1
|
Monteiro PHM, Marcori AJ, da Conceição NR, Monteiro RLM, Coelho DB, Teixeira LA. Cortical activity in body balance tasks as a function of motor and cognitive demands: A systematic review. Eur J Neurosci 2024. [PMID: 39429043 DOI: 10.1111/ejn.16574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 08/01/2024] [Accepted: 10/02/2024] [Indexed: 10/22/2024]
Abstract
Technological tools, like electroencephalography and functional near-infrared spectroscopy, have deepened our understanding of cortical regions involved in balance control. In this systematic literature review, we aimed to identify the prevalent cortical areas activated during balance tasks with specific motor or cognitive demands. Our search strategy encompassed terms related to balance control and cortical activity, yielding 2250 results across five databases. After screening, 67 relevant articles were included in the review. Results indicated that manipulations of visual and/or somatosensory information led to prevalent activity in the parietal, frontal and temporal regions; manipulations of the support base led to prevalent activity of the parietal and frontal regions; both balance-cognitive dual-tasking and reactive responses to extrinsic perturbations led to prevalent activity in the frontal and central regions. These findings deepen our comprehension of the cortical regions activated to manage the complex demands of maintaining body balance in the performance of tasks posing specific requirements. By understanding these cortical activation patterns, researchers and clinicians can develop targeted interventions for balance-related disorders.
Collapse
Affiliation(s)
| | | | | | | | - Daniel Boari Coelho
- Biomedical Engineering, Federal University of ABC, São Bernardo do Campo, Brazil
| | | |
Collapse
|
2
|
Schoeberl F, Dowsett J, Pradhan C, Grabova D, Köhler A, Taylor P, Zwergal A. TMS of the left primary motor cortex improves tremor intensity and postural control in primary orthostatic tremor. J Neurol 2024; 271:2938-2947. [PMID: 38625401 PMCID: PMC11136716 DOI: 10.1007/s00415-024-12376-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 04/04/2024] [Accepted: 04/05/2024] [Indexed: 04/17/2024]
Abstract
A ponto-cerebello-thalamo-cortical network is the pathophysiological correlate of primary orthostatic tremor. Affected patients often do not respond satisfactorily to pharmacological treatment. Consequently, the objective of the current study was to examine the effects of a non-invasive neuromodulation by theta burst repetitive transcranial magnetic stimulation (rTMS) of the left primary motor cortex (M1) and dorsal medial frontal cortex (dMFC) on tremor frequency, intensity, sway path and subjective postural stability in primary orthostatic tremor. In a cross-over design, eight patients (mean age 70.2 ± 5.4 years, 4 female) with a primary orthostatic tremor received either rTMS of the left M1 leg area or the dMFC at the first study session, followed by the other condition (dMFC or M1 respectively) at the second study session 30 days later. Tremor frequency and intensity were quantified by surface electromyography of lower leg muscles and total sway path by posturography (foam rubber with eyes open) before and after each rTMS session. Patients subjectively rated postural stability on the posturography platform following each rTMS treatment. We found that tremor frequency did not change significantly with M1- or dMFC-stimulation. However, tremor intensity was lower after M1- but not dMFC-stimulation (p = 0.033/ p = 0.339). The sway path decreased markedly after M1-stimulation (p = 0.0005) and dMFC-stimulation (p = 0.023) compared to baseline. Accordingly, patients indicated a better subjective feeling of postural stability both with M1-rTMS (p = 0.007) and dMFC-rTMS (p = 0.01). In conclusion, non-invasive neuromodulation particularly of the M1 area can improve postural control and tremor intensity in primary orthostatic tremor by interference with the tremor network.
Collapse
Affiliation(s)
- Florian Schoeberl
- Department of Neurology and German Center for Vertigo and Balance Disorders (DSGZ), LMU University Hospital, LMU Munich, Marchioninistrasse 15, 81377, Munich, Germany
- German Center for Vertigo and Balance Disorders (DSGZ), LMU University Hospital, LMU Munich, Munich, Germany
| | - James Dowsett
- Division of Psychology, University of Stirling, Stirling, UK
| | - Cauchy Pradhan
- German Center for Vertigo and Balance Disorders (DSGZ), LMU University Hospital, LMU Munich, Munich, Germany
| | - Denis Grabova
- German Center for Vertigo and Balance Disorders (DSGZ), LMU University Hospital, LMU Munich, Munich, Germany
| | - Angelina Köhler
- Department of Neurology and German Center for Vertigo and Balance Disorders (DSGZ), LMU University Hospital, LMU Munich, Marchioninistrasse 15, 81377, Munich, Germany
- German Center for Vertigo and Balance Disorders (DSGZ), LMU University Hospital, LMU Munich, Munich, Germany
| | - Paul Taylor
- Faculty of Philosophy, Philosophy of Science and the Study of Religion, LMU Munich, Munich, Germany
| | - Andreas Zwergal
- Department of Neurology and German Center for Vertigo and Balance Disorders (DSGZ), LMU University Hospital, LMU Munich, Marchioninistrasse 15, 81377, Munich, Germany.
- German Center for Vertigo and Balance Disorders (DSGZ), LMU University Hospital, LMU Munich, Munich, Germany.
| |
Collapse
|
3
|
Liu N, Yang C, Song Q, Yang F, Chen Y. Patients with chronic ankle instability exhibit increased sensorimotor cortex activation and correlation with poorer lateral balance control ability during single-leg stance: a FNIRS study. Front Hum Neurosci 2024; 18:1366443. [PMID: 38736530 PMCID: PMC11082417 DOI: 10.3389/fnhum.2024.1366443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Accepted: 04/12/2024] [Indexed: 05/14/2024] Open
Abstract
Introduction Chronic Ankle Instability (CAI) is a musculoskeletal condition that evolves from acute ankle sprains, and its underlying mechanisms have yet to reach a consensus. Mounting evidence suggests that neuroplastic changes in the brain following ankle injuries play a pivotal role in the development of CAI. Balance deficits are a significant risk factor associated with CAI, yet there is a scarcity of evidence regarding the sensorimotor cortical plasticity related to balance control in affected individuals. This study aims to evaluate the differences in cortical activity and balance abilities between patients with CAI and uninjured individuals during a single-leg stance, as well as the correlation between these factors, in order to elucidate the neurophysiological alterations in balance control among patients with CAI. Methods The study enrolled 24 patients with CAI and 24 uninjured participants. During single-leg stance, cortical activity was measured using a functional near-infrared spectroscopy (fNIRS) system, which included assessments of the pre-motor cortex (PMC), supplementary motor area (SMA), primary motor cortex (M1), and primary somatosensory cortex (S1). Concurrently, balance parameters were tested utilizing a three-dimensional force platform. Results Independent sample t-tests revealed that, compared with the uninjured individuals, the patients with CAI exhibited a significant increase in the changes of oxyhemoglobin concentration (ΔHbO) during single-leg stance within the left S1 at Channel 5 (t = 2.101, p = 0.041, Cohen's d = 0.607), left M1 at Channel 6 (t = 2.363, p = 0.022, Cohen's d = 0.682), right M1 at Channel 15 (t = 2.273, p = 0.029, Cohen's d = 0.656), and right PMC/SMA at Channel 11 (t = 2.467, p = 0.018, Cohen's d = 0.712). Additionally, the center of pressure root mean square (COP-RMS) in the mediolateral (ML) direction was significantly greater (t = 2.630, p = 0.012, Cohen's d = 0.759) in the patients with CAI. Furthermore, a moderate positive correlation was found between ML direction COP-RMS and ΔHbO2 in the M1 (r = 0.436; p = 0.033) and PMC/SMA (r = 0.488, p = 0.016), as well as between anteroposterior (AP) direction COP-RMS and ΔHbO in the M1 (r = 0.483, p = 0.017). Conclusion Patients with CAI demonstrate increased cortical activation in the bilateral M1, ipsilateral PMC/SMA, and contralateral S1. This suggests that patients with CAI may require additional brain resources to maintain balance during single-leg stance, representing a compensatory mechanism to uphold task performance amidst diminished lateral balance ability in the ankle joint.
Collapse
Affiliation(s)
| | | | | | | | - Yan Chen
- College of Sport and Health, Shandong Sport University, Jinan, Shandong, China
| |
Collapse
|
4
|
Weiniger SP, Schilaty ND. Interoceptive posture awareness and accuracy: a novel photographic strategy towards making posture actionable. Front Neurosci 2024; 18:1359594. [PMID: 38638696 PMCID: PMC11025613 DOI: 10.3389/fnins.2024.1359594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 03/22/2024] [Indexed: 04/20/2024] Open
Abstract
Interoception, sometimes referred to as the 'hidden sense,' communicates the state of internal conditions for autonomic energy regulation and is important for human motor control as well as self-awareness. The insula, the cortex of interoception, integrates internal senses such as hunger, thirst and emotions. With input from the cerebellum and proprioceptive inputs, it creates a vast sensorimotor network essential for static posture and dynamic movement. With humans being bipedal to allow for improved mobility and energy utilization, greater neuromotor control is required to effectively stabilize and control the four postural zones of mass (i.e., head, torso, pelvis, and lower extremities) over the base of support. In a dynamic state, this neuromotor control that maintains verticality is critical, challenging energy management for somatic motor control as well as visceral and autonomic functions. In this perspective article, the authors promote a simple series of posture photographs to allow one to integrate more accurate alignment of their postural zones of mass with respect to the gravity line by correlating cortical interoception with cognitive feedback. Doing this focuses one on their body perception in space compared to the objective images. Strengthening interoceptive postural awareness can shift the net result of each zone of postural mass during day-to-day movement towards stronger posture biomechanics and can serve as an individualized strategy to optimize function, longevity, and rehabilitation.
Collapse
Affiliation(s)
- Steven P. Weiniger
- College of Graduate Studies, University of Western States, Portland, OR, United States
- BodyZone.com, Atlanta, GA, United States
| | - Nathan D. Schilaty
- Department of Neurosurgery and Brain Repair, University of South Florida, Tampa, FL, United States
- Department of Medical Engineering, University of South Florida, Tampa, FL, United States
- Center for Neuromusculoskeletal Research, University of South Florida, Tampa, FL, United States
| |
Collapse
|
5
|
Wang X, Luo Z, Zhang M, Zhao W, Xie S, Wong SF, Hu H, Li L. The interaction between changes of muscle activation and cortical network dynamics during isometric elbow contraction: a sEMG and fNIRS study. Front Bioeng Biotechnol 2023; 11:1176054. [PMID: 37180038 PMCID: PMC10167054 DOI: 10.3389/fbioe.2023.1176054] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 04/14/2023] [Indexed: 05/15/2023] Open
Abstract
Objective: The relationship between muscle activation during motor tasks and cerebral cortical activity remains poorly understood. The aim of this study was to investigate the correlation between brain network connectivity and the non-linear characteristics of muscle activation changes during different levels of isometric contractions. Methods: Twenty-one healthy subjects were recruited and were asked to perform isometric elbow contractions in both dominant and non-dominant sides. Blood oxygen concentrations in brain from functional Near-infrared Spectroscopy (fNIRS) and surface electromyography (sEMG) signals in the biceps brachii (BIC) and triceps brachii (TRI) muscles were recorded simultaneously and compared during 80% and 20% of maximum voluntary contraction (MVC). Functional connectivity, effective connectivity, and graph theory indicators were used to measure information interaction in brain activity during motor tasks. The non-linear characteristics of sEMG signals, fuzzy approximate entropy (fApEn), were used to evaluate the signal complexity changes in motor tasks. Pearson correlation analysis was used to examine the correlation between brain network characteristic values and sEMG parameters under different task conditions. Results: The effective connectivity between brain regions in motor tasks in dominant side was significantly higher than that in non-dominant side under different contractions (p < 0.05). The results of graph theory analysis showed that the clustering coefficient and node-local efficiency of the contralateral motor cortex were significantly varied under different contractions (p < 0.01). fApEn and co-contraction index (CCI) of sEMG under 80% MVC condition were significantly higher than that under 20% MVC condition (p < 0.05). There was a significant positive correlation between the fApEn and the blood oxygen value in the contralateral brain regions in both dominant or non-dominant sides (p < 0.001). The node-local efficiency of the contralateral motor cortex in the dominant side was positively correlated with the fApEn of the EMG signals (p < 0.05). Conclusion: In this study, the mapping relationship between brain network related indicators and non-linear characteristic of sEMG in different motor tasks was verified. These findings provide evidence for further exploration of the interaction between the brain activity and the execution of motor tasks, and the parameters might be useful in evaluation of rehabilitation intervention.
Collapse
Affiliation(s)
- Xiaohan Wang
- Institute of Medical Research, Northwestern Polytechnical University, Xi’an, China
| | - Zichong Luo
- Faculty of Science and Technology, University of Macau, Taipa, China
| | - Mingxia Zhang
- Institute of Medical Research, Northwestern Polytechnical University, Xi’an, China
| | - Weihua Zhao
- Hospital of Northwestern Polytechnical University, Xi’an, China
| | - Songyun Xie
- School of Electronics and Information, Northwestern Polytechnical University, Xi’an, China
| | - Seng Fat Wong
- Faculty of Science and Technology, University of Macau, Taipa, China
| | - Huijing Hu
- Institute of Medical Research, Northwestern Polytechnical University, Xi’an, China
| | - Le Li
- Institute of Medical Research, Northwestern Polytechnical University, Xi’an, China
| |
Collapse
|
6
|
Yang J, Fu R, Hao Z, Lin N, Cheng X, Ma J, Zhang Y, Li Y, Lo WLA, Yu Q, Wang C. The immediate effects of iTBS on the muscle activation pattern under challenging balance conditions in the patients with chronic low back pain: A preliminary study. Front Neurosci 2023; 17:1135689. [PMID: 36998734 PMCID: PMC10045989 DOI: 10.3389/fnins.2023.1135689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Accepted: 02/27/2023] [Indexed: 03/16/2023] Open
Abstract
BackgroundThe patients with chronic low back pain (CLBP) showed impaired postural control, especially in challenging postural task. The dorsolateral prefrontal cortex (DLPFC) is reported to involve in the complex balance task, which required considerable attentional control. The effect of intermittent theta burst stimulation (iTBS) over the DLPFC to the capacity of postural control of CLBP patients is still unknown.MethodsParticipants diagnosed with CLBP received a single-session iTBS over the left DLPFC. All the participants completed the postural control tasks of single-leg (left/right) standing before and after iTBS. The activation changes of the DLPFC and M1 before and after iTBS were recorded by functional near-infrared spectroscopy (fNIRS). The activation pattern of the trunk [transversus abdominis (TrA), superficial lumbar multifidus (SLM)] and leg [tibialis anterior (TA), gastrocnemius medialis (GM)] muscles including root mean square (RMS) and co-contraction index (CCI) during single-leg standing were measured by surface electromyography (sEMG) before and after the intervention. The paired t-test was used to test the difference before and after iTBS. Pearson correlation analyses were performed to test the relationship between the oxyhemoglobin concentration and sEMG outcome variables (RMS and CCI).ResultsOverall, 20 participants were recruited. In the right-leg standing condition, compared with before iTBS, the CCI of the right TrA/SLM was significantly decreased (t = −2.172, p = 0.043), and the RMS of the right GM was significantly increased (t = 4.024, p = 0.001) after iTBS. The activation of the left DLPFC (t = 2.783, p = 0.012) and left M1 (t = 2.752, p = 0.013) were significantly decreased and the relationship between the left DLPFC and M1 was significant after iTBS (r = 0.575, p = 0.014). Correlation analysis showed the hemoglobin concentration of M1 was negatively correlated with the RMS of the right GM (r = −0.659, p = 0.03) and positively correlated between CCI of the right TrA/SLM (r = 0.503, p = 0.047) after iTBS. There was no significant difference in the brain or muscle activation change in the left leg-standing condition between before and after iTBS.ConclusionIntermittent theta burst stimulation over the left DLPFC seems to be able to improve the muscle activation pattern during postural control ability in challenging postural task, which would provide a new approach to the treatment of CLBP.
Collapse
Affiliation(s)
- Jiajia Yang
- Department of Rehabilitation Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Ruochen Fu
- Department of Rehabilitation Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Zengming Hao
- Department of Rehabilitation Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Nanhe Lin
- Department of Urology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xue Cheng
- Department of Rehabilitation Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Jinjin Ma
- Department of Rehabilitation Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yushu Zhang
- Department of Rehabilitation Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yan Li
- Department of Rehabilitation Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Wai Leung Ambrose Lo
- Department of Rehabilitation Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Engineering and Technology Research Center for Rehabilitation Medicine and Translation, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Qiuhua Yu
- Department of Rehabilitation Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- *Correspondence: Qiuhua Yu,
| | - Chuhuai Wang
- Department of Rehabilitation Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Chuhuai Wang,
| |
Collapse
|
7
|
Li Y, Xu Z, Xie H, Fu R, Lo WLA, Cheng X, Yang J, Ge L, Yu Q, Wang C. Changes in cortical activation during upright stance in individuals with chronic low back pain: An fNIRS study. Front Hum Neurosci 2023; 17:1085831. [PMID: 36816497 PMCID: PMC9936824 DOI: 10.3389/fnhum.2023.1085831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 01/17/2023] [Indexed: 02/05/2023] Open
Abstract
Introduction Postural control deficits are a potential cause of persistent and recurrent pain in patients with chronic low back pain (CLBP). Although some studies have confirmed that the dorsolateral prefrontal cortex (DLPFC) contributes to pain regulation in CLBP, its role in the postural control of patients with CLBP remains unclear. Therefore, this study aimed to investigate the DLPFC activation of patients with CLBP and healthy controls under different upright stance task conditions. Methods Twenty patients with CLBP (26.50 ± 2.48 years) and 20 healthy controls (25.75 ± 3.57 years) performed upright stance tasks under three conditions: Task-1 was static balance with eyes open; Task-2 was static balance with eyes closed; Task-3 involved dynamic balance on an unstable surface with eyes open. A wireless functional near-infrared spectroscopy (fNIRS) system measured cortical activity, including the bilateral DLPFC, pre-motor cortex (PMC) and supplementary motor area (SMA), the primary motor cortex (M1), the primary somatosensory cortex (S1), and a force platform measured balance parameters during upright stance. Results The two-way repeated measures ANOVA results showed significant interaction in bilateral PMC/SMA activation. Moreover, patients with CLBP had significantly increased right DLPFC activation and higher sway 32 area and velocity than healthy controls during upright stance. Discussion Our results imply that PMC/SMA and DLPFC maintain standing balance. The patients with CLBP have higher cortical activity and upright stance control deficits, which may indicate that the patients with CLBP have low neural efficiency and need more motor resources to maintain balance.
Collapse
|
8
|
Biesieda V. Correction system effectiveness of the children physical development of early and younger preschool age with psychomotor disorders (on the example of posture). HEALTH, SPORT, REHABILITATION 2022. [DOI: 10.34142/hsr.2022.08.04.05] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Purpose: to reveal the reliability of the effectiveness of the developed author's system for correcting the physical development of young and preschool children with psychomotor disorders.
Material and methods. A total of 208 children of early (2-3 years) and younger preschool (3-4 years) age with psychomotor disorders took part in the study. Specially organized studies of the effectiveness of the system of corrective physical education for children of early and younger preschool age with psychomotor disorders were conducted during 2019 - 2021. They took place in specialized preschool education institutions, as well as kindergartens of the combined type in the city of Odesa, Odesa region, as well as in the cities of Kramatorsk, Kharkiv, Mykolaiv, Balaklia (Kharkiv region). I also summarized my own long-term (over 25 years) experience of individual rehabilitation activities with the specified contingent of children in the Odessa Movement Rehabilitation Center. All children were divided into two groups: 108 from experimental groups and 100 from control groups.
Results. Summarizing the analysis of the results of the dynamics of physical development indicators of children with psychomotor disorders (on the example of the study of their posture), we should conclude that almost all the indicators of children from the experimental groups had a marked improvement in results, which in the absolute majority of cases was confirmed statistically (P<0,01‒0,05). Children from control groups also demonstrated some improvement of physical development indicators, but it was by no means confirmed by the methods of mathematical statistics (P>0,05).
Conclusions: the conducted formative pedagogical experiment confirmed the reliability of the effectiveness of the developed author's system of correction of physical development of children of early and early preschool age with psychomotor disorders in comparison with the traditional system of their education.
Collapse
|