1
|
Yan S, Park SH, Dee W, Keefer R, Rojas AM, Rymer WZ, Wu M. Motor adaptation to continuous lateral trunk support force during walking improves trunk postural control and walking in children with cerebral palsy: A pilot study. Hum Mov Sci 2024; 97:103258. [PMID: 39116509 PMCID: PMC11401758 DOI: 10.1016/j.humov.2024.103258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 06/22/2024] [Accepted: 07/30/2024] [Indexed: 08/10/2024]
Abstract
PURPOSE To determine whether the application of continuous lateral trunk support forces during walking would improve trunk postural control and improve gait performance in children with CP. MATERIALS AND METHODS Nineteen children with spastic CP participated in this study (8 boys; mean age 10.6 ± 3.4 years old). Fourteen of them were tested in the following sessions: 1) walking on a treadmill without force for 1-min (baseline), 2) with lateral trunk support force for 7-min (adaptation), and 3) without force for 1-min (post-adaptation). Overground walking pre/post treadmill walking. Five of them were tested using a similar protocol but without trunk support force (i.e., control). RESULTS Participants from the experimental group showed enhancement in gait phase dependent muscle activation of rectus abdominis in late adaptation period compared to baseline (P = 0.005), which was retained during the post-adaptation period (P = 0.036), reduced variability of the peak trunk oblique angle during the late post-adaptation period (P = 0.023), and increased overground walking speed after treadmill walking (P = 0.032). Participants from the control group showed modest changes in kinematics and EMG during treadmill and overground walking performance. These results suggest that applying continuous lateral trunk support during walking is likely to induce learning of improved trunk postural control in children with CP, which may partially transfer to overground walking, although we do not have a firm conclusion due to the small sample size in the control group.
Collapse
Affiliation(s)
- Shijun Yan
- Legs and Walking Lab, Shirley Ryan AbilityLab, Chicago, IL, USA; Department of Physical Medicine and Rehabilitation, Northwestern University, Chicago, IL, USA
| | - Seoung Hoon Park
- Legs and Walking Lab, Shirley Ryan AbilityLab, Chicago, IL, USA; Department of Physical Medicine and Rehabilitation, Northwestern University, Chicago, IL, USA
| | - Weena Dee
- Legs and Walking Lab, Shirley Ryan AbilityLab, Chicago, IL, USA
| | - Renee Keefer
- Legs and Walking Lab, Shirley Ryan AbilityLab, Chicago, IL, USA
| | - Ana-Marie Rojas
- Legs and Walking Lab, Shirley Ryan AbilityLab, Chicago, IL, USA; Department of Physical Medicine and Rehabilitation, Northwestern University, Chicago, IL, USA
| | - William Zev Rymer
- Legs and Walking Lab, Shirley Ryan AbilityLab, Chicago, IL, USA; Department of Physical Medicine and Rehabilitation, Northwestern University, Chicago, IL, USA
| | - Ming Wu
- Legs and Walking Lab, Shirley Ryan AbilityLab, Chicago, IL, USA; Department of Physical Medicine and Rehabilitation, Northwestern University, Chicago, IL, USA; Department of Biomedical Engineering, University of Illinois at Chicago, Chicago, IL, USA.
| |
Collapse
|
2
|
Tsitlakidis S, Campos S, Beckmann NA, Wolf SI, Hagmann S, Renkawitz T, Götze M. Transversal Malalignment and Proximal Involvement Play a Relevant Role in Unilateral Cerebral Palsy Regardless the Subtype. J Clin Med 2022; 11:jcm11164816. [PMID: 36013051 PMCID: PMC9409971 DOI: 10.3390/jcm11164816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 08/09/2022] [Accepted: 08/13/2022] [Indexed: 11/16/2022] Open
Abstract
Classification of gait disorders in cerebral palsy (CP) remains challenging. The Winters, Gage, and Hicks (WGH) is a commonly used classification system for unilateral CP regarding the gait patterns (lower limb kinematics) solely in the sagittal plane. Due to the high number of unclassified patients, this classification system might fail to depict all gait disorders accurately. As the information on trunk/pelvic movements, frontal and transverse planes, and kinetics are disregarded in WGH, 3D instrumented gait analysis (IGA) for further characterization is necessary. The objective of this study was a detailed analysis of patients with unilateral CP using IGA taking all planes/degrees of freedom into account including pelvic and trunk movements. A total of 89 individuals with unilateral CP matched the inclusion criteria and were classified by WGH. Subtype-specific differences were analyzed. The most remarkable findings, in addition to the established WGH subtype-specific deviations, were pelvic obliquity and pelvic retraction in all WGH types. Furthermore, the unclassified individuals showed altered hip rotation moments and pelvic retraction almost throughout the whole gait cycle. Transversal malalignment and proximal involvement are relevant in all individuals with unilateral CP. Further studies should focus on WGH type-specific rotational malalignment assessment (static vs. dynamic, femoral vs. tibial) including therapeutic effects and potential subtype-specific compensation mechanisms and/or tertiary deviations of the sound limb.
Collapse
|
3
|
GMFCS Level-Specific Differences in Kinematics and Joint Moments of the Involved Side in Unilateral Cerebral Palsy. J Clin Med 2022; 11:jcm11092556. [PMID: 35566682 PMCID: PMC9100606 DOI: 10.3390/jcm11092556] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 04/02/2022] [Accepted: 04/24/2022] [Indexed: 01/16/2023] Open
Abstract
A variety of gait pathologies is seen in cerebral palsy. Movement patterns between different levels of functional impairment may differ. The objective of this work was the evaluation of Gross Motor Function Classification System (GMFCS) level-specific movement disorders. A total of 89 individuals with unilateral cerebral palsy and no history of prior treatment were included and classified according to their functional impairment. GMFCS level-specific differences, kinematics and joint moments, exclusively of the involved side, were analyzed for all planes for all lower limb joints, including pelvic and trunk movements. GMFCS level I and level II individuals most relevantly showed equinus/reduced dorsiflexion moments, knee flexion/reduced knee extension moments, reduced hip extension moments with pronounced flexion, internal hip rotation and reduced hip abduction. Anterior pelvic tilt, obliquity and retraction were found. Individuals with GMFCS level II were characterized by an additional pronounced reduction in all extensor moments, pronounced rotational malalignment and reduced hip abduction. The most striking characteristics of GMFCS level II were excessive anterior pelvic/trunk tilt and excessive trunk obliquity. Pronounced reduction in extensor moments and excessive trunk lean are distinguishing features of GMFCS level II. These patients would benefit particularly from surgical treatment restoring pelvic symmetry and improving hip abductor leverage. Future studies exploring GMFCS level-specific compensation of the sound limb and GMFCS level-specific malalignment are of interest.
Collapse
|
4
|
Mani H, Miyagishima S, Kozuka N, Inoue T, Hasegawa N, Asaka T. Development of the Relationships Among Dynamic Balance Control, Inter-limb Coordination, and Torso Coordination During Gait in Children Aged 3-10 Years. Front Hum Neurosci 2021; 15:740509. [PMID: 34776908 PMCID: PMC8582286 DOI: 10.3389/fnhum.2021.740509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 10/11/2021] [Indexed: 11/28/2022] Open
Abstract
Knowledge about the developmental process of dynamic balance control comprised of upper arms and upper legs coordination and trunk and pelvis twist coordination is important to advance effective balance assessment for abnormal development. However, the mechanisms of these coordination and stability control during gait in childhood are unknown.This study examined the development of dynamic postural stability, upper arm and upper leg coordination, and trunk and pelvic twist coordination during gait, and investigated the potential mechanisms integrating the central nervous system with inter-limb coordination and trunk and pelvic twist coordination to control extrapolated center of the body mass (XCOM). This study included 77 healthy children aged 3-10 years and 15 young adults. The child cohort was divided into four groups by age: 3-4, 5-6, 7-8, and 9-10 years. Participants walked barefoot at a self-selected walking speed along an 8 m walkway. A three-dimensional motion capture system was used for calculating the XCOM, the spatial margin of stability (MoS), and phase coupling movements of the upper arms, upper legs, trunk, and pelvic segments. MoS in the mediolateral axis was significantly higher in the young adults than in all children groups. Contralateral coordination (ipsilateral upper arm and contralateral upper leg combination) gradually changed to an in-phase pattern with increasing age until age 9 years. Significant correlations of XCOMML with contralateral coordination and with trunk and pelvic twist coordination (trunk/pelvis coordination) were found. Significant correlations between contralateral coordination and trunk/pelvis coordination were observed only in the 5-6 years and at 7-8 years groups.Dynamic postural stability during gait was not fully mature at age 10. XCOM control is associated with the development of contralateral coordination and trunk and pelvic twist coordination. The closer to in-phase pattern of contralateral upper limb coordination improved the XCOM fluctuations. Conversely, the out-of-phase pattern (about 90 degrees) of the trunk/pelvis coordination increased theXCOM fluctuation. Additionally, a different control strategy was used among children 3-8 years of age and individuals over 9 years of age, which suggests that 3-4-year-old children showed a disorderly coordination strategy between limb swing and torso movement, and in children 5-8 years of age, limb swing depended on trunk/pelvis coordination.
Collapse
Affiliation(s)
- Hiroki Mani
- Faculty of Welfare and Health Science, Physical Therapy Courses, Oita University, Oita, Japan
| | - Saori Miyagishima
- Division of Rehabilitation, Sapporo Medical University Hospital, Sapporo Medical University, Sapporo, Japan
| | - Naoki Kozuka
- Department of Physical Therapy, School of Health Sciences, Sapporo Medical University, Sapporo, Japan
| | - Takahiro Inoue
- Graduate School of Health Sciences, Hokkaido University, Sapporo, Japan
| | - Naoya Hasegawa
- Faculty of Health Sciences, Hokkaido University, Sapporo, Japan
| | - Tadayoshi Asaka
- Faculty of Health Sciences, Hokkaido University, Sapporo, Japan
| |
Collapse
|