1
|
Zhang W, Li YJ, Zhang N, Chen SY, Tong XF, Wang BQ, Huang T, You H, Chen W. Fibroblast-specific adipocyte enhancer binding protein 1 is a potential pathological trigger and prognostic marker for liver fibrosis independent of etiology. J Dig Dis 2023; 24:550-561. [PMID: 37776122 DOI: 10.1111/1751-2980.13230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 08/30/2023] [Accepted: 09/28/2023] [Indexed: 10/01/2023]
Abstract
OBJECTIVES Aortic carboxypeptidase-like protein (ACLP) is an extracellular protein involved in adipogenesis, epithelial-mesenchymal transition, epithelial cell hyperplasia, and collagen fibrogenesis. This study mainly aimed to analyze the potential role of adipocyte enhancer binding protein 1 (AEBP1), the ACLP-encoding gene, as a pathological target or prognostic marker for liver fibrosis regardless of etiology. METHODS Dysregulation pattern, clinical relevance, and biological significance of AEBP1 gene in liver fibrosis were analyzed using publicly available transcriptomic profiles, different liver fibrosis mouse models, biological databases, and AEBP1 gene silencing followed by RNA sequencing in human hepatic stellate cells (HSCs). RESULTS AEBP1 gene expression was upregulated and positively correlated with liver fibrogenesis independent of etiology, the protein of which was further verified in liver fibrosis mouse models induced by different pathogenic factors. A higher expression of liver AEBP1 gene had the potential to predict poor prognosis in liver fibrosis. Systematic bioinformatic analyses revealed that AEBP1 expression was HSCs-specific and associated with extracellular matrix (ECM) remodeling and its downstream mechanical-chemical signaling transition. AEBP1 knockdown by specific small interfering RNAs (siRNAs) in HSCs inhibited ECM-receptor interaction and immune-related pathways as well as HSC proliferation or activation. CONCLUSION A high expression of AEBP1 was specifically associated with liver fibrosis and was related to a poor prognosis and predicted the role of AEBP1 in HSCs, providing a new insight for understanding AEBP1 in liver fibrosis.
Collapse
Affiliation(s)
- Wen Zhang
- Liver Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Translational Medicine in Liver Cirrhosis, National Clinical Research Center of Digestive Diseases, Beijing, China
| | - Yu Jia Li
- Emory National primate Research Center, Emory University, Atlanta, Georgia, USA
| | - Ning Zhang
- Liver Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Translational Medicine in Liver Cirrhosis, National Clinical Research Center of Digestive Diseases, Beijing, China
| | - Shu Yan Chen
- Liver Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Translational Medicine in Liver Cirrhosis, National Clinical Research Center of Digestive Diseases, Beijing, China
| | - Xiao Fei Tong
- Liver Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Translational Medicine in Liver Cirrhosis, National Clinical Research Center of Digestive Diseases, Beijing, China
| | - Bing Qiong Wang
- Liver Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Translational Medicine in Liver Cirrhosis, National Clinical Research Center of Digestive Diseases, Beijing, China
| | - Tao Huang
- Beijing Clinical Research Institute, Beijing, China
- Experimental and Translational Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Hong You
- Liver Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Translational Medicine in Liver Cirrhosis, National Clinical Research Center of Digestive Diseases, Beijing, China
| | - Wei Chen
- Beijing Clinical Research Institute, Beijing, China
- Experimental and Translational Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
2
|
Identification of Candidate Biomarkers in Malignant Ascites from Patients with Hepatocellular Carcinoma by iTRAQ-Based Quantitative Proteomic Analysis. BIOMED RESEARCH INTERNATIONAL 2018; 2018:5484976. [PMID: 30345303 PMCID: PMC6174818 DOI: 10.1155/2018/5484976] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Revised: 08/05/2018] [Accepted: 09/02/2018] [Indexed: 12/13/2022]
Abstract
Almost all the patients with hepatocellular carcinoma (HCC) at advanced stage experience pathological changes of chronic liver cirrhosis, which generally leads to moderate ascites. Recognition of novel biomarkers in malignant ascites could be favorable for establishing a diagnosis for the HCC patients with ascites, and even predicting prognosis, such as risk of distant metastasis. To distinguish the proteomic profiles of malignant ascites in HCC patients from those with nonmalignant liver cirrhosis, an iTRAQ pipeline was built up to analyze the differentially distributed proteins in the malignant ascites from HCC patients (n=10) and benign ascites from hepatic decompensation (HD) controls (n=9). In total, 112 differentially distributed proteins were identified, of which 69 proteins were upregulated and 43 proteins were downregulated (ratio <0.667 or >1.3, respectively) in the malignant ascites. Moreover, 19 upregulated proteins (including keratin 1 protein and rheumatoid factor RF-IP20, ratio>1.5) and 8 downregulated proteins (including carbonic anhydrase 1, ratio<0.667) were identified from malignant ascites samples. Functional categories analyses indicated that membrane proteins, ion regulation, and amino acid metabolism are implicated in the formation of HCC malignant ascites. Pathways mapping revealed that glycolysis/gluconeogenesis and complement/coagulation cascades are the mostly affected cell life activities in HCC malignant ascites, suggesting the key factors in these pathways such as Enolase-1 and fibrinogen are potential ascitic fluid based biomarkers for diagnosis and prognosis for HCC.
Collapse
|