1
|
Persine S, Simoneau-Buessinger E, Charlaté F, Bassement J, Gillet C, Découfour N, Leteneur S. Transfemoral amputees adapt their gait during cross-slope walking with specific upper-lower limb coordination. Gait Posture 2023; 105:171-176. [PMID: 37579592 DOI: 10.1016/j.gaitpost.2023.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 08/01/2023] [Accepted: 08/03/2023] [Indexed: 08/16/2023]
Abstract
BACKGROUND Unilateral lower limb amputees have asymmetrical gaits, particularly on irregular surfaces and slopes. It is unclear how coordination between arms and legs can adapt during cross-slope walking. RESEARCH QUESTION How do transfemoral amputees (TFAs) adapt their upper-lower limb coordination on cross-slope surfaces? METHODS Twenty TFA and 20 healthy adults (Ctrl) performed a three-dimensional gait analysis in 2 walking conditions: level ground and cross-slope with prosthesis uphill. Sagittal joint angles and velocities of hips and shoulders were calculated. Continuous relative phases (CRP) were computed between the shoulder and the hip of the opposite side. The closer to 0 the CRP is, the more coordinated the joints are. Curve analysis were conducted using SPM. RESULTS The mean CRP between the downhill shoulder and the uphill hip was higher in TFA compared to Ctrl (p = 0.02), with a walking conditions effect (p = 0.005). TFA showed significant differences about the end of the stance phase (p = 0.01) between level ground and cross-slope, while Ctrl showed a significant difference (p = 0.008) between these walking conditions at the end of the swing phase. In CRP between the uphill shoulder and the downhill hip, SnPM analysis showed intergroup differences during the stance phase (p < 0.05), but not in the comparison between walking conditions in TFA and Ctrl groups. SIGNIFICANCE TFA showed an asymmetrical coordination in level ground walking compared to Ctrl. Walking on cross-slope led to upper-lower limb coordination adaptations: this condition impacted the CRP between downhill shoulder and uphill hip in both groups. The management of the prosthetic limb, positioned uphill, induced a reorganization of the coordination with the upper limb of the amputated side. Identifying upper-lower limb coordination adaptations on cross-slope surfaces will help to achieve rehabilitation goals for effective walking in urban environments.
Collapse
Affiliation(s)
- S Persine
- Centre Jacques Calvé, Fondation HOPALE, Berck-sur-mer, France; Univ. Polytechnique Hauts-de-France, LAMIH, CNRS, UMR 8201, F-59313 Valenciennes, France.
| | - E Simoneau-Buessinger
- Univ. Polytechnique Hauts-de-France, LAMIH, CNRS, UMR 8201, F-59313 Valenciennes, France
| | - F Charlaté
- Centre Jacques Calvé, Fondation HOPALE, Berck-sur-mer, France
| | - J Bassement
- Institut Stablinski, Centre Hospitalier de Valenciennes, France
| | - C Gillet
- Univ. Polytechnique Hauts-de-France, LAMIH, CNRS, UMR 8201, F-59313 Valenciennes, France
| | - N Découfour
- Faculté de Médecine et de Maïeutique, Institut Catholique de Lille, France
| | - S Leteneur
- Univ. Polytechnique Hauts-de-France, LAMIH, CNRS, UMR 8201, F-59313 Valenciennes, France
| |
Collapse
|
2
|
Brailey G, Metcalf B, Price L, Cumming S, Stiles V. Raw Acceleration from Wrist- and Hip-Worn Accelerometers Corresponds with Mechanical Loading in Children and Adolescents. SENSORS (BASEL, SWITZERLAND) 2023; 23:6943. [PMID: 37571725 PMCID: PMC10422445 DOI: 10.3390/s23156943] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/21/2023] [Accepted: 07/28/2023] [Indexed: 08/13/2023]
Abstract
The purpose of this study was to investigate associations between peak magnitudes of raw acceleration (g) from wrist- and hip-worn accelerometers and ground reaction force (GRF) variables in a large sample of children and adolescents. A total of 269 participants (127 boys, 142 girls; age: 12.3 ± 2.0 yr) performed walking, running, jumping (<5 cm; >5 cm) and single-leg hopping on a force plate. A GENEActiv accelerometer was worn on the left wrist, and an Actigraph GT3X+ was worn on the right wrist and hip throughout. Mixed-effects linear regression was used to assess the relationships between peak magnitudes of raw acceleration and loading. Raw acceleration from both wrist and hip-worn accelerometers was strongly and significantly associated with loading (all p's < 0.05). Body mass and maturity status (pre/post-PHV) were also significantly associated with loading, whereas age, sex and height were not identified as significant predictors. The final models for the GENEActiv wrist, Actigraph wrist and Actigraph hip explained 81.1%, 81.9% and 79.9% of the variation in loading, respectively. This study demonstrates that wrist- and hip-worn accelerometers that output raw acceleration are appropriate for use to monitor the loading exerted on the skeleton and are able to detect short bursts of high-intensity activity that are pertinent to bone health.
Collapse
Affiliation(s)
- Gemma Brailey
- Department of Public Health and Sports Sciences, Faculty of Health and Life Sciences, University of Exeter, St. Luke’s Campus, Exeter EX1 2LU, UK; (B.M.); (L.P.); (V.S.)
| | - Brad Metcalf
- Department of Public Health and Sports Sciences, Faculty of Health and Life Sciences, University of Exeter, St. Luke’s Campus, Exeter EX1 2LU, UK; (B.M.); (L.P.); (V.S.)
| | - Lisa Price
- Department of Public Health and Sports Sciences, Faculty of Health and Life Sciences, University of Exeter, St. Luke’s Campus, Exeter EX1 2LU, UK; (B.M.); (L.P.); (V.S.)
| | - Sean Cumming
- Department for Health, University of Bath, Bath BA2 7AY, UK;
| | - Victoria Stiles
- Department of Public Health and Sports Sciences, Faculty of Health and Life Sciences, University of Exeter, St. Luke’s Campus, Exeter EX1 2LU, UK; (B.M.); (L.P.); (V.S.)
| |
Collapse
|
3
|
Ghahramani M, Mason B, Pearsall P, Spratford W. An Analysis of Lower Limb Coordination Variability in Unilateral Tasks in Healthy Adults: A Possible Prognostic Tool. Front Bioeng Biotechnol 2022; 10:885329. [PMID: 35782503 PMCID: PMC9247147 DOI: 10.3389/fbioe.2022.885329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 05/23/2022] [Indexed: 11/13/2022] Open
Abstract
Interlimb coordination variability analysis can shed light into the dynamics of higher order coordination and motor control. However, it is not clear how the interlimb coordination of people with no known injuries change in similar activities with increasing difficulty. This study aimed to ascertain if the interlimb coordination variability range and patterns of healthy participants change in different unilateral functional tasks with increasing complexity and whether leg dominance affects the interlimb coordination variability. In this cross-sectional study fourteen younger participants with no known injuries completed three repeated unilateral sit-to-stands (UniSTS), step-ups (SUs), and continuous-hops (Hops). Using four inertial sensors mounted on the lower legs and thighs, angular rotation of thighs and shanks were recorded. Using Hilbert transform, the phase angle of each segment and then the continuous relative phase (CRP) of the two segments were measured. The CRP is indicative of the interlimb coordination. Finally, the linear and the nonlinear shank-thigh coordination variability of each participant in each task was calculated. The results show that the linear shank-thigh coordination variability was significantly smaller in the SUs compared to both UniSTS and Hops in both legs. There were no significant differences found between the latter two tests in their linear coordination variability. However, Hops were found to have significantly larger nonlinear shank-thigh coordination variability compared to the SUs and the UniSTS. This can be due to larger vertical and horizontal forces required for the task and can reveal inadequate motor control during the movement. The combination of nonlinear and linear interlimb coordination variability can provide more insight into human movement as they measure different aspects of coordination variability. It was also seen that leg dominance does not affect the lower limb coordination variability in participants with no known injuries. The results should be tested in participants recovering from lower limb injuries.
Collapse
Affiliation(s)
- Maryam Ghahramani
- Human-Centred Technology Research Centre, Faculty of Science and Technology University of Canberra, Canberra, NSW, Australia
- *Correspondence: Maryam Ghahramani,
| | - Billy Mason
- Faculty of Health, University of Canberra, Canberra, NSW, Australia
- University of Canberra Research Institute for Sport and Exercise Science, Canberra, NSW, Australia
| | - Patrick Pearsall
- School of Information Technology and Systems, Faculty of Science and Technology University of Canberra, Canberra, NSW, Australia
| | - Wayne Spratford
- Faculty of Health, University of Canberra, Canberra, NSW, Australia
- University of Canberra Research Institute for Sport and Exercise Science, Canberra, NSW, Australia
| |
Collapse
|
4
|
Lv Y, Xu J, Fang H, Zhang X, Wang Q. Data-Mined Continuous Hip-knee Coordination Mapping with Motion Lag for Lower-limb Prosthesis Control. IEEE Trans Neural Syst Rehabil Eng 2022; 30:1557-1566. [PMID: 35657834 DOI: 10.1109/tnsre.2022.3179978] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Trajectory planning of the knee joint plays an essential role in controlling the lower limb prosthesis. Nowadays, the idea of mapping the trajectory of the healthy limb to the motion trajectory of the prosthetic joint has begun to emerge. However, establishing a simple and intuitive coordination mapping is still challenging. This paper employs the method of experimental data mining to explore such a coordination mapping. The coordination indexes, i.e., the mean absolute relative phase (MARP) and the deviation phase (DP), are obtained from experimental data. Statistical results covering different subjects indicate that the hip motion possesses a stable phase difference with the knee, inspiring us to construct a hip-knee Motion-Lagged Coordination Mapping (MLCM). The MLCM first introduces a time lag to the hip motion to avoid conventional integral or differential calculations. The model in polynomials, which is proved more efficient than Gaussian process regression and neural network learning, is then constructed to represent the mapping from the lagged hip motion to the knee motion. In addition, a strong linear correlation between hip-knee MARP and hip-knee motion lag is discovered for the first time. By using the MLCM, one can generate the knee trajectory for the prosthesis control only via the hip motion of the healthy limb, indicating less sensing and better robustness. Numerical simulations show that the prosthesis can achieve normal gaits at different walking speeds.
Collapse
|
5
|
Malloggi C, Zago M, Galli M, Sforza C, Scarano S, Tesio L. Kinematic patterns during walking in children: Application of principal component analysis. Hum Mov Sci 2021; 80:102892. [PMID: 34749196 DOI: 10.1016/j.humov.2021.102892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 10/25/2021] [Accepted: 10/28/2021] [Indexed: 10/19/2022]
Abstract
The relative displacements of body segments during walking can be reduced to a small number of multi-joint kinematic patterns, pmk, through Principal Component Analysis (PCA). These patterns were extracted from two groups of children (n = 8, aged 6-9 years, 4 males, and n = 8, aged 10-13 years, 4 males) and 7 adults (21-29 years, 1 male), walking on a treadmill at various velocities, normalized to body stature (adimensional Froude number, Fr). The three-dimensional coordinates of body markers were captured by an optoelectronic system. Five components (pm1 to pm5) explained 99.1% of the original dataset variance. The relationship between the variance explained ("size") of each pmk and the Fr velocity varied across movement components and age groups. Only pm1 and pm2, which described kinematic patterns in the sagittal plane, showed significant differences (at p < 0.05) across pairs of age groups. The time course of the size of all the five components matched various mechanical events of the step cycle at the level of both body system and lower limb joints. Such movement components appeared clinically interpretable and lend themselves as potential markers of neural development of walking.
Collapse
Affiliation(s)
- Chiara Malloggi
- Istituto Auxologico Italiano, IRCCS, Department of Neurorehabilitation Sciences, Ospedale San Luca, Milan, Italy
| | - Matteo Zago
- Dipartimento di Meccanica, Politecnico di Milano, Italy
| | - Manuela Galli
- Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano, Italy
| | - Chiarella Sforza
- Department of Biomedical Sciences for Health, Università degli Studi di Milano, Milan, Italy
| | - Stefano Scarano
- Istituto Auxologico Italiano, IRCCS, Department of Neurorehabilitation Sciences, Ospedale San Luca, Milan, Italy; Department of Biomedical Sciences for Health, Università degli Studi di Milano, Milan, Italy
| | - Luigi Tesio
- Istituto Auxologico Italiano, IRCCS, Department of Neurorehabilitation Sciences, Ospedale San Luca, Milan, Italy; Department of Biomedical Sciences for Health, Università degli Studi di Milano, Milan, Italy.
| |
Collapse
|
6
|
Mani H, Miyagishima S, Kozuka N, Inoue T, Hasegawa N, Asaka T. Development of the Relationships Among Dynamic Balance Control, Inter-limb Coordination, and Torso Coordination During Gait in Children Aged 3-10 Years. Front Hum Neurosci 2021; 15:740509. [PMID: 34776908 PMCID: PMC8582286 DOI: 10.3389/fnhum.2021.740509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 10/11/2021] [Indexed: 11/28/2022] Open
Abstract
Knowledge about the developmental process of dynamic balance control comprised of upper arms and upper legs coordination and trunk and pelvis twist coordination is important to advance effective balance assessment for abnormal development. However, the mechanisms of these coordination and stability control during gait in childhood are unknown.This study examined the development of dynamic postural stability, upper arm and upper leg coordination, and trunk and pelvic twist coordination during gait, and investigated the potential mechanisms integrating the central nervous system with inter-limb coordination and trunk and pelvic twist coordination to control extrapolated center of the body mass (XCOM). This study included 77 healthy children aged 3-10 years and 15 young adults. The child cohort was divided into four groups by age: 3-4, 5-6, 7-8, and 9-10 years. Participants walked barefoot at a self-selected walking speed along an 8 m walkway. A three-dimensional motion capture system was used for calculating the XCOM, the spatial margin of stability (MoS), and phase coupling movements of the upper arms, upper legs, trunk, and pelvic segments. MoS in the mediolateral axis was significantly higher in the young adults than in all children groups. Contralateral coordination (ipsilateral upper arm and contralateral upper leg combination) gradually changed to an in-phase pattern with increasing age until age 9 years. Significant correlations of XCOMML with contralateral coordination and with trunk and pelvic twist coordination (trunk/pelvis coordination) were found. Significant correlations between contralateral coordination and trunk/pelvis coordination were observed only in the 5-6 years and at 7-8 years groups.Dynamic postural stability during gait was not fully mature at age 10. XCOM control is associated with the development of contralateral coordination and trunk and pelvic twist coordination. The closer to in-phase pattern of contralateral upper limb coordination improved the XCOM fluctuations. Conversely, the out-of-phase pattern (about 90 degrees) of the trunk/pelvis coordination increased theXCOM fluctuation. Additionally, a different control strategy was used among children 3-8 years of age and individuals over 9 years of age, which suggests that 3-4-year-old children showed a disorderly coordination strategy between limb swing and torso movement, and in children 5-8 years of age, limb swing depended on trunk/pelvis coordination.
Collapse
Affiliation(s)
- Hiroki Mani
- Faculty of Welfare and Health Science, Physical Therapy Courses, Oita University, Oita, Japan
| | - Saori Miyagishima
- Division of Rehabilitation, Sapporo Medical University Hospital, Sapporo Medical University, Sapporo, Japan
| | - Naoki Kozuka
- Department of Physical Therapy, School of Health Sciences, Sapporo Medical University, Sapporo, Japan
| | - Takahiro Inoue
- Graduate School of Health Sciences, Hokkaido University, Sapporo, Japan
| | - Naoya Hasegawa
- Faculty of Health Sciences, Hokkaido University, Sapporo, Japan
| | - Tadayoshi Asaka
- Faculty of Health Sciences, Hokkaido University, Sapporo, Japan
| |
Collapse
|