relief method (average coefficient of determination = 0.97, average normalized root mean square error = 0.17). Our results highlight the superior performance of the biomechanical method compared to current methods of constraint for both healthy and pathological femurs.
Collapse
Affiliation(s)
- Alireza Y Bavil
- Griffith Centre of Biomedical and Rehabilitation Engineering (GCORE), Griffith University, Gold Coast, Australia
- School of Health Sciences and Social Work, Griffith University, Gold Coast, Australia
- Advanced Design and Prototyping Technologies (ADaPT) Institute, Griffith University, Gold Coast, Australia
| | - Emmanuel Eghan-Acquah
- Griffith Centre of Biomedical and Rehabilitation Engineering (GCORE), Griffith University, Gold Coast, Australia
- School of Health Sciences and Social Work, Griffith University, Gold Coast, Australia
- Advanced Design and Prototyping Technologies (ADaPT) Institute, Griffith University, Gold Coast, Australia
| | - Laura E Diamond
- Griffith Centre of Biomedical and Rehabilitation Engineering (GCORE), Griffith University, Gold Coast, Australia
- School of Health Sciences and Social Work, Griffith University, Gold Coast, Australia
- Advanced Design and Prototyping Technologies (ADaPT) Institute, Griffith University, Gold Coast, Australia
| | - Rod Barrett
- Griffith Centre of Biomedical and Rehabilitation Engineering (GCORE), Griffith University, Gold Coast, Australia
- School of Health Sciences and Social Work, Griffith University, Gold Coast, Australia
- Advanced Design and Prototyping Technologies (ADaPT) Institute, Griffith University, Gold Coast, Australia
| | - Christopher P Carty
- Griffith Centre of Biomedical and Rehabilitation Engineering (GCORE), Griffith University, Gold Coast, Australia
- School of Health Sciences and Social Work, Griffith University, Gold Coast, Australia
- Advanced Design and Prototyping Technologies (ADaPT) Institute, Griffith University, Gold Coast, Australia
| | - Martina Barzan
- Griffith Centre of Biomedical and Rehabilitation Engineering (GCORE), Griffith University, Gold Coast, Australia
- School of Health Sciences and Social Work, Griffith University, Gold Coast, Australia
- Advanced Design and Prototyping Technologies (ADaPT) Institute, Griffith University, Gold Coast, Australia
| | - Azadeh Nasseri
- Griffith Centre of Biomedical and Rehabilitation Engineering (GCORE), Griffith University, Gold Coast, Australia
- School of Health Sciences and Social Work, Griffith University, Gold Coast, Australia
- Advanced Design and Prototyping Technologies (ADaPT) Institute, Griffith University, Gold Coast, Australia
| | - David G Lloyd
- Griffith Centre of Biomedical and Rehabilitation Engineering (GCORE), Griffith University, Gold Coast, Australia
- School of Health Sciences and Social Work, Griffith University, Gold Coast, Australia
- Advanced Design and Prototyping Technologies (ADaPT) Institute, Griffith University, Gold Coast, Australia
| | - David J Saxby
- Griffith Centre of Biomedical and Rehabilitation Engineering (GCORE), Griffith University, Gold Coast, Australia.
- School of Health Sciences and Social Work, Griffith University, Gold Coast, Australia.
- Advanced Design and Prototyping Technologies (ADaPT) Institute, Griffith University, Gold Coast, Australia.
| | - Stefanie Feih
- Griffith Centre of Biomedical and Rehabilitation Engineering (GCORE), Griffith University, Gold Coast, Australia.
- Advanced Design and Prototyping Technologies (ADaPT) Institute, Griffith University, Gold Coast, Australia.
- School of Engineering and Built Environment, Griffith University, Gold Coast, Australia.
| |
Collapse
|
2
|
Effect of functional weightbearing versus non-weightbearing quadriceps strengthening exercise on contact force in varus-malaligned medial knee osteoarthritis: A secondary analysis of a randomized controlled trial. Knee 2022; 39:50-61. [PMID: 36162143 DOI: 10.1016/j.knee.2022.09.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 07/30/2022] [Accepted: 09/10/2022] [Indexed: 02/02/2023]
Abstract
BACKGROUND Knee osteoarthritis progression may be related to altered knee loads, particularly in those with varus malalignment. Using randomized controlled trial data, this secondary analysis of complete datasets (n = 67) compared the effects of a functional weightbearing (WB) and non-weightbearing quadriceps strengthening exercise (NWB) program on measures of medial tibiofemoral joint contact force (MTCF) during walking. METHODS Participants aged ≥50 years and with medial knee osteoarthritis and varus malalignment were randomly allocated to a 12-week, home-based, physiotherapist-prescribed exercise program comprised of WB exercises (n = 31), or NWB exercise (n = 36). Three-dimensional lower-body motion, ground reaction forces, and surface electromyograms from six lower-limb muscles were acquired during walking at baseline and at 12-weeks follow-up. An electromyogram-informed neuromusculoskeletal model estimated bodyweight (BW) normalized MTCF (peak and impulse), including external and muscular contributions to MTCF. RESULTS There was no between-group difference in the change in peak MTCF (-0.02 [-0.12, 0.09] BW) or MTCF impulse (-0.01 [-0.06, 0.03] BW·s). There was a between-group difference in the muscle contribution to peak MTCF (-0.08 [-0.15, -0.00] BW) and MTCF impulse (-0.04 [-0.08, -0.00] BW·s), whereby the muscle contribution reduced more in the NWB group over time compared to the WB group. There was also a between group-difference in the external contribution to peak MTCF (0.09 [0.01, 0.18] BW), but this reduced more in the WB group than in the NWB group. CONCLUSIONS Our findings suggest no difference in MTCF between the two exercise programs, but differences in the contribution to MTCF between the two exercise programs were observed in those with medial knee osteoarthritis and varus malalignment.
Collapse
|
3
|
STARKEY SCOTTC, DIAMOND LAURAE, HINMAN RANAS, SAXBY DAVIDJ, KNOX GABRIELLE, HALL MICHELLE. Muscle Forces during Weight-Bearing Exercises in Medial Knee Osteoarthritis and Varus Malalignment: A Cross-Sectional Study. Med Sci Sports Exerc 2022; 54:1448-1458. [DOI: 10.1249/mss.0000000000002943] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
4
|
Avila A, Vasavada K, Shankar DS, Petrera M, Jazrawi LM, Strauss EJ. Current Controversies in Arthroscopic Partial Meniscectomy. Curr Rev Musculoskelet Med 2022; 15:336-343. [PMID: 35727503 DOI: 10.1007/s12178-022-09770-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/16/2022] [Indexed: 10/18/2022]
Abstract
PURPOSE OF REVIEW Given the continued controversy among orthopedic surgeons regarding the indications and benefits of arthroscopic partial meniscectomy (APM), this review summarizes the current literature, indications, and outcomes of partial meniscectomy to treat symptomatic meniscal tears. RECENT FINDINGS In patients with symptomatic meniscal tears, the location and tear pattern play a vital role in clinical management. Tears in the central white-white zone are less amenable to repair due to poor vascularity. Patients may be indicated for APM or non-surgical intervention depending on the tear pattern and symptoms. Non-surgical management for meniscal pathology includes non-steroidal anti-inflammatory drugs (NSAIDs), physical therapy (PT), and intraarticular injections to reduce inflammation and relieve symptoms. There have been several landmark multicenter randomized controlled trials (RCTs) studying the outcomes of APM compared to PT or sham surgery in symptomatic degenerative meniscal tears. These most notably include the 2013 Meniscal Tear in Osteoarthritis Research (MeTeOR) Trial, the 2018 ESCAPE trial, and the sham surgery-controlled Finnish Degenerative Meniscal Lesion Study (FIDELITY), which failed to identify substantial benefits of APM over nonoperative treatment or even placebo surgery. Despite an abundance of literature exploring outcomes of APM for degenerative meniscus tears, there is little consensus among surgeons about the drivers of good outcomes following APM. It is often difficult to determine if the presenting symptoms are secondary to the meniscus pathology or the degenerative disease in patients with concomitant OA. A central tenet of managing meniscal pathology is to preserve tissue whenever possible. Most RCTs show that exercise therapy may be non-inferior to APM in degenerative tears if repair is not possible. Given this evidence, patients who fail nonoperative treatment should be counseled regarding the risks of APM before proceeding to surgical management.
Collapse
Affiliation(s)
- Amanda Avila
- Division of Sports Medicine, Department of Orthopedic Surgery, New York University Langone Health, New York, NY, USA.
| | - Kinjal Vasavada
- Division of Sports Medicine, Department of Orthopedic Surgery, New York University Langone Health, New York, NY, USA
| | - Dhruv S Shankar
- Division of Sports Medicine, Department of Orthopedic Surgery, New York University Langone Health, New York, NY, USA
| | - Massimo Petrera
- Division of Sports Medicine, Department of Orthopedic Surgery, New York University Langone Health, New York, NY, USA
| | - Laith M Jazrawi
- Division of Sports Medicine, Department of Orthopedic Surgery, New York University Langone Health, New York, NY, USA
| | - Eric J Strauss
- Division of Sports Medicine, Department of Orthopedic Surgery, New York University Langone Health, New York, NY, USA
| |
Collapse
|
5
|
Starkey S, Hinman R, Paterson K, Saxby D, Knox G, Hall M. Tibiofemoral contact force differences between flat flexible and stable supportive walking shoes in people with varus-malaligned medial knee osteoarthritis: A randomized cross-over study. PLoS One 2022; 17:e0269331. [PMID: 35653355 PMCID: PMC9162314 DOI: 10.1371/journal.pone.0269331] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 05/17/2022] [Indexed: 11/23/2022] Open
Abstract
Objective To compare the effect of stable supportive to flat flexible walking shoes on medial tibiofemoral contact force (MTCF) in people with medial knee osteoarthritis and varus malalignment. Design This was a randomized cross-over study. Twenty-eight participants aged ≥50 years with medial knee osteoarthritis and varus malalignment were recruited from the community. Three-dimensional full-body motion, ground reaction forces and surface electromyograms from twelve lower-limb muscles were acquired during six speed-matched walking trials for flat flexible and stable supportive shoes, tested in random order. An electromyogram-informed neuromusculoskeletal model with subject-specific geometry estimated bodyweight (BW) normalized MTCF. Waveforms were analyzed using statistical parametric mapping with a repeated measures analysis of variance model. Peak MTCF, MTCF impulse and MTCF loading rates (discrete outcomes) were evaluated using a repeated measures multivariate analysis of variance model. Results Statistical parametric mapping showed lower MTCF in stable supportive compared to flat flexible shoes during 5–18% of stance phase (p = 0.001). For the discrete outcomes, peak MTCF and MTCF impulse were not different between the shoe styles. However, mean differences [95%CI] in loading impulse (-0.02 BW·s [-0.02, 0.01], p<0.001), mean loading rate (-1.42 BW·s-1 [-2.39, -0.45], p = 0.01) and max loading rate (-3.26 BW·s-1 [-5.94, -0.59], p = 0.02) indicated lower measure of loading in stable supportive shoes compared to flexible shoes. Conclusions Stable supportive shoes reduced MTCF during loading stance and reduced loading impulse/rates compared to flat flexible shoes and therefore may be more suitable in people with medial knee osteoarthritis and varus malalignment. Trial registration Australian and New Zealand Clinical Trials Registry (12619000622101).
Collapse
Affiliation(s)
- Scott Starkey
- Centre for Health, Exercise and Sports Medicine, University of Melbourne, Melbourne, Victoria, Australia
| | - Rana Hinman
- Centre for Health, Exercise and Sports Medicine, University of Melbourne, Melbourne, Victoria, Australia
| | - Kade Paterson
- Centre for Health, Exercise and Sports Medicine, University of Melbourne, Melbourne, Victoria, Australia
| | - David Saxby
- Griffith Centre of Biomedical and Rehabilitation Engineering (GCORE), Menzies Health Institute Queensland, Griffith University, Gold Coast, Queensland, Australia
- School of Allied Health Sciences, Griffith University, Gold Coast, Queensland, Australia
| | - Gabrielle Knox
- Centre for Health, Exercise and Sports Medicine, University of Melbourne, Melbourne, Victoria, Australia
| | - Michelle Hall
- Centre for Health, Exercise and Sports Medicine, University of Melbourne, Melbourne, Victoria, Australia
- * E-mail:
| |
Collapse
|
6
|
Osteoarthritis year in review 2021: mechanics. Osteoarthritis Cartilage 2022; 30:663-670. [PMID: 35081453 DOI: 10.1016/j.joca.2021.12.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 11/09/2021] [Accepted: 12/01/2021] [Indexed: 02/02/2023]
Abstract
Osteoarthritis (OA) has a complex, heterogeneous and only partly understood etiology. There is a definite role of joint cartilage pathomechanics in originating and progressing of the disease. Although it is still not identified precisely enough to design or select targeted treatments, the progress of this year's research demonstrates that this goal became much closer. On multiple scales - tissue, joint and whole body - an increasing number of studies were done, with impressive results. (1) Technology based instrument innovations, especially when combined with machine learning models, have broadened the applicability of biomechanics. (2) Combinations with imaging make biomechanics much more precise & personalized. (3) The combination of Musculoskeletal & Finite Element Models yield valid personalized cartilage loads. (4) Mechanical outcomes are becoming increasingly meaningful to inform and evaluate treatments, including predictive power from biomechanical models. Since most recent advancements in the field of biomechanics in OA are at the level of a proof op principle, future research should not only continue on this successful path of innovation, but also aim to develop clinical workflows that would facilitate including precision biomechanics in large scale studies. Eventually this will yield clinical tools for decision making and a rationale for new therapies in OA.
Collapse
|
7
|
Effect of Assistance Using a Bilateral Robotic Knee Exoskeleton on Tibiofemoral Force Using a Neuromuscular Model. Ann Biomed Eng 2022; 50:716-727. [PMID: 35344119 DOI: 10.1007/s10439-022-02950-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Accepted: 03/13/2022] [Indexed: 11/01/2022]
Abstract
Tibiofemoral compression forces present during locomotion can result in high stress and risk damage to the knee. Powered assistance using a knee exoskeleton may reduce the knee load by reducing the work required by the muscles. However, the exact effect of assistance on the tibiofemoral force is unknown. The goal of this study was to investigate the effect of knee extension assistance during the early stance phase on the tibiofemoral force. Nine able-bodied adults walked on an inclined treadmill with a bilateral knee exoskeleton with assistance and with no assistance. Using an EMG-informed neuromusculoskeletal model, muscle forces were estimated, then utilized to estimate the tibiofemoral contact force. Results showed a 28% reduction in the knee moment, which resulted in approximately a 15% decrease in knee extensor muscle activation and a 20% reduction in subsequent muscle force, leading to a significant 10% reduction in peak and 9% reduction in average tibiofemoral contact force during the early stance phase (p < 0.05). The results indicate the tibiofemoral force is highly dependent on the knee kinetics and quadricep muscle activation due to their influence on knee extensor muscle forces, the primary contributor to the knee load.
Collapse
|
8
|
Esrafilian A, Stenroth L, Mononen ME, Vartiainen P, Tanska P, Karjalainen PA, Suomalainen JS, Arokoski JPA, Saxby DJ, Lloyd DG, Korhonen RK. Towards Tailored Rehabilitation by Implementation of a Novel Musculoskeletal Finite Element Analysis Pipeline. IEEE Trans Neural Syst Rehabil Eng 2022; 30:789-802. [PMID: 35286263 DOI: 10.1109/tnsre.2022.3159685] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Tissue-level mechanics (e.g., stress and strain) are important factors governing tissue remodeling and development of knee osteoarthritis (KOA), and hence, the success of physical rehabilitation. To date, no clinically feasible analysis toolbox has been introduced and used to inform clinical decision making with subject-specific in-depth joint mechanics of different activities. Herein, we utilized a rapid state-of-the-art electromyography-assisted musculoskeletal finite element analysis toolbox with fibril-reinforced poro(visco)elastic cartilages and menisci to investigate knee mechanics in different activities. Tissue mechanical responses, believed to govern collagen damage, cell death, and fixed charge density loss of proteoglycans, were characterized within 15 patients with KOA while various daily activities and rehabilitation exercises were performed. Results showed more inter-participant variation in joint mechanics during rehabilitation exercises compared to daily activities. Accordingly, the devised workflow may be used for designing subject-specific rehabilitation protocols. Further, results showed the potential to tailor rehabilitation exercises, or assess capacity for daily activity modifications, to optimally load knee tissue, especially when mechanically-induced cartilage degeneration and adaptation are of interest.
Collapse
|