1
|
Gao R, Fleet CT, Jin W, Johnson JA, Faber KJ, Athwal GS. The Kouvalchouk procedure vs. distal tibial allograft for treatment of posterior shoulder instability: the deltoid "hammock" effect exists. J Shoulder Elbow Surg 2024; 33:e537-e546. [PMID: 38750787 DOI: 10.1016/j.jse.2024.03.047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 03/10/2024] [Accepted: 03/25/2024] [Indexed: 07/25/2024]
Abstract
BACKGROUND In 1993, Kouvalchouk described an acromial bone block with a pedicled deltoid flap for the treatment of posterior shoulder instability. This procedure provides a "double blocking" effect in that the acromial autograft restores posterior glenoid bone loss and the deltoid flap functions as a muscular "hammock" resembling the sling effect of the conjoint in the Latarjet procedure. The primary aim of this study was to compare the Kouvalchouk procedure to distal tibial allograft (DTA) reconstruction for the management of posterior shoulder instability with associated bone loss, while the secondary aim was to evaluate the deltoid hammock effect. METHODS Ten upper extremity cadavers were evaluated using a validated shoulder testing apparatus in 0° and 60° of glenohumeral abduction in the scapular plane. Testing was first performed on the normal shoulder state and was followed by the creation of a 20% posterior glenoid defect. Subsequently, the Kouvalchouk and DTA procedures were conducted. Forces of 0N, 5N, 10N, and 15N were applied to the posterior deltoid tendinous insertion on the Kouvalchouk graft along the physiological muscle line-of-action to evaluate the 'hammock" effect of this procedure. Testing was additionally performed on the Kouvalchouk bone graft with the deltoid muscle sectioned from its bony attachment. For all test states, a posteriorly directed force was applied to the humeral head perpendicular to the direction of the glenoid bone defect, with the associated translation quantified using an optical tracking system. The outcome variable was posterior translation of the humeral head at an applied force magnitude of 30N. RESULTS The Kouvalchouk procedure with the loaded deltoid flap (10N: P = .039 and 15N: P < .001) was significantly better at reducing posterior humeral head translation than the DTA. Overall, increased glenohumeral stability was observed with increased force applied to the posterior deltoid flap in the Kouvalchouk procedure. The 15 N Kouvalchouk was most effective at preventing posterior humeral translation, and the difference was statistically significant compared with the 20% glenoid defect (P = .003), detached Kouvalchouk (P < .001), and 0N Kouvalchouk (P < .001). The 15 N Kouvalchouk procedure restored posterior shoulder joint stability to near normal levels, such that it was not significantly different from the intact state (P = .203). CONCLUSIONS The Kouvalchouk procedure with load applied to the deltoid was found to be biomechanically superior to the DTA for the management of posterior shoulder instability with associated bone loss. Additionally, the results confirmed the presence and effectiveness of the deltoid "hammock" effect.
Collapse
Affiliation(s)
- Ryan Gao
- Roth | McFarlane Hand and Upper Limb Centre, St Joseph's Health Care, London, Canada.
| | - Cole T Fleet
- Roth | McFarlane Hand and Upper Limb Centre, St Joseph's Health Care, London, Canada; Department of Mechanical and Materials Engineering, Western University, London, Canada
| | - Winston Jin
- Roth | McFarlane Hand and Upper Limb Centre, St Joseph's Health Care, London, Canada
| | - James A Johnson
- Roth | McFarlane Hand and Upper Limb Centre, St Joseph's Health Care, London, Canada; Department of Mechanical and Materials Engineering, Western University, London, Canada
| | - Kenneth J Faber
- Roth | McFarlane Hand and Upper Limb Centre, St Joseph's Health Care, London, Canada; Department of Surgery, Western University, London, Canada
| | - George S Athwal
- Roth | McFarlane Hand and Upper Limb Centre, St Joseph's Health Care, London, Canada; Department of Surgery, Western University, London, Canada
| |
Collapse
|
2
|
Oenning S, Wermers J, Taenzler S, Michel PA, Raschke MJ, Christoph Katthagen J. Glenoid Concavity Affects Anterior Shoulder Stability in an Active-Assisted Biomechanical Model. Orthop J Sports Med 2024; 12:23259671241253836. [PMID: 38881852 PMCID: PMC11179473 DOI: 10.1177/23259671241253836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 11/21/2023] [Indexed: 06/18/2024] Open
Abstract
Background The treatment of bony glenoid defects after anteroinferior shoulder dislocation currently depends on the amount of glenoid bone loss (GBL). Recent studies have described the glenoid concavity as an essential factor for glenohumeral stability. The role of glenoid concavity in the presence of soft tissue and muscle forces is still unknown. Hypothesis Glenoid concavity would have a major impact on glenohumeral stability in an active-assisted biomechanical model including soft tissue and the rotator cuff's compression forces. Study Design Controlled laboratory study. Methods In 8 human shoulder specimens, individual coordinate systems were calculated based on anatomic landmarks. The glenoid concavity was measured biomechanically and based on computed tomography. Static load was applied to the rotator cuff tendons and the deltoid muscle. In a robotic test setup, anteriorly directed force was applied to the humeral head until translation of 5 mm (Nant) was achieved. Nant was used as a parameter indicating shoulder stability. This was performed in the following testing stages: (1) intact joint, (2) labral lesion, (3) 10% GBL, and (4) 20% GBL. The 8 specimens were divided equally into 2 subgroups (low concavity [LC] versus high concavity [HC]), with 4 specimens each, according to the previously measured concavity. Results Anterior glenohumeral stability was highly correlated with the native glenoid concavity (R 2 = 0.8). In the testing stages 1 to 3, we found a significantly higher mean stability in the HC subgroup compared with the LC subgroup (P≤ .0142). The HC subgroup still showed higher absolute Nant values with 20% GBL; however, there was no significant difference from the LC subgroup. The loss of stability in 20% GBL was correlated with the initial concavity (R 2 = 0.86). Thus, a higher loss of Nant in the HC subgroup was observed (P = .0049). Conclusion In an active-assisted model with intact soft tissue surrounding and muscular compression forces, the glenoid concavity correlates with shoulder stability. In bony defects, loss of concavity is an essential factor causing instability. Due to their significantly higher native stability, glenoids with HC can tolerate a higher amount of GBL. Clinical Relevance Glenoid concavity should be considered in an individualized treatment of bony glenoid defects. Further studies are required to establish reference values and develop therapeutic algorithms.
Collapse
Affiliation(s)
- Sebastian Oenning
- Department of Trauma, Hand and Reconstructive Surgery, University Hospital Muenster, Muenster, Germany
| | - Jens Wermers
- Faculty of Engineering Physics, FH Muenster, Muenster, Germany
| | - Stefanie Taenzler
- Department of Trauma, Hand and Reconstructive Surgery, University Hospital Muenster, Muenster, Germany
| | - Philipp A Michel
- Department of Trauma, Hand and Reconstructive Surgery, University Hospital Muenster, Muenster, Germany
| | - Michael J Raschke
- Department of Trauma, Hand and Reconstructive Surgery, University Hospital Muenster, Muenster, Germany
| | - J Christoph Katthagen
- Department of Trauma, Hand and Reconstructive Surgery, University Hospital Muenster, Muenster, Germany
| |
Collapse
|
3
|
Sulkar HJ, Aliaj K, Tashjian RZ, Chalmers PN, Foreman KB, Henninger HB. High and low performers in internal rotation after reverse total shoulder arthroplasty: a biplane fluoroscopic study. J Shoulder Elbow Surg 2023; 32:e133-e144. [PMID: 36343789 PMCID: PMC10023281 DOI: 10.1016/j.jse.2022.10.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 09/25/2022] [Accepted: 10/04/2022] [Indexed: 11/06/2022]
Abstract
BACKGROUND Internal rotation in adduction is often limited after reverse total shoulder arthroplasty (rTSA), but the origins of this functional deficit are unclear. Few studies have directly compared individuals who can and cannot perform internal rotation in adduction. Little data on underlying 3D humerothoracic, scapulothoracic, and glenohumeral joint relationships in these patients are available. METHODS Individuals >1-year postoperative to rTSA were imaged with biplane fluoroscopy in resting neutral and internal rotation in adduction poses. Subjects could either perform internal rotation in adduction with their hand at T12 or higher (high, N = 7), or below the hip pocket (low, N = 8). Demographics, the American Shoulder and Elbow Surgeons score, Simple Shoulder Test, and scapular notching grade were recorded. Joint orientation angles were derived from model-based markerless tracking of the scapula and humerus relative to the torso. The 3D implant models were aligned to preoperative computed tomography models to evaluate bone-implant impingement. RESULTS The Simple Shoulder Test was highest in the high group (11 ± 1 vs. 9 ± 2, P = .019). Two subjects per group had scapular notching (grades 1 and 2), and 3 high group and 4 low group subjects had impingement below the glenoid. In the neutral pose, the scapula had 7° more upward rotation in the high group (P = .100), and the low group demonstrated 9° more posterior tilt (P = .017) and 14° more glenohumeral elevation (P = .047). In the internal rotation pose, axial rotation was >45° higher in the high group (P ≤ .008) and the low group again had 11° more glenohumeral elevation (P = .058). Large rotational differences within subject groups arose from a combination of differences in the resting neutral and maximum internal rotation in adduction poses, not only the terminal arm position. CONCLUSIONS Individuals who were able to perform high internal rotation in adduction after rTSA demonstrated differences in joint orientation and anatomic biases versus patients with low internal rotation. The high rotation group had 7° more resting scapular upward rotation and used a 15°-30° change in scapular tilt to perform internal rotation in adduction versus patients in the low group. The combination of altered resting scapular posture and restricted scapulothoracic range of motion could prohibit glenohumeral rotation required to reach internal rotation in adduction. In addition, inter-patient variation in humeral torsion may contribute substantially to postoperative internal rotation differences. These data point toward modifiable implant design and placement factors, as well as foci for physical therapy to strengthen and mobilize the scapula and glenohumeral joint in response to rTSA surgery.
Collapse
Affiliation(s)
- Hema J Sulkar
- Department of Orthopaedics, University of Utah, Salt Lake City, UT, USA; Department of Biomedical Engineering, University of Utah, Salt Lake City, UT, USA
| | - Klevis Aliaj
- Department of Orthopaedics, University of Utah, Salt Lake City, UT, USA; Department of Biomedical Engineering, University of Utah, Salt Lake City, UT, USA
| | - Robert Z Tashjian
- Department of Orthopaedics, University of Utah, Salt Lake City, UT, USA
| | - Peter N Chalmers
- Department of Orthopaedics, University of Utah, Salt Lake City, UT, USA
| | - K Bo Foreman
- Department of Orthopaedics, University of Utah, Salt Lake City, UT, USA; Department of Physical Therapy and Athletic Training, University of Utah, Salt Lake City, UT, USA
| | - Heath B Henninger
- Department of Orthopaedics, University of Utah, Salt Lake City, UT, USA; Department of Biomedical Engineering, University of Utah, Salt Lake City, UT, USA.
| |
Collapse
|
4
|
Knighton TW, Chalmers PN, Sulkar HJ, Aliaj K, Tashjian RZ, Henninger HB. Reverse total shoulder glenoid component inclination affects glenohumeral kinetics during abduction: a cadaveric study. J Shoulder Elbow Surg 2022; 31:2647-2656. [PMID: 35931329 PMCID: PMC9669184 DOI: 10.1016/j.jse.2022.06.016] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 06/02/2022] [Accepted: 06/27/2022] [Indexed: 02/01/2023]
Abstract
BACKGROUND Optimal implant placement in reverse total shoulder arthroplasty (rTSA) remains controversial. Specifically, the optimal glenoid inclination is unknown. Therefore, a cadaveric shoulder simulator with 3-dimentional human motion specific to rTSA was used to study joint contact and muscle forces as a function of glenoid component inclination. METHODS Eight human cadaver shoulders were tested before and after rTSA implantation. Scapular plane abduction kinematics from control subjects and those with rTSA drove a cadaveric shoulder simulator with 3-dimentional scapulothoracic and glenohumeral motion. Glenoid inclination varied from -20° to +20°. Outputs included compression, superior-inferior (S/I) shear, and anterior-posterior shear forces from a 6° of freedom load cell in the joint, and deltoid and rotator cuff muscle forces. Data were evaluated with statistical parametric mapping and t-tests. RESULTS Inferior glenoid inclination (-) reduced S/I shear by up to 125% relative to superior inclination, with similar compression to the neutral condition (0°). Superior inclinations (+) increased the S/I shear force by approximately the same magnitude, yet decreased compression by 25% in the most superior inclination (+20°). There were few differences in deltoid or rotator cuff forces due to inclination. Only the middle deltoid decreased by approximately 7% for the most inferior inclination (-20°). Compared with native shoulders, the neutral (0°) rTSA inclination showed reduced forces of 30%-75% in the anterior deltoid and a trend toward decreased forces in the middle deltoid. Force demands on the rotator cuff varied as a function of elevation, with a trend toward increased forces in rTSA at peak glenohumeral elevation. CONCLUSIONS Inferior inclination reduces superior shear forces, without influencing compression. Superior inclination increased S/I shear, while decreasing compression, which may be a source of component loosening and joint instability after rTSA. Inferior inclination of the rTSA glenoid may reduce the likelihood of glenoid loosening by reducing the magnitude of cyclic shear and compressive loading during arm elevation activities, although this may be altered by specific-subject body habitus and motion. These factors are especially important in revision rTSA or glenoid bone grafting where there is already a 3-fold increase in glenoid baseplate loosening vs. primary rTSA.
Collapse
Affiliation(s)
- Tyler W Knighton
- Department of Orthopaedics, University of Utah, Salt Lake City, UT, USA; Department of Mechanical Engineering, University of Utah, Salt Lake City, UT, USA
| | - Peter N Chalmers
- Department of Orthopaedics, University of Utah, Salt Lake City, UT, USA
| | - Hema J Sulkar
- Department of Orthopaedics, University of Utah, Salt Lake City, UT, USA; Department of Biomedical Engineering, University of Utah, Salt Lake City, UT, USA
| | - Klevis Aliaj
- Department of Orthopaedics, University of Utah, Salt Lake City, UT, USA; Department of Biomedical Engineering, University of Utah, Salt Lake City, UT, USA
| | - Robert Z Tashjian
- Department of Orthopaedics, University of Utah, Salt Lake City, UT, USA
| | - Heath B Henninger
- Department of Orthopaedics, University of Utah, Salt Lake City, UT, USA; Department of Mechanical Engineering, University of Utah, Salt Lake City, UT, USA; Department of Biomedical Engineering, University of Utah, Salt Lake City, UT, USA.
| |
Collapse
|
5
|
Sulkar HJ, Aliaj K, Tashjian RZ, Chalmers PN, Foreman KB, Henninger HB. Reverse Total Shoulder Arthroplasty Alters Humerothoracic, Scapulothoracic, and Glenohumeral Motion During Weighted Scaption. Clin Orthop Relat Res 2022; 480:2254-2265. [PMID: 35857295 PMCID: PMC9555951 DOI: 10.1097/corr.0000000000002321] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 06/22/2022] [Indexed: 01/31/2023]
Abstract
BACKGROUND Reverse total shoulder arthroplasty (rTSA) typically restores active arm elevation. Prior studies in patients with rTSA during tasks that load the arm had limitations that obscured underlying three-dimensional (3D) kinematic changes and the origins of motion restrictions. Understanding the scapulothoracic and glenohumeral contributions to loaded arm elevation will uncover where functional deficits arise and inform strategies to improve rTSA outcomes. QUESTIONS/PURPOSES In a cohort of patients who had undergone rTSA and a control cohort, we asked: (1) Is there a difference in maximum humerothoracic elevation when scapular plane elevation (scaption) is performed with and without a handheld weight? (2) Is maximum humerothoracic elevation related to factors like demographics, patient-reported outcome scores, isometric strength, and scapular notching (in the rTSA group only)? (3) Are there differences in underlying 3D scapulothoracic and glenohumeral motion during scaption with and without a handheld weight? METHODS Ten participants who underwent rTSA (six males, four females; age 73 ± 8 years) were recruited at follow-up visits if they were more than 1 year postoperative (24 ± 11 months), had a BMI less than 35 kg/m 2 (29 ± 4 kg/m 2 ), had a preoperative CT scan, and could perform pain-free scaption. Data from 10 participants with a nonpathologic shoulder, collected previously (five males, five females; age 58 ± 7 years; BMI 26 ± 3 kg/m 2 ), were a control group with the same high-resolution quantitative metrics available for comparison. Participants in both groups performed scaption with and without a 2.2-kg handheld weight while being imaged with biplane fluoroscopy. Maximum humerothoracic elevation and 3D scapulothoracic and glenohumeral kinematics across their achievable ROM were collected via dynamic imaging. In the same session the American Shoulder and Elbow Surgeons (ASES) score, the Simple Shoulder Test (SST), and isometric strength were collected. Data were compared between weighted and unweighted scaption using paired t-tests and linear mixed-effects models. RESULTS When compared with unweighted scaption, maximum humerothoracic elevation decreased during weighted scaption for patients who underwent rTSA (-25° ± 30°; p = 0.03) but not for the control group (-2° ± 5°; p = 0.35). In the rTSA group, maximum elevation correlated with the ASES score (r = 0.72; p = 0.02), and weighted scaption correlated with BMI (r = 0.72; p = 0.02) and the SST (r = 0.76; p = 0.01). Scapular notching was observed in three patients after rTSA (Grades 1 and 2). Four of 10 patients who underwent rTSA performed weighted scaption to less than 90° humerothoracic elevation using almost exclusively scapulothoracic motion, with little glenohumeral contribution. This manifested as changes in the estimated coefficient representing mean differences in slopes in the humerothoracic plane of elevation (-12° ± 2°; p < 0.001) and true axial rotation (-16° ± 2°; p < 0.001), scapulothoracic upward rotation (7° ± 1°; p < 0.001), and glenohumeral elevation (-12° ± 1°; p < 0.001), plane of elevation (-8° ± 3°; p = 0.002), and true axial rotation (-11° ± 2°; p < 0.001). The control group demonstrated small differences between scaption activities (< |2°|), but a 10° increase in humerothoracic and glenohumeral axial rotation (both p < 0.001). CONCLUSION After rTSA surgery, maximum humerothoracic elevation decreased during weighted scaption by up to 88° compared with unweighted scaption, whereas 4 of 10 patients could not achieve more than 90° of elevation. These patients exhibited appreciable changes in nearly all scapulothoracic and glenohumeral degrees of freedom, most notably a near absence of glenohumeral elevation during weighted scaption. Patients with rTSA have unique strategies to elevate their arms, often with decreased glenohumeral motion and resultant compensation in scapulothoracic motion. In contrast, the control group showed few differences when lifting a handheld weight. CLINICAL RELEVANCE Functional deficiency in activities that load the shoulder after rTSA surgery can affect patient independence, and they may be prevalent but not captured in clinical studies. Pre- or postoperative rehabilitation to strengthen scapular stabilizers and the deltoid should be evaluated against postoperative shoulder function. Further study is required to determine the etiology of deficient glenohumeral motion after rTSA, and the most effective surgical and/or rehabilitative strategies to restore deficient glenohumeral motion after rTSA.
Collapse
Affiliation(s)
- Hema J. Sulkar
- Department of Orthopaedics, University of Utah, Salt Lake City, UT, USA
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT, USA
| | - Klevis Aliaj
- Department of Orthopaedics, University of Utah, Salt Lake City, UT, USA
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT, USA
| | | | - Peter N. Chalmers
- Department of Orthopaedics, University of Utah, Salt Lake City, UT, USA
| | - K. Bo Foreman
- Department of Orthopaedics, University of Utah, Salt Lake City, UT, USA
- Department of Physical Therapy and Athletic Training, University of Utah, Salt Lake City, UT, USA
| | - Heath B. Henninger
- Department of Orthopaedics, University of Utah, Salt Lake City, UT, USA
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT, USA
- Department of Mechanical Engineering, University of Utah, Salt Lake City, UT, USA
| |
Collapse
|