1
|
Christenson ES, Gizzi A, Cui J, Egleston M, Seamon KJ, DePasquale M, Orris B, Park BH, Stivers JT. Inhibition of Human Uracil DNA Glycosylase Sensitizes a Large Fraction of Colorectal Cancer Cells to 5-Fluorodeoxyuridine and Raltitrexed but Not Fluorouracil. Mol Pharmacol 2021; 99:412-425. [PMID: 33795350 PMCID: PMC11033954 DOI: 10.1124/molpharm.120.000191] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 03/09/2021] [Indexed: 01/22/2023] Open
Abstract
Previous short-hairpin RNA knockdown studies have established that depletion of human uracil DNA glycosylase (hUNG) sensitizes some cell lines to 5-fluorodeoxyuridine (FdU). Here, we selectively inhibit the catalytic activity of hUNG by lentiviral transduction of uracil DNA glycosylase inhibitor protein into a large panel of cancer cell lines under control of a doxycycline-inducible promoter. This induced inhibition strategy better assesses the therapeutic potential of small-molecule targeting of hUNG. In total, 6 of 11 colorectal lines showed 6- to 70-fold increases in FdU potency upon hUNG inhibition ("responsive"). This hUNG-dependent response was not observed with fluorouracil (FU), indicating that FU does not operate through the same DNA repair mechanism as FdU in vitro. Potency of the thymidylate synthase inhibitor raltitrexed (RTX), which elevates deoxyuridine triphosphate levels, was only incrementally enhanced upon hUNG inhibition (<40%), suggesting that responsiveness is associated with incorporation and persistence of FdU in DNA rather than deoxyuridine. The importance of FU/A and FU/G lesions in the toxicity of FdU is supported by the observation that dT supplementation completely rescued the toxic effects of U/A lesions resulting from RTX, but dT only increased the IC50 for FdU, which forms both FU/A and FU/G mismatches. Contrary to previous reports, cellular responsiveness to hUNG inhibition did not correlate with p53 status or thymine DNA glycosylase expression. A model is suggested in which the persistence of FU/A and FU/G base pairs in the absence of hUNG activity elicits an apoptotic DNA damage response in both responsive and nonresponsive colorectal lines. SIGNIFICANCE STATEMENT: The pyrimidine base 5-fluorouracil is a mainstay chemotherapeutic for treatment of advanced colorectal cancer. Here, this study shows that its deoxynucleoside form, 5-fluorodeoxyuridine (FdU), operates by a distinct DNA incorporation mechanism that is strongly potentiated by inhibition of the DNA repair enzyme human uracil DNA glycosylase. The hUNG-dependent mechanism was present in over 50% of colorectal cell lines tested, suggesting that a significant fraction of human cancers may be sensitized to FdU in the presence of a small-molecule hUNG inhibitor.
Collapse
Affiliation(s)
- Eric S Christenson
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland (E.S.C., A.G., J.C., M.E., K.J.S., B.O., J.T.S.); Lieber Institute for Brain Development, Baltimore, Maryland (M.D.); and Vanderbilt University Medical Center/Vanderbilt-Ingram Cancer Center, Nashville, Tennessee (B.H.P.)
| | - Anthony Gizzi
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland (E.S.C., A.G., J.C., M.E., K.J.S., B.O., J.T.S.); Lieber Institute for Brain Development, Baltimore, Maryland (M.D.); and Vanderbilt University Medical Center/Vanderbilt-Ingram Cancer Center, Nashville, Tennessee (B.H.P.)
| | - Junru Cui
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland (E.S.C., A.G., J.C., M.E., K.J.S., B.O., J.T.S.); Lieber Institute for Brain Development, Baltimore, Maryland (M.D.); and Vanderbilt University Medical Center/Vanderbilt-Ingram Cancer Center, Nashville, Tennessee (B.H.P.)
| | - Matthew Egleston
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland (E.S.C., A.G., J.C., M.E., K.J.S., B.O., J.T.S.); Lieber Institute for Brain Development, Baltimore, Maryland (M.D.); and Vanderbilt University Medical Center/Vanderbilt-Ingram Cancer Center, Nashville, Tennessee (B.H.P.)
| | - Kyle J Seamon
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland (E.S.C., A.G., J.C., M.E., K.J.S., B.O., J.T.S.); Lieber Institute for Brain Development, Baltimore, Maryland (M.D.); and Vanderbilt University Medical Center/Vanderbilt-Ingram Cancer Center, Nashville, Tennessee (B.H.P.)
| | - Michael DePasquale
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland (E.S.C., A.G., J.C., M.E., K.J.S., B.O., J.T.S.); Lieber Institute for Brain Development, Baltimore, Maryland (M.D.); and Vanderbilt University Medical Center/Vanderbilt-Ingram Cancer Center, Nashville, Tennessee (B.H.P.)
| | - Benjamin Orris
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland (E.S.C., A.G., J.C., M.E., K.J.S., B.O., J.T.S.); Lieber Institute for Brain Development, Baltimore, Maryland (M.D.); and Vanderbilt University Medical Center/Vanderbilt-Ingram Cancer Center, Nashville, Tennessee (B.H.P.)
| | - Ben H Park
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland (E.S.C., A.G., J.C., M.E., K.J.S., B.O., J.T.S.); Lieber Institute for Brain Development, Baltimore, Maryland (M.D.); and Vanderbilt University Medical Center/Vanderbilt-Ingram Cancer Center, Nashville, Tennessee (B.H.P.)
| | - James T Stivers
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland (E.S.C., A.G., J.C., M.E., K.J.S., B.O., J.T.S.); Lieber Institute for Brain Development, Baltimore, Maryland (M.D.); and Vanderbilt University Medical Center/Vanderbilt-Ingram Cancer Center, Nashville, Tennessee (B.H.P.)
| |
Collapse
|
2
|
Tieng FYF, Baharudin R, Abu N, Mohd Yunos RI, Lee LH, Ab Mutalib NS. Single Cell Transcriptome in Colorectal Cancer-Current Updates on Its Application in Metastasis, Chemoresistance and the Roles of Circulating Tumor Cells. Front Pharmacol 2020; 11:135. [PMID: 32174835 PMCID: PMC7056698 DOI: 10.3389/fphar.2020.00135] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Accepted: 01/31/2020] [Indexed: 12/13/2022] Open
Abstract
Colorectal cancer (CRC) is among the most common cancer worldwide, a challenge for research, and a model for studying the molecular mechanisms involved in its development. Previously, bulk transcriptomics analyses were utilized to classify CRC based on its distinct molecular and clinicopathological features for prognosis and diagnosis of patients. The introduction of single-cell transcriptomics completely turned the table by enabling the examination of the expression levels of individual cancer cell within a single tumor. In this review, we highlighted the importance of these single-cell transcriptomics analyses as well as suggesting circulating tumor cells (CTCs) as the main focus of single-cell RNA sequencing. Characterization of these cells might reveal the intratumoral heterogeneity present in CRC while providing critical insights into cancer metastasis. To summarize, we believed the analysis of gene expression patterns of CTC from CRC at single-cell resolution holds the potential to provide key information for identification of prognostic and diagnostic markers as well as the development of precise and personalized cancer treatment.
Collapse
Affiliation(s)
- Francis Yew Fu Tieng
- UKM Medical Molecular Biology Institute (UMBI), Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Rashidah Baharudin
- UKM Medical Molecular Biology Institute (UMBI), Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Nadiah Abu
- UKM Medical Molecular Biology Institute (UMBI), Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Ryia-Illani Mohd Yunos
- UKM Medical Molecular Biology Institute (UMBI), Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Learn-Han Lee
- Novel Bacteria and Drug Discovery Research Group, Microbiome and Bioresource Research Strength, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Subang Jaya, Malaysia
| | - Nurul-Syakima Ab Mutalib
- UKM Medical Molecular Biology Institute (UMBI), Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| |
Collapse
|
3
|
Genome-Wide Small RNA Sequencing Identifies MicroRNAs Deregulated in Non-Small Cell Lung Carcinoma Harboring Gain-of-Function Mutant p53. Genes (Basel) 2019; 10:genes10110852. [PMID: 31661871 PMCID: PMC6895929 DOI: 10.3390/genes10110852] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2019] [Revised: 10/11/2019] [Accepted: 10/12/2019] [Indexed: 12/17/2022] Open
Abstract
Mutations in the TP53 gene are one of the most frequent events in cancers. Certain missense mutant p53 proteins gain oncogenic functions (gain-of-functions) and drive tumorigenesis. Apart from the coding genes, a few non-coding microRNAs (miRNAs) are implicated in mediating mutant p53-driven cancer phenotypes. Here, we identified miRNAs in mutant p53R273H bearing non-small cell lung carcinoma (NSCLC) cells while using small RNA deep sequencing. Differentially regulated miRNAs were validated in the TCGA lung adenocarcinoma patients with p53 mutations and, subsequently, we identified specific miRNA signatures that are associated with lymph node metastasis and poor survival of the patients. Pathway analyses with integrated miRNA-mRNA expressions further revealed potential regulatory molecular networks in mutant p53 cancer cells. A possible contribution of putative mutant p53-regulated miRNAs in epithelial-to-mesenchymal transition (EMT) is also predicted. Most importantly, we identified a novel miRNA from the unmapped sequencing reads through a systematic computational approach. The newly identified miRNA promotes proliferation, colony-forming ability, and migration of NSCLC cells. Overall, the present study provides an altered miRNA expression profile that might be useful in biomarker discovery for non-small cell lung cancers with TP53 mutations and discovers a hitherto unknown miRNA with oncogenic potential.
Collapse
|
4
|
Purine derivatives with heterocyclic moieties and related analogs as new antitumor agents. Future Med Chem 2019; 11:83-95. [PMID: 30644318 DOI: 10.4155/fmc-2018-0291] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
AIM Identification of new antiproliferative compounds. METHODOLOGY Four series of compounds were synthesized by the Mitsunobu reaction. Their antiproliferative activity was studied against several cancer cells and a noncancerous fibroblast cell line. Their apoptotic activity was analyzed using a caspase 3/7 fluorescence assay. RESULTS & CONCLUSION 9-alkylated-6-halogenated and 2,6-dihalogenated purines show remarkable inhibition of tumor cell proliferation, with the dichloro derivatives being the most potent of all the series. The most promising compound, tetrahydroquinoline 4c, exhibits significant antiproliferative activity against the cancer cells tested, while displaying a 19-fold lower potency against noncancerous fibroblasts, a key feature that indicates potential selectivity against cancer cells. This compound produces a high percentage of apoptosis (58%) after 24 h treatment in human breast cancer MCF-7 cells.
Collapse
|
5
|
Wang B, Dan J, Li H, Hou J, Shi M, Sanjay KS, Chang JT, Luo Y. The transcription and expression profile of p53
N236S
mutant reveals new aspects of gain of function for mutant p53. FEBS Lett 2018; 592:3183-3197. [DOI: 10.1002/1873-3468.13223] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Revised: 07/26/2018] [Accepted: 08/10/2018] [Indexed: 12/26/2022]
Affiliation(s)
- Boyuan Wang
- Lab of Molecular Genetics of Aging & Tumor, Medical School Kunming University of Science & Technology Chenggong County, Kunming China
- School of Physical Education Yuxi Normal University Hongta District, Yuxi China
| | - Juhua Dan
- Lab of Molecular Genetics of Aging & Tumor, Medical School Kunming University of Science & Technology Chenggong County, Kunming China
| | - Haili Li
- Lab of Molecular Genetics of Aging & Tumor, Medical School Kunming University of Science & Technology Chenggong County, Kunming China
| | - Jing Hou
- Lab of Molecular Genetics of Aging & Tumor, Medical School Kunming University of Science & Technology Chenggong County, Kunming China
| | - Mingling Shi
- Lab of Molecular Genetics of Aging & Tumor, Medical School Kunming University of Science & Technology Chenggong County, Kunming China
| | - Kumar Singh Sanjay
- Department of Cancer Systems Imaging MD Anderson Cancer Center Houston TX USA
| | - Jeffrey T. Chang
- Department of Integrative Biology and Pharmacology University of Texas Health Science Center at Houston Houston TX USA
| | - Ying Luo
- Lab of Molecular Genetics of Aging & Tumor, Medical School Kunming University of Science & Technology Chenggong County, Kunming China
| |
Collapse
|
6
|
Abstract
Omics technologies have been developed in recent decades and applied to different subjects, although the greatest advancements have been achieved in human biology and disease. Genome sequencing and the exploration of its coding and noncoding regions are rapidly yielding meaningful answers to diverse questions, relating genome information to protein activity to environmental changes. In the past, marine mammal genetic and transcriptional studies have been restricted due to the lack of reference genomes. But the advance of high-throughput sequencing is revolutionizing the life sciences technologies. As long-lived organisms, at the top of the food chain, marine mammals play an important role in marine ecosystems and while their protected status is in favor of conservation of the species, it also complicates the researcher's approach to traditional measurements of health. Omics data generated by high-throughput technologies will represent an important key for improving the scientific basis for understanding both marine mammal and environment health.
Collapse
|
7
|
Park C, Lee JS. Comparison of Results between Cytogenetic Technique and Molecular Genetic Technique in Colorectal Carcinoma Patients. KOREAN JOURNAL OF CLINICAL LABORATORY SCIENCE 2017. [DOI: 10.15324/kjcls.2017.49.3.285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Affiliation(s)
- Cheolin Park
- Department of Biomedical Laboratory Science, Daegu Health College, Daegu, Korea
| | - Jae Sik Lee
- Department of Clinical Laboratory Science, Hyejeon College, Hongseong, Korea
| |
Collapse
|
8
|
Datta A, Ghatak D, Das S, Banerjee T, Paul A, Butti R, Gorain M, Ghuwalewala S, Roychowdhury A, Alam SK, Das P, Chatterjee R, Dasgupta M, Panda CK, Kundu GC, Roychoudhury S. p53 gain-of-function mutations increase Cdc7-dependent replication initiation. EMBO Rep 2017; 18:2030-2050. [PMID: 28887320 DOI: 10.15252/embr.201643347] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Revised: 08/04/2017] [Accepted: 08/09/2017] [Indexed: 12/31/2022] Open
Abstract
Cancer-associated p53 missense mutants confer gain of function (GOF) and promote tumorigenesis by regulating crucial signaling pathways. However, the role of GOF mutant p53 in regulating DNA replication, a commonly altered pathway in cancer, is less explored. Here, we show that enhanced Cdc7-dependent replication initiation enables mutant p53 to confer oncogenic phenotypes. We demonstrate that mutant p53 cooperates with the oncogenic transcription factor Myb in vivo and transactivates Cdc7 in cancer cells. Moreover, mutant p53 cells exhibit enhanced levels of Dbf4, promoting the activity of Cdc7/Dbf4 complex. Chromatin enrichment of replication initiation factors and subsequent increase in origin firing confirm increased Cdc7-dependent replication initiation in mutant p53 cells. Further, knockdown of CDC7 significantly abrogates mutant p53-driven cancer phenotypes in vitro and in vivo Importantly, high CDC7 expression significantly correlates with p53 mutational status and predicts poor clinical outcome in lung adenocarcinoma patients. Collectively, this study highlights a novel functional interaction between mutant p53 and the DNA replication pathway in cancer cells. We propose that increased Cdc7-dependent replication initiation is a hallmark of p53 gain-of-function mutations.
Collapse
Affiliation(s)
- Arindam Datta
- Cancer Biology and Inflammatory Disorder Division, CSIR-Indian Institute of Chemical Biology, Kolkata, India
| | - Dishari Ghatak
- Cancer Biology and Inflammatory Disorder Division, CSIR-Indian Institute of Chemical Biology, Kolkata, India
| | - Sumit Das
- Laboratory of Tumor Biology, Angiogenesis and Nanomedicine Research, National Centre for Cell Science (NCCS), Pune, India
| | - Taraswi Banerjee
- Laboratory of Molecular Gerontology, National Institute on Aging, NIH Biomedical Research Center, NIH, Baltimore, MD, USA
| | - Anindita Paul
- Department of Biochemistry, University of Calcutta, Kolkata, India
| | - Ramesh Butti
- Laboratory of Tumor Biology, Angiogenesis and Nanomedicine Research, National Centre for Cell Science (NCCS), Pune, India
| | - Mahadeo Gorain
- Laboratory of Tumor Biology, Angiogenesis and Nanomedicine Research, National Centre for Cell Science (NCCS), Pune, India
| | - Sangeeta Ghuwalewala
- Cancer Biology and Inflammatory Disorder Division, CSIR-Indian Institute of Chemical Biology, Kolkata, India
| | - Anirban Roychowdhury
- Department of Oncogene Regulation, Chittaranjan National Cancer Institute, Kolkata, India
| | - Sk Kayum Alam
- Cancer Biology and Inflammatory Disorder Division, CSIR-Indian Institute of Chemical Biology, Kolkata, India
| | - Pijush Das
- Cancer Biology and Inflammatory Disorder Division, CSIR-Indian Institute of Chemical Biology, Kolkata, India
| | | | | | - Chinmay Kumar Panda
- Department of Oncogene Regulation, Chittaranjan National Cancer Institute, Kolkata, India
| | - Gopal C Kundu
- Laboratory of Tumor Biology, Angiogenesis and Nanomedicine Research, National Centre for Cell Science (NCCS), Pune, India
| | - Susanta Roychoudhury
- Cancer Biology and Inflammatory Disorder Division, CSIR-Indian Institute of Chemical Biology, Kolkata, India .,Saroj Gupta Cancer Centre and Research Institute, Kolkata, India
| |
Collapse
|
9
|
Zhang Y, Hu Y, Wang JL, Yao H, Wang H, Liang L, Li C, Shi H, Chen Y, Fang JY, Xu J. Proteomic identification of ERP29 as a key chemoresistant factor activated by the aggregating p53 mutant Arg282Trp. Oncogene 2017; 36:5473-5483. [DOI: 10.1038/onc.2017.152] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2016] [Revised: 03/12/2017] [Accepted: 04/14/2017] [Indexed: 12/28/2022]
|