1
|
Armand S, Sawacha Z, Goudriaan M, Horsak B, van der Krogt M, Huenaerts C, Daly C, Kranzl A, Boehm H, Petrarca M, Guiotto A, Merlo A, Spolaor F, Campanini I, Cosma M, Hallemans A, Horemans H, Gasq D, Moissenet F, Assi A, Sangeux M. Current practices in clinical gait analysis in Europe: A comprehensive survey-based study from the European society for movement analysis in adults and children (ESMAC) standard initiative. Gait Posture 2024; 111:65-74. [PMID: 38653178 DOI: 10.1016/j.gaitpost.2024.04.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 04/09/2024] [Accepted: 04/11/2024] [Indexed: 04/25/2024]
Abstract
BACKGROUND Clinical gait analysis (CGA) is a systematic approach to comprehensively evaluate gait patterns, quantify impairments, plan targeted interventions, and evaluate the impact of interventions. However, international standards for CGA are currently lacking, resulting in various national initiatives. Standards are important to ensure safe and effective healthcare practices and to enable evidence-based clinical decision-making, facilitating interoperability, and reimbursement under national healthcare policies. Collaborative clinical and research work between European countries would benefit from common standards. RESEARCH OBJECTIVE This study aimed to review the current laboratory practices for CGA in Europe. METHODS A comprehensive survey was conducted by the European Society for Movement Analysis in Adults and Children (ESMAC), in close collaboration with the European national societies. The survey involved 97 gait laboratories across 16 countries. The survey assessed several aspects related to CGA, including equipment used, data collection, processing, and reporting methods. RESULTS There was a consensus between laboratories concerning the data collected during CGA. The Conventional Gait Model (CGM) was the most used biomechanical model for calculating kinematics and kinetics. Respondents also reported the use of video recording, 3D motion capture systems, force plates, and surface electromyography. While there was a consensus on the reporting of CGA data, variations were reported in training, documentation, data preprocessing and equipment maintenance practices. SIGNIFICANCE The findings of this study will serve as a foundation for the development of standardized guidelines for CGA in Europe.
Collapse
Affiliation(s)
- Stéphane Armand
- Kinesiology Laboratory, Geneva University Hospitals and University of Geneva, Geneva, Switzerland.
| | - Zimi Sawacha
- Department of Information Engineering, University of Padova, Padova, Italy
| | - Marije Goudriaan
- Utrecht University, University Corporate Offices, Student and Academic Affairs Office, Utrecht, the Netherlands; Amsterdam UMC location Vrije Universiteit Amsterdam, Department of Rehabilitation Medicine, Amsterdam, the Netherlands
| | - Brian Horsak
- Center for Digital Health and Social Innovation, St. Pölten University of Applied Sciences, St. Pölten, Austria
| | - Marjolein van der Krogt
- Amsterdam UMC location Vrije Universiteit Amsterdam, Department of Rehabilitation Medicine, Amsterdam, the Netherlands; Amsterdam Movement Sciences, Rehabilitation & Development, Amsterdam, the Netherlands
| | - Catherine Huenaerts
- Clinical Motion Analysis Laboratory, University Hospital Leuven, Leuven, Belgium
| | - Colm Daly
- National Centre for Movement Analysis, Central Remedial Clinic, Dublin, Ireland; CP-Life Research Centre, Royal College of Surgeons, Dublin, Ireland
| | - Andreas Kranzl
- Laboratory for Gait and Movement Analysis, Orthopaedic Hospital Speising, Vienna, Austria
| | - Harald Boehm
- Orthopaedic Hospital for Children, Aschau im Chiemgau, Germany
| | - Maurizio Petrarca
- Movement Analysis and Robotics Laboratory, "Bambino Gesù" Children's Hospital - IRCCS, Rome, Italy
| | - Anna Guiotto
- Department of Information Engineering, University of Padova, Padova, Italy
| | - Andrea Merlo
- Gait & Motion Analysis Laboratory, Sol et Salus Hospital, Rimini, Italy; LAM - Motion Analysis Laboratory, Neuromotor and Rehabilitation Department, Azienda USL-IRCCS di Reggio Emilia, San Sebastiano Hospital, Correggio, Italy
| | - Fabiola Spolaor
- Department of Information Engineering, University of Padova, Padova, Italy
| | - Isabella Campanini
- LAM - Motion Analysis Laboratory, Neuromotor and Rehabilitation Department, Azienda USL-IRCCS di Reggio Emilia, San Sebastiano Hospital, Correggio, Italy
| | - Michela Cosma
- Motion Analysis Laboratory, Neuroscience and Rehabilitation Department, University Hospital of Ferrara, Italy
| | - Ann Hallemans
- Research Group MOVANT, Department of Rehabilitation Sciences and Physiotherapy (REVAKI), University of Antwerp, Wilrijk, Belgium
| | - Herwin Horemans
- Department of Rehabilitation, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - David Gasq
- Department of Functional Physiological Explorations, University Hospital of Toulouse, Hôpital de Rangueil, Toulouse, France; ToNIC, Toulouse NeuroImaging Center, Université de Toulouse, Inserm, Université Paul Sabatier, Toulouse, France
| | - Florent Moissenet
- Kinesiology Laboratory, Geneva University Hospitals and University of Geneva, Geneva, Switzerland
| | - Ayman Assi
- Faculty of Medicine, Saint Joseph University of Beirut, Beirut, Lebanon
| | - Morgan Sangeux
- University Children's Hospital Basel, Basel, Switzerland
| |
Collapse
|
2
|
Boekesteijn RJ, van de Ven MPF, Wilders LM, Bisseling P, Groen BE, Smulders K. The effect of functional calibration methods on gait kinematics in adolescents with idiopathic rotational deformity of the femur. Clin Biomech (Bristol, Avon) 2023; 107:106028. [PMID: 37331152 DOI: 10.1016/j.clinbiomech.2023.106028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 05/30/2023] [Accepted: 06/07/2023] [Indexed: 06/20/2023]
Abstract
BACKGROUND Due to anatomical deviations, assumptions of the conventional calibration method for gait analysis may be violated in individuals with rotational deformities of the femur. Functional calibration methods were compared with conventional methods in this group for 1) localization of the hip joint center and orientation of the knee axis, and 2) gait kinematics. METHODS Twenty-four adolescents with idiopathic rotational deformity of the femur underwent gait analysis and a CT scan. During standing, distance between hip joint centers and knee axis orientation were compared between calibration methods, with CT serving as reference for hip joint center estimation. Gait kinematics were compared using statistical parametric mapping. FINDINGS The conventional calibration method estimated the hip joint center closer to the CT reference (4±12 mm more lateral) than the functional calibration method (26 ± 20 mm more lateral). Orientation of the knee joint axis was 2.6° less internal in the functional calibration method. During gait, statistical parametric mapping revealed significantly more hip flexion, less external hip rotation during the swing phase, less knee varus-valgus motion, and larger knee flexion angles when applying the functional method. INTERPRETATION Functional calibration methods were less accurate in determining the hip joint center location than the conventional calibration method and resulted in a knee joint axis that was less internally rotated. Importantly, there was less knee joint angle crosstalk during gait when using the functional method. Although differences between methods on gait kinematics were within clinically acceptable limits for the sagittal plane, relatively larger differences on transversal hip kinematics may hold clinical importance.
Collapse
Affiliation(s)
- Ramon J Boekesteijn
- Department of Research, Sint Maartenskliniek, Nijmegen, the Netherlands; Department of Rehabilitation, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, Nijmegen, the Netherlands.
| | | | - Lise M Wilders
- Department of Rehabilitation, Sint Maartenskliniek, Nijmegen, the Netherlands
| | - Pepijn Bisseling
- Department of Orthopedic Surgery, Sint Maartenskliniek, Nijmegen, the Netherlands
| | - Brenda E Groen
- Department of Research, Sint Maartenskliniek, Nijmegen, the Netherlands; Department of Rehabilitation, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Katrijn Smulders
- Department of Research, Sint Maartenskliniek, Nijmegen, the Netherlands
| |
Collapse
|
3
|
Gontijo BA, Fonseca ST, Araújo PA, Magalhães FA, Trede RG, Faria HP, Resende RA, Souza TR. A new marker cluster anchored to the iliotibial band improves tracking of hip and thigh axial rotations. J Biomech 2023; 147:111452. [PMID: 36682212 DOI: 10.1016/j.jbiomech.2023.111452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 12/02/2022] [Accepted: 01/10/2023] [Indexed: 01/13/2023]
Abstract
Tracking hip and thigh axial rotation has limited accuracy due to the large soft tissue artifact. We proposed a tracking-markers cluster anchored to the prominent distal part of the iliotibial band (ITB) to improve thigh tracking. We investigated if the ITB cluster improves accuracy compared with a traditionally used thigh cluster. We also compared the hip kinematics obtained with these clusters during walking and step-down. Hip and thigh kinematics were assessed during a task of active internal-external rotation with the knee extended, in which the shank rotation is a reference due to smaller soft-tissue artifact. Errors of the hip and thigh axial rotations obtained with the thigh clusters compared to the shank cluster were computed as root-mean-square errors, which were compared by paired t-tests. The angular waveforms of this task were compared using the statistical parametric mapping (SPM). Additionally, the hip waveforms in all planes obtained with the thigh clusters were compared during walking and step-down, using Coefficients of Multiple Correlation (CMC) and SPM (α = 0.05 for all analyses). The ITB cluster errors were approximately 25 % smaller than the traditional cluster error (p < 0.001). ITB cluster errors were smaller at external rotation angles while the traditional cluster error was smaller at internal rotation angles (p < 0.001), although the clusters' waveforms were not significantly different (p ≥ 0.005). During walking and step-down, both clusters provided similar hip kinematics (CMC ≥ 0.75), but differences were observed in parts of the cycles (p ≤ 0.04). The findings suggest that the ITB cluster may be used in studies focused on hip axial rotation.
Collapse
Affiliation(s)
- Bruna A Gontijo
- Graduate Program in Rehabilitation Sciences, Department of Physical Therapy, Universidade Federal de Minas Gerais (UFMG), Brazil
| | - Sérgio T Fonseca
- Graduate Program in Rehabilitation Sciences, Department of Physical Therapy, Universidade Federal de Minas Gerais (UFMG), Brazil
| | - Priscila A Araújo
- Graduate Program in Rehabilitation Sciences, Department of Physical Therapy, Universidade Federal de Minas Gerais (UFMG), Brazil
| | - Fabricio A Magalhães
- College of Education, Health, and Human Sciences, Department of Biomechanics, University of Nebraska at Omaha, 6160 University Drive South, Omaha, NE, USA
| | - Renato G Trede
- Graduate Program in Rehabilitation and Functional Performance, Department of Physical Therapy, Universidade Federal dos Vales do Jequitinhonha e Mucuri (UFVJM), Brazil
| | - Henrique P Faria
- Graduate Program in Rehabilitation Sciences, Department of Physical Therapy, Universidade Federal de Minas Gerais (UFMG), Brazil
| | - Renan A Resende
- Graduate Program in Rehabilitation Sciences, Department of Physical Therapy, Universidade Federal de Minas Gerais (UFMG), Brazil
| | - Thales R Souza
- Graduate Program in Rehabilitation Sciences, Department of Physical Therapy, Universidade Federal de Minas Gerais (UFMG), Brazil.
| |
Collapse
|