1
|
Fan P, Yang Z, Wang T, Li J, Kim Y, Kim S. Neuromuscular Control Strategies in Basketball Shooting: Distance-Dependent Analysis of Muscle Synergies. J Sports Sci Med 2024; 23:571-580. [PMID: 39228767 PMCID: PMC11366846 DOI: 10.52082/jssm.2024.571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 07/01/2024] [Indexed: 09/05/2024]
Abstract
Basketball victory relies on an athlete's skill to make precise shots at different distances. While extensive research has explored the kinematics and dynamics of different shooting distances, the specific neuromuscular control strategies involved remain elusive. This study aimed to compare the differences in muscle synergies during basketball shooting at different distances, offering insights into neuromuscular control strategies and guiding athletes' training. Ten skilled shooting right-handed male basketball players participated as subjects in this experiment. Electromyographic (EMG) data for full-phase shooting were acquired at short (3.2 m), middle (5.0 m), and long (6.8 m) distances. Non-negative matrix decomposition extracted muscle synergies (motor modules and motor primitives) during shooting. The results of this study show that all three distance shooting can be broken down into three synergies and that there were differences in the synergies between short and long distances, with differences in motor primitive 1 and motor primitive 2 at the phase of 45% - 59% (p < 0.001, t* = 4.418), and 78% - 88% (p < 0.01, t* = 4.579), respectively, and differences in the motor module 3 found in the differences in muscle weights for rectus femoris (RF) (p = 0.001, d = -2.094), and gastrocnemius lateral (GL) (p = 0.001, d = -2.083). Shooting distance doesn't affect the number of muscle synergies in basketball shooting but alters synergy patterns. During long distance shooting training, basketball players should place more emphasis on the timing and synergistic activation of upper and lower limbs, as well as core muscles.
Collapse
Affiliation(s)
- Penglei Fan
- Department of Physical Education, Jeonbuk National University, Jeonju, Republic of Korea
| | - Zhitao Yang
- Department of Mechanical and Electrical Engineering, Zhoukou Normal University, Zhoukou, China
| | - Ting Wang
- Department of Physical Education, Jeonbuk National University, Jeonju, Republic of Korea
| | - Jiaying Li
- Department of Physical Education, Jeonbuk National University, Jeonju, Republic of Korea
| | - Youngsuk Kim
- Department of Physical Education, Jeonbuk National University, Jeonju, Republic of Korea
| | - Sukwon Kim
- Department of Physical Education, Jeonbuk National University, Jeonju, Republic of Korea
| |
Collapse
|
2
|
Pan Z, Liu L, Sun Y, Ma Y. A Study of the Effects of Motor Experience on Neuromuscular Control Strategies During Sprint Starts. Motor Control 2024; 28:362-376. [PMID: 38710481 DOI: 10.1123/mc.2023-0149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 03/12/2024] [Accepted: 03/19/2024] [Indexed: 05/08/2024]
Abstract
Much of the current research on sprint start has attempted to analyze the biomechanical characteristics of elite athletes to provide guidance on the training of sprint technique, with less attention paid to the effects of motor experience gained from long-term training on neuromuscular control characteristics. The present study attempted to investigate the effect of motor experience on the modular organization of the neuromuscular system during starting, based on he clarification of the characteristics of muscle synergies during starting. It was found that exercise experience did not promote an increase in the number of synergies but rather a more focused timing of the activation of each synergy, allowing athletes to quickly complete the postural transition from crouching to running during the starting.
Collapse
Affiliation(s)
- Zhengye Pan
- College of Physical Education and Sports, Beijing Normal University, Beijing, China
| | - Lushuai Liu
- College of Physical Education and Sports, Beijing Normal University, Beijing, China
| | - Yuan Sun
- College of Physical Education and Sports, Beijing Normal University, Beijing, China
| | - Yunchao Ma
- College of Physical Education and Sports, Beijing Normal University, Beijing, China
| |
Collapse
|
3
|
Pan Z, Liu L, Ma Y. The effect of motor experience on knee stability and inter-joint coordination when cutting at different angles. Knee 2024; 48:207-216. [PMID: 38733871 DOI: 10.1016/j.knee.2024.04.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 03/10/2024] [Accepted: 04/20/2024] [Indexed: 05/13/2024]
Abstract
BACKGROUND Most studies on cutting have focused on the biomechanics of the knee and lower-limb muscle activation characteristics, with less consideration given to the influence of motor experience on control strategies at the joint level. This study aimed to investigate the differences in knee stability and inter-joint coordination between high- and low-level athletes when cutting at different angles. METHODS A Vicon motion capture system and a Kistler force table were used to obtain kinematic and ground reaction force data during cutting. Joint dynamic stiffness and vector coding were used to assess knee stability and inter-joint coordination. Uncontrolled manifold analysis was used to clarify whether there was synergy among lower-limb joints to maintain postural stability during cutting. RESULTS During the load acceptance phase, skilled subjects had the smallest joint stiffness at 90° compared with novice subjects (P < 0.05). Compared with novice subjects, skilled subjects had smaller knee-hip ellipse areas at 90° and 135° (P < 0.05), but larger knee-ankle ellipse areas at 135° (P < 0.05). The synergy index in load acceptance was significantly higher (P < 0.05) for skilled subjects at 90° and 135°. CONCLUSIONS Advanced subjects can adjust joint control strategies to adapt to the demands of large-angle cutting on the change of direction. Advanced subjects can reduce knee stability for greater flexibility during cutting compared with novice subjects. By increasing the degree of synergy among the lower-limb joints, advanced athletes can maintain high postural stability.
Collapse
Affiliation(s)
- Zhengye Pan
- College of Physical Education and Sports, Beijing Normal University, Beijing, China
| | - Lushuai Liu
- College of Physical Education and Sports, Beijing Normal University, Beijing, China
| | - Yunchao Ma
- College of Physical Education and Sports, Beijing Normal University, Beijing, China.
| |
Collapse
|
4
|
Huang S, Guo X, Xie JJ, Lau KYS, Liu R, Mak ADP, Cheung VCK, Chan RHM. Rectified Latent Variable Model-Based EMG Factorization of Inhibitory Muscle Synergy Components Related to Aging, Expertise and Force-Tempo Variations. SENSORS (BASEL, SWITZERLAND) 2024; 24:2820. [PMID: 38732926 PMCID: PMC11086352 DOI: 10.3390/s24092820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 04/12/2024] [Accepted: 04/20/2024] [Indexed: 05/13/2024]
Abstract
Muscle synergy has been widely acknowledged as a possible strategy of neuromotor control, but current research has ignored the potential inhibitory components in muscle synergies. Our study aims to identify and characterize the inhibitory components within motor modules derived from electromyography (EMG), investigate the impact of aging and motor expertise on these components, and better understand the nervous system's adaptions to varying task demands. We utilized a rectified latent variable model (RLVM) to factorize motor modules with inhibitory components from EMG signals recorded from ten expert pianists when they played scales and pieces at different tempo-force combinations. We found that older participants showed a higher proportion of inhibitory components compared with the younger group. Senior experts had a higher proportion of inhibitory components on the left hand, and most inhibitory components became less negative with increased tempo or decreased force. Our results demonstrated that the inhibitory components in muscle synergies could be shaped by aging and expertise, and also took part in motor control for adapting to different conditions in complex tasks.
Collapse
Affiliation(s)
- Subing Huang
- Department of Electrical Engineering, City University of Hong Kong, Hong Kong, China; (S.H.); (X.G.); (R.L.)
| | - Xiaoyu Guo
- Department of Electrical Engineering, City University of Hong Kong, Hong Kong, China; (S.H.); (X.G.); (R.L.)
| | - Jodie J. Xie
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, China; (J.J.X.); (K.Y.S.L.); (V.C.K.C.)
- Gerald Choa Neuroscience Institute, The Chinese University of Hong Kong, Hong Kong, China
| | - Kelvin Y. S. Lau
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, China; (J.J.X.); (K.Y.S.L.); (V.C.K.C.)
- Gerald Choa Neuroscience Institute, The Chinese University of Hong Kong, Hong Kong, China
| | - Richard Liu
- Department of Electrical Engineering, City University of Hong Kong, Hong Kong, China; (S.H.); (X.G.); (R.L.)
| | - Arthur D. P. Mak
- Department of Psychiatry, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China;
- Cambridgeshire and Peterborough NHS Foundation Trust, Fulbourn Hospital, Cambridge CB21 5EF, UK
| | - Vincent C. K. Cheung
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, China; (J.J.X.); (K.Y.S.L.); (V.C.K.C.)
- Gerald Choa Neuroscience Institute, The Chinese University of Hong Kong, Hong Kong, China
| | - Rosa H. M. Chan
- Department of Electrical Engineering, City University of Hong Kong, Hong Kong, China; (S.H.); (X.G.); (R.L.)
| |
Collapse
|
5
|
Pan Z, Liu L, Li X, Ma Y. A Study of Racket Weight Adaptation in Advanced and Beginner Badminton Players. Appl Bionics Biomech 2024; 2024:8908294. [PMID: 38304060 PMCID: PMC10834085 DOI: 10.1155/2024/8908294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 12/11/2023] [Accepted: 01/11/2024] [Indexed: 02/03/2024] Open
Abstract
The jump smash is the most aggressive manoeuvre in badminton. Racket parameters may be the key factor affecting the performance of jump smash. Previous studies have focused only on the biomechanical characteristics of athletes or on racket parameters in isolation, with less observation of the overall performance of the human-racket system. This study aims to explore the effects of different racket weights on neuromuscular control strategies in advanced and beginner players. Nonnegative matrix factorisation (NMF) was used to extract the muscle synergies of players when jumping smash using different rackets (3U, 5U), and K-means clustering was used to obtain the fundamental synergies. Uncontrolled manifold (UCM) analyses were used to establish links between synergy and motor performance, and surface electromyography (sEMG) was mapped to each spinal cord segment. The study found significant differences (P < 0.05) in the postural muscles of skilled players and significant differences (P < 0.001) in the upper-limb muscles of beginners when the racket weight was increased. Advanced players adapt to the increase in racket weight primarily by adjusting the timing of the activation of the third synergy. Combined synergy in advanced players is mainly focused on the backswing, while that in beginners is mainly focused on the frontswing. This suggests that advanced players may be more adept at utilising the postural muscles and their coordination with the upper-limb muscles to adapt to different rackets. In addition, the motor experience can help athletes adapt more quickly to heavier rackets, and this adaptation occurs primarily by adjusting the temporal phase and covariation characteristics of the synergies rather than by increasing the number of synergies.
Collapse
Affiliation(s)
- Zhengye Pan
- College of Physical Education and Sports, Beijing Normal University, Beijing, China
| | - Lushuai Liu
- College of Physical Education and Sports, Beijing Normal University, Beijing, China
| | - Xingman Li
- College of Physical Education and Sports, Beijing Normal University, Beijing, China
| | - Yunchao Ma
- College of Physical Education and Sports, Beijing Normal University, Beijing, China
| |
Collapse
|
6
|
Pan Z, Liu L, Li X, Ma Y. A long short-term memory modeling-based compensation method for muscle synergy. Med Eng Phys 2023; 120:104054. [PMID: 37838409 DOI: 10.1016/j.medengphy.2023.104054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 07/29/2023] [Accepted: 09/11/2023] [Indexed: 10/16/2023]
Abstract
Muscle synergy containing temporal and spatial patterns of muscle activity has been frequently used in prediction of kinematic characteristics. However, there is often some discrepancy between the predicted results based on muscle synergy and the actual movement performance. This study aims to propose a new method for compensating muscle synergy that allows the compensated synergy signal to predict kinematic characteristics more accurately. The study used the change of direction in running as background. Non-negative matrix factorisation was used to extract the muscle synergy during the change of direction at different angles. A non-linear association between synergy and the height of pelvic mass centre was established using long and short-term memory neural networks. Based on this model, the height fluctuations of the pelvic centre of mass are used as input and predict the fluctuations of the synergy which were used to compensate for the original synergy in different ways. The accuracy of the synergies compensated in different ways in predicting pelvic centre of mass movement was then assessed by back propagation neural networks. It was found that the compensated synergy significantly improves accuracy in predicting pelvic centre of mass displacement (R2, p < 0.05). The predicted results of all-compensation are significantly different from actual performance in the end-swing (p < 0.05). The predicted results of half-compensation do not differ significantly from the actual performance, and its damage to the original synergy is smaller and does not increase with angle compared to all-compensation. The all-compensation may be affected by individual variability and lead to increased errors. The half-compensation can improve the predictive accuracy of the synergy while reducing the adjustment to the original synergy.
Collapse
Affiliation(s)
- Zhengye Pan
- College of Physical Education and Sports, Beijing Normal University, Beijing, China
| | - Lushuai Liu
- College of Physical Education and Sports, Beijing Normal University, Beijing, China
| | - Xingman Li
- College of Physical Education and Sports, Beijing Normal University, Beijing, China
| | - Yunchao Ma
- College of Physical Education and Sports, Beijing Normal University, Beijing, China.
| |
Collapse
|