1
|
Portillo JC, Yu J, Hansen S, Kern TS, Subauste MC, Subauste CS. A cell-penetrating CD40-TRAF2,3 blocking peptide diminishes inflammation and neuronal loss after ischemia/reperfusion. FASEB J 2021; 35:e21412. [PMID: 33675257 PMCID: PMC8101361 DOI: 10.1096/fj.201903203rr] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Revised: 01/13/2021] [Accepted: 01/20/2021] [Indexed: 12/12/2022]
Abstract
While the administration of anti-CD154 mAbs in mice validated the CD40-CD154 pathway as a target against inflammatory disorders, this approach caused thromboembolism in humans (unrelated to CD40 inhibition) and is expected to predispose to opportunistic infections. There is a need for alternative approaches to inhibit CD40 that avoid these complications. CD40 signals through TRAF2,3 and TRAF6-binding sites. Given that CD40-TRAF6 is the pathway that stimulates responses key for cell-mediated immunity against opportunistic pathogens, we examined the effects of pharmacologic inhibition of CD40-TRAF2,3 signaling. We used a model of ischemia/reperfusion (I/R)-induced retinopathy, a CD40-driven inflammatory disorder. Intravitreal administration of a cell-penetrating CD40-TRAF2,3 blocking peptide impaired ICAM-1 upregulation in retinal endothelial cells and CXCL1 upregulation in endothelial and Müller cells. The peptide reduced leukocyte infiltration, upregulation of NOS2/COX-2/TNF-α/IL-1β, and ameliorated neuronal loss, effects that mimic those observed after I/R in Cd40-/- mice. While a cell-penetrating CD40-TRAF6 blocking peptide also diminished I/R-induced inflammation, this peptide (but not the CD40-TRAF2,3 blocking peptide) impaired control of the opportunistic pathogen Toxoplasma gondii in the retina. Thus, inhibition of the CD40-TRAF2,3 pathway is a novel and potent approach to reduce CD40-induced inflammation, while likely diminishing the risk of opportunistic infections that would otherwise accompany CD40 inhibition.
Collapse
Affiliation(s)
- Jose‐Andres C. Portillo
- Division of Infectious Diseases and HIV Medicine, Department of MedicineCase Western Reserve University School of MedicineClevelandOHUSA
| | - Jin‐Sang Yu
- Division of Infectious Diseases and HIV Medicine, Department of MedicineCase Western Reserve University School of MedicineClevelandOHUSA
| | - Samuel Hansen
- Division of Infectious Diseases and HIV Medicine, Department of MedicineCase Western Reserve University School of MedicineClevelandOHUSA
| | - Timothy S. Kern
- Department of PharmacologyCase Western Reserve University School of MedicineClevelandOHUSA
| | - M. Cecilia Subauste
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of MedicineCase Western Reserve UniversityClevelandOHUSA
- Division of Pulmonary, Critical Care, Allergy and Sleep MedicineVeterans Administration Medical CenterClevelandOHUSA
| | - Carlos S. Subauste
- Division of Infectious Diseases and HIV Medicine, Department of MedicineCase Western Reserve University School of MedicineClevelandOHUSA
- Department of PathologyCase Western Reserve University School of MedicineClevelandOHUSA
| |
Collapse
|
2
|
The Spectrum of Design Solutions for Improving the Activity-Selectivity Product of Peptide Antibiotics against Multidrug-Resistant Bacteria and Prostate Cancer PC-3 Cells. Molecules 2020; 25:molecules25153526. [PMID: 32752241 PMCID: PMC7436000 DOI: 10.3390/molecules25153526] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 07/28/2020] [Accepted: 07/30/2020] [Indexed: 12/24/2022] Open
Abstract
The link between the antimicrobial and anticancer activity of peptides has long been studied, and the number of peptides identified with both activities has recently increased considerably. In this work, we hypothesized that designed peptides with a wide spectrum of selective antimicrobial activity will also have anticancer activity, and tested this hypothesis with newly designed peptides. The spectrum of peptides, used as partial or full design templates, ranged from cell-penetrating peptides and putative bacteriocin to those from the simplest animals (placozoans) and the Chordata phylum (anurans). We applied custom computational tools to predict amino acid substitutions, conferring the increased product of bacteriostatic activity and selectivity. Experiments confirmed that better overall performance was achieved with respect to that of initial templates. Nine of our synthesized helical peptides had excellent bactericidal activity against both standard and multidrug-resistant bacteria. These peptides were then compared to a known anticancer peptide polybia-MP1, for their ability to kill prostate cancer cells and dermal primary fibroblasts. The therapeutic index was higher for seven of our peptides, and anticancer activity stronger for all of them. In conclusion, the peptides that we designed for selective antimicrobial activity also have promising potential for anticancer applications.
Collapse
|
3
|
Shmendel E, Kabilova T, Morozova N, Zenkova M, Maslov M. Effects of spacers within a series of novel folate-containing lipoconjugates on the targeted delivery of nucleic acids. J Drug Deliv Sci Technol 2020. [DOI: 10.1016/j.jddst.2020.101609] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
4
|
Kabilova TO, Shmendel EV, Gladkikh DV, Chernolovskaya EL, Markov OV, Morozova NG, Maslov MA, Zenkova MA. Targeted delivery of nucleic acids into xenograft tumors mediated by novel folate-equipped liposomes. Eur J Pharm Biopharm 2017; 123:59-70. [PMID: 29162508 DOI: 10.1016/j.ejpb.2017.11.010] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Revised: 11/08/2017] [Accepted: 11/15/2017] [Indexed: 12/21/2022]
Abstract
Folate receptors (FR) are cellular markers highly expressed in various cancer cells. Here, we report on the synthesis of a novel folate-containing lipoconjugate (FC) built of 1,2-di-O-ditetradecyl-rac-glycerol and folic acid connected via a PEG spacer, and the evaluation of the FC as a targeting component of liposomal formulations for nucleic acid (NA) delivery into FR expressing tumor cells. FR-targeting liposomes, based on polycationic lipid 1,26-bis(cholest-5-en-3β-yloxycarbonylamino)-7,11,16,20-tetraazahexacosan tetrahydrochloride (2X3), lipid helper dioleoylphosphatidylethanolamine (DOPE) and novel FC, formed small compact particles in solution with diameters of 60 ± 22 nm, and were not toxic to cells. Complexes of NAs with the liposomes were prepared at various nitrogen to phosphate ratios (N/P) to optimize liposome/cell interactions. We showed that FR-mediated delivery of different nucleic acids mediated by 2X3-DOPE/FC liposomes occurs in vitro at low N/P (1/1 and 2/1); under these conditions FC-containing liposomes display 3-4-fold higher transfection efficiency in comparison with conventional formulation. Lipoplexes formed at N/P 1/1 by targeted liposomes and cargo (Cy7-labeled siRNA targeting MDR1 mRNA) in vivo efficiently accumulate in tumor (∼15-18% of total amount), and kidneys (71%), and were retained there for more than 24 h, causing efficient downregulation of p-glycoprotein expression (to 40% of control) in tumors. Thus, FC containing liposomes provide effective targeted delivery of nucleic acids into tumor cells in vitro and in xenograft tumors in vivo.
Collapse
Affiliation(s)
- Tatyana O Kabilova
- Institute of Chemical Biology and Fundamental Medicine SB RAS, Lavrentieva ave. 8, Novosibirsk 630090, Russia
| | - Elena V Shmendel
- Institute of Fine Chemical Technologies, Moscow Technological University, Vernadskogo ave. 86, Moscow 119571, Russia
| | - Daniil V Gladkikh
- Institute of Chemical Biology and Fundamental Medicine SB RAS, Lavrentieva ave. 8, Novosibirsk 630090, Russia
| | - Elena L Chernolovskaya
- Institute of Chemical Biology and Fundamental Medicine SB RAS, Lavrentieva ave. 8, Novosibirsk 630090, Russia
| | - Oleg V Markov
- Institute of Chemical Biology and Fundamental Medicine SB RAS, Lavrentieva ave. 8, Novosibirsk 630090, Russia
| | - Nina G Morozova
- Institute of Fine Chemical Technologies, Moscow Technological University, Vernadskogo ave. 86, Moscow 119571, Russia
| | - Mikhail A Maslov
- Institute of Fine Chemical Technologies, Moscow Technological University, Vernadskogo ave. 86, Moscow 119571, Russia
| | - Marina A Zenkova
- Institute of Chemical Biology and Fundamental Medicine SB RAS, Lavrentieva ave. 8, Novosibirsk 630090, Russia.
| |
Collapse
|
5
|
Portillo JAC, Greene JA, Schwartz I, Subauste MC, Subauste CS. Blockade of CD40-TRAF2,3 or CD40-TRAF6 is sufficient to inhibit pro-inflammatory responses in non-haematopoietic cells. Immunology 2015; 144:21-33. [PMID: 25051892 DOI: 10.1111/imm.12361] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2014] [Revised: 06/11/2014] [Accepted: 06/11/2014] [Indexed: 01/12/2023] Open
Abstract
Inhibition of the CD40-CD154 pathway controls inflammatory disorders. Unfortunately, administration of anti-CD154 monoclonal antibodies causes thromboembolism. Blockade of signalling downstream of CD40 may represent an approach to treat CD40-driven inflammatory disorders. Blocking tumour necrosis factor receptor-associated factor 6 (TRAF6) signalling downstream of CD40 in MHC II(+) cells diminishes inflammation. However, CD40-TRAF6 blockade may cause immunosuppression. We examined the role of CD40-TRAF2,3 and CD40-TRAF6 signalling in the development of pro-inflammatory responses in human non-haematopoietic and monocytic cells. Human aortic endothelial cells, aortic smooth muscle cells, renal proximal tubule epithelial cells, renal mesangial cells and monocytic cells were transduced with retroviral vectors that encode wild-type CD40, CD40 with a mutation that prevents TRAF2,3 recruitment (ΔT2,3), TRAF6 recruitment (ΔT6) or both TRAF2,3 plus TRAF6 recruitment (ΔT2,3,6). Non-haematopoietic cells that expressed CD40 ΔT2,3 exhibited marked inhibition in CD154-induced up-regulation of vascular cell adhesion molecule 1, intercellular adhesion molecule 1 (ICAM-1), monocyte chemotactic protein 1 (MCP-1), tissue factor and matrix metalloproteinase 9. Similar results were obtained with cells that expressed CD40 ΔT6. Although both mutations impaired ICAM-1 up-regulation in monocytic cells, only expression of CD40 ΔT6 reduced MCP-1 and tissue factor up-regulation in these cells. Treatment of endothelial and smooth muscle cells with cell-permeable peptides that block CD40-TRAF2,3 or CD40-TRAF6 signalling impaired pro-inflammatory responses. In contrast, while the CD40-TRAF2,3 blocking peptide did not reduce CD154-induced dendritic cell maturation, the CD40-TRAF6 blocking peptide impaired this response. Hence, preventing CD40-TRAF2,3 or CD40-TRAF6 interaction inhibits pro-inflammatory responses in human non-haematopoietic cells. In contrast to inhibition of CD40-TRAF6 signalling, inhibition of CD40-TRAF2,3 signalling did not impair dendritic cell maturation. Blocking CD40-TRAF2,3 signalling may control CD40-CD154-dependent inflammatory disorders.
Collapse
Affiliation(s)
- Jose-Andres C Portillo
- Division of Infectious Diseases and HIV Medicine, Department of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | | | | | | | | |
Collapse
|
6
|
Bharathikumar VM, Barreto K, Decoteau JF, Geyer CR. Allosteric lariat peptide inhibitors of Abl kinase. Chembiochem 2013; 14:2119-25. [PMID: 24030821 DOI: 10.1002/cbic.201300253] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2013] [Indexed: 11/06/2022]
Abstract
Going against tradition: although most kinase inhibitors are ATP competitive, lariat peptides inhibit Abl kinase activity in an ATP-uncompetitive manner. Further, lariat peptides discriminated Src family kinases, and recognize the allosteric region that lies adjacent to the ATP binding pocket in the Abl kinase catalytic cleft.
Collapse
Affiliation(s)
- V M Bharathikumar
- Department of Biochemistry, University of Saskatchewan, 107 Wiggins Road, Saskatoon, SK S7N 5E5 (Canada)
| | | | | | | |
Collapse
|
7
|
Transducible form of p47phox and p67phox compensate for defective NADPH oxidase activity in neutrophils of patients with chronic granulomatous disease. Biochem Biophys Res Commun 2011; 417:162-8. [PMID: 22138397 DOI: 10.1016/j.bbrc.2011.11.077] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2011] [Accepted: 11/16/2011] [Indexed: 12/27/2022]
Abstract
Protein delivery to primary cells by protein transduction domain (PTD) serves as a novel measure for manipulation of the cells for biological study and for the treatment of various human conditions. Although the method has been employed to modulate cellular function in vitro, only limited reports are available on its application in the replacement of deficient signaling molecules into primary cells. We examined the potential of recombinant proteins to compensate for defective cytosolic components of the NADPH oxidase complex in chronic granulomatous disease (CGD) neutrophils in both p47(phox) and p67(phox) deficiency. The p47(phox) or p67(phox) protein linked to Hph-1 PTD was effectively expressed in soluble form and transduced into human neutrophils efficiently without eliciting unwanted signal transduction or apoptosis. The delivered protein was stable for more than 24h, expressed in the cytoplasm, translocated to the membrane fraction upon activation, and, most importantly able to restored reactive oxygen species (ROS) production. Although research on human primary neutrophils using the protein delivery system is still limited, our data show that the protein transduction approach for neutrophils may be applicable to the control of local infections in CGD patients by direct delivery of the protein product.
Collapse
|
8
|
Seo PJ, Hong SY, Kim SG, Park CM. Competitive inhibition of transcription factors by small interfering peptides. TRENDS IN PLANT SCIENCE 2011; 16:541-9. [PMID: 21723179 DOI: 10.1016/j.tplants.2011.06.001] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2011] [Revised: 06/01/2011] [Accepted: 06/06/2011] [Indexed: 05/04/2023]
Abstract
Combinatorial assortment by dynamic dimer formation diversifies gene transcriptional specificities of transcription factors. A similar but biochemically distinct mechanism is competitive inhibition in which small proteins act as negative regulators by competitively forming nonfunctional heterodimers with specific transcription factors. The most extensively studied is the negative regulation of auxin response factors by AUXIN/INDOLE-3-ACETIC ACID repressors. Similarly, Arabidopsis thaliana (Arabidopsis) little zipper and mini finger proteins act as competitive inhibitors of target transcription factors. Competitive inhibitors are also generated by alternative splicing and controlled proteolytic processing. Because they provide a way of attenuating transcription factors we propose to call them small interfering peptides (siPEPs). The siPEP-mediated strategy could be applied to deactivate specific transcription factors in crop plants.
Collapse
Affiliation(s)
- Pil Joon Seo
- Department of Chemistry, Seoul National University, Seoul 151-742, Korea
| | | | | | | |
Collapse
|
9
|
Chiaravalli J, Fontan E, Fsihi H, Coic YM, Baleux F, Véron M, Agou F. Direct inhibition of NF-κB activation by peptide targeting the NOA ubiquitin binding domain of NEMO. Biochem Pharmacol 2011; 82:1163-74. [PMID: 21803029 DOI: 10.1016/j.bcp.2011.07.083] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2011] [Revised: 07/11/2011] [Accepted: 07/15/2011] [Indexed: 10/18/2022]
Abstract
Aberrant and constitutive NF-κB activation are frequently reported in numerous tumor types, making its inhibition an attractive target for the treatment of certain cancers. NEMO (NF-κB essential modulator) is the crucial component of the canonical NF-κB pathway that mediates IκB kinase (IKK) complex activation. IKK activation resides in the ability of the C-terminal domain of NEMO to properly dimerize and interact with linear and K63-linked polyubiquitin chains. Here, we have identified a new NEMO peptide inhibitor, termed UBI (ubiquitin binding inhibitor) that derives from the NOA/NUB/UBAN ubiquitin binding site located in the CC2-LZ domain of NEMO. UBI specifically inhibits the NF-κB pathway at the IKK level in different cell types stimulated by a variety of NF-κB signals. Circular dichroïsm and fluorescence studies showed that UBI exhibits an increased α-helix character and direct, good-affinity binding to the NOA-LZ region of NEMO. We also showed that UBI targets NEMO in cells but its mode of inhibition is completely different from the previously reported LZ peptide (herein denoted NOA-LZ). UBI does not promote dissociation of NEMO subunits in cells but impairs the interaction between the NOA UBD of NEMO and polyubiquitin chains. Importantly, we showed that UBI efficiently competes with the in vitro binding of K63-linked chains, but not with linear chains. The identification of this new NEMO inhibitor emphasizes the important contribution of K63-linked chains for IKK activation in NF-κB signaling and would provide a new tool for studying the complex role of NF-κB in inflammation and cancer.
Collapse
Affiliation(s)
- Jeanne Chiaravalli
- Institut Pasteur, Unité de Biochimie Structurale et Cellulaire, CNRS, URA 2185, France
| | | | | | | | | | | | | |
Collapse
|
10
|
Law JH, Li Y, To K, Wang M, Astanehe A, Lambie K, Dhillon J, Jones SJM, Gleave ME, Eaves CJ, Dunn SE. Molecular decoy to the Y-box binding protein-1 suppresses the growth of breast and prostate cancer cells whilst sparing normal cell viability. PLoS One 2010; 5. [PMID: 20844753 PMCID: PMC2937023 DOI: 10.1371/journal.pone.0012661] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2010] [Accepted: 08/18/2010] [Indexed: 01/25/2023] Open
Abstract
The Y-box binding protein-1 (YB-1) is an oncogenic transcription/translation factor that is activated by phosphorylation at S102 whereby it induces the expression of growth promoting genes such as EGFR and HER-2. We recently illustrated by an in vitro kinase assay that a novel peptide to YB-1 was highly phosphorylated by the serine/threonine p90 S6 kinases RSK-1 and RSK-2, and to a lesser degree PKCα and AKT. Herein, we sought to develop this decoy cell permeable peptide (CPP) as a cancer therapeutic. This 9-mer was designed as an interference peptide that would prevent endogenous YB-1S102 phosphorylation based on molecular docking. In cancer cells, the CPP blocked P-YB-1S102 and down-regulated both HER-2 and EGFR transcript level and protein expression. Further, the CPP prevented YB-1 from binding to the EGFR promoter in a gel shift assay. Notably, the growth of breast (SUM149, MDA-MB-453, AU565) and prostate (PC3, LNCap) cancer cells was inhibited by ∼90% with the CPP. Further, treatment with this peptide enhanced sensitivity and overcame resistance to trastuzumab in cells expressing amplified HER-2. By contrast, the CPP had no inhibitory effect on the growth of normal immortalized breast epithelial (184htert) cells, primary breast epithelial cells, nor did it inhibit differentiation of hematopoietic progenitors. These data collectively suggest that the CPP is a novel approach to suppressing the growth of cancer cells while sparing normal cells and thereby establishes a proof-of-concept that blocking YB-1 activation is a new course of cancer therapeutics.
Collapse
Affiliation(s)
- Jennifer H. Law
- Laboratory for Oncogenomic Research, Child and Family Research Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Yvonne Li
- Genome Sciences Centre, BC Cancer Agency, Vancouver, British Columbia, Canada
| | - Karen To
- Laboratory for Oncogenomic Research, Child and Family Research Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Michelle Wang
- Laboratory for Oncogenomic Research, Child and Family Research Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Arezoo Astanehe
- Laboratory for Oncogenomic Research, Child and Family Research Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Karen Lambie
- Terry Fox Laboratories, BC Cancer Agency, University of British Columbia, Vancouver, British Columbia, Canada
| | - Jaspreet Dhillon
- Laboratory for Oncogenomic Research, Child and Family Research Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Steven J. M. Jones
- Genome Sciences Centre, BC Cancer Agency, Vancouver, British Columbia, Canada
| | - Martin E. Gleave
- The Prostate Centre, Vancouver General Hospital, University of British Columbia, Vancouver, British Columbia, Canada
| | - Connie J. Eaves
- Terry Fox Laboratories, BC Cancer Agency, University of British Columbia, Vancouver, British Columbia, Canada
| | - Sandra E. Dunn
- Laboratory for Oncogenomic Research, Child and Family Research Institute, University of British Columbia, Vancouver, British Columbia, Canada
- * E-mail:
| |
Collapse
|
11
|
Taniguchi S, Fujimori M, Sasaki T, Tsutsui H, Shimatani Y, Seki K, Amano J. Targeting solid tumors with non-pathogenic obligate anaerobic bacteria. Cancer Sci 2010; 101:1925-32. [PMID: 20579076 PMCID: PMC11158574 DOI: 10.1111/j.1349-7006.2010.01628.x] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Molecular-targeting drugs with fewer severe adverse effects are attracting great attention as the next wave of cancer treatment. There exist, however, populations of cancer cells resistant to these drugs that stem from the instability of tumor cells and/or the existence of cancer stem cells, and thus specific toxicity is required to destroy them. If such selectivity is not available, these targets may be sought out not by the cancer cell types themselves, but rather in their adjacent cancer microenvironments by means of hypoxia, low pH, and so on. The anaerobic conditions present in malignant tumor tissues have previously been regarded as a source of resistance in cancer cells against conventional therapy. However, there now appears to be a way to make use of these limiting factors as a selective target. In this review, we will refer to several trials, including our own, to direct attention to the utilizable anaerobic conditions present in malignant tumor tissues and the use of bacteria as carriers to target them. Specifically, we have been developing a method to attack solid cancers using the non-pathogenic obligate anaerobic bacterium Bifidobacterium longum as a vehicle to selectively recognize and target the anaerobic conditions in solid cancer tissues. We will also discuss the existence of low oxygen pressure in tumor masses in spite of generally enhanced angiogenesis, overview current cancer therapies, especially the history and present situation of bacterial utility to treat solid tumors, and discuss the rationality and future possibilities of this novel mode of cancer treatment.
Collapse
Affiliation(s)
- Shun'ichiro Taniguchi
- Department of Molecular Oncology, Institute on Aging and Adaptation, Shinshu University Graduate School of Medicine, Tokyo, Japan.
| | | | | | | | | | | | | |
Collapse
|
12
|
Evolution: a guide to perturb protein function and networks. Curr Opin Struct Biol 2010; 20:351-9. [PMID: 20444593 DOI: 10.1016/j.sbi.2010.04.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2010] [Accepted: 04/08/2010] [Indexed: 12/11/2022]
Abstract
Protein interactions give rise to networks that control cell fate in health and disease; selective means to probe these interactions are therefore of wide interest. We discuss here Evolutionary Tracing (ET), a comparative method to identify protein functional sites and to guide experiments that selectively block, recode, or mimic their amino acid determinants. These studies suggest, in principle, a scalable approach to perturb individual links in protein networks.
Collapse
|
13
|
Abstract
Although the majority of children with acute lymphoblastic leukemia (ALL) can be cured with combination chemotherapy, the challenge remains to salvage patients with resistant disease and to reduce treatment related toxicity. To meet this challenge, it will be essential to incorporate new agents targeting the biological Achilles Heels of this cancer more rapidly into currently available treatment regimen. Here we review the principles of current ALL therapy, recent advances in understanding ALL biology and discuss a selection of promising areas for drug development that may take advantage of the underlying leukemia biology. We focus particularly on strategies to interfere with common effector mechanisms that can be trigged by different individual oncogenic lesions and on new agents from drug development programs in adult oncology, as such agents will come with better chances for sustainable commercial development.
Collapse
|
14
|
Moosmeier MA, Bulkescher J, Reed J, Schnölzer M, Heid H, Hoppe-Seyler K, Hoppe-Seyler F. Transtactin: a universal transmembrane delivery system for Strep-tag II-fused cargos. J Cell Mol Med 2009; 14:1935-45. [PMID: 19602053 PMCID: PMC3823275 DOI: 10.1111/j.1582-4934.2009.00846.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
The delivery of molecules into cells poses a critical problem that has to be solved for the development of diagnostic tools and therapeutic agents acting on intracellular targets. Cargos which by themselves cannot penetrate cellular membranes due to their biophysical properties can achieve cell membrane permeability by fusion to protein transduction domains (PTDs). Here, we engineered a universal delivery system based on PTD-fused Strep-Tactin, which we named Transtactin. Biochemical characterization of Transtactin variants bearing different PTDs indicated high thermal stabilities and robust secondary structures. Internalization studies demonstrated that Transtactins facilitated simple and safe transport of Strep-tag II-linked small molecules, peptides and multicomponent complexes, or biotinylated proteins into cultured human cells. Transtactin-introduced cargos were functionally active, as shown for horseradish peroxidase serving as a model protein. Our results demonstrate that Transtactin provides a universal and efficient delivery system for Strep-tag II-fused cargos.
Collapse
Affiliation(s)
- Markus A Moosmeier
- Molecular Therapy of Virus-Associated Cancers, German Cancer Research Center, Heidelberg, Germany.
| | | | | | | | | | | | | |
Collapse
|
15
|
Design of peptide inhibitors for the importin alpha/beta nuclear import pathway by activity-based profiling. ACTA ACUST UNITED AC 2008; 15:940-9. [PMID: 18804031 DOI: 10.1016/j.chembiol.2008.07.019] [Citation(s) in RCA: 172] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2008] [Revised: 07/07/2008] [Accepted: 07/21/2008] [Indexed: 02/07/2023]
Abstract
Despite the current availability of selective inhibitors for the classical nuclear export pathway, no inhibitor for the classical nuclear import pathway has been developed. Here we describe the development of specific inhibitors for the importin alpha/beta pathway using a novel method of peptide inhibitor design. An activity-based profile was created via systematic mutational analysis of a peptide template of a nuclear localization signal. An additivity-based design using the activity-based profile generated two peptides with affinities for importin alpha that were approximately 5 million times higher than that of the starting template sequence. The high affinity of these peptides resulted in specific inhibition of the importin alpha/beta pathway. These peptide inhibitors provide a useful tool for studying nuclear import events. Moreover, our inhibitor design method should enable the development of potent inhibitors from a peptide seed.
Collapse
|
16
|
Parekh S, Privé G, Melnick A. Therapeutic targeting of the BCL6 oncogene for diffuse large B-cell lymphomas. Leuk Lymphoma 2008; 49:874-82. [PMID: 18452090 DOI: 10.1080/10428190801895345] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
BCL6 is a transcriptional repressor often expressed constitutively in diffuse large B-cell lymphomas (DLBCL) due to mutations of its genomic locus. BCL6 mediates aberrant survival, proliferation, genomic instability and differentiation blockade in DLBCL cells. The biochemical study of BCL6 mediated gene repression has provided the basis for design of agents that inhibit BCL6 and kill lymphoma cells. The repressor activity of the BCL6 BTB domain is particularly well defined from the structural standpoint. Design of inhibitors targeting BCL6 BTB domain protein interaction surfaces appears to be an effective approach, which reactivates important BCL6 target genes and readily kills DLBCL cells. Targeting other domains of BCL6 or using histone deacetylase inhibitors to overcome BCL6 mediated repression may also be useful. Recent studies in DLBCL transcriptional signatures have revealed a subset of DLBCLs that are particularly dependent on BCL6 to maintain their survival and these patients could be candidates for clinical trials of BCL6 inhibitors.
Collapse
Affiliation(s)
- Samir Parekh
- Department of Medical Oncology, Albert Einstein College of Medicine, Bronx, NY, USA
| | | | | |
Collapse
|
17
|
Pearson D, O’Donnell RT, Cerejo M, McKnight HC, Wang X, Mařik J, Lam KS, Tuscano JM. CD22-Binding Peptides Derived from Anti-CD22 Ligand Blocking Antibodies Retain the Targeting and Cell Killing Properties of the Parent Antibodies and May Serve as a Drug Delivery Vehicle. Int J Pept Res Ther 2008. [DOI: 10.1007/s10989-008-9138-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
18
|
Cerchietti LC, Polo JM, Da Silva GF, Farinha P, Shaknovich R, Gascoyne RD, Dowdy SF, Melnick A. Sequential transcription factor targeting for diffuse large B-cell lymphomas. Cancer Res 2008; 68:3361-9. [PMID: 18451163 DOI: 10.1158/0008-5472.can-07-5817] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Transcription factors play a central role in malignant transformation by activating or repressing waves of downstream target genes. Therapeutic targeting of transcription factors can reprogram cancer cells to lose their advantages in growth and survival. The BCL6 transcriptional repressor plays a central role in the pathogenesis of diffuse large B-cell lymphomas (DLBCL) and controls downstream checkpoints, including the p53 tumor suppressor gene. We report that a specific inhibitor of BCL6 called BPI can trigger a p53 response in DLBCL cells. This was partially due to induction of p53 activity and partially due to relief of direct repression by BCL6 of p53 target genes. BPI could thus induce a p53-like response even in the presence of mutant p53. Moreover, sequential BCL6 peptide inhibitors followed by p53 peptide or small-molecule activators provided a more powerful antilymphoma effect than either treatment alone by maximally restoring p53 target gene expression. Therefore, tandem targeting of the overlapping BCL6 and p53 transcriptional programs can correct aberrant survival pathways in DLBCL and might provide an effective therapeutic approach to lymphoma therapy.
Collapse
Affiliation(s)
- Leandro C Cerchietti
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Raucher D, Massodi I, Bidwell GL. Thermally targeted delivery of chemotherapeutics and anti-cancer peptides by elastin-like polypeptide. Expert Opin Drug Deliv 2008; 5:353-69. [DOI: 10.1517/17425247.5.3.353] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
20
|
Affiliation(s)
- Mark Ptashne
- Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10021, USA.
| |
Collapse
|
21
|
Stewart KM, Horton KL, Kelley SO. Cell-penetrating peptides as delivery vehicles for biology and medicine. Org Biomol Chem 2008; 6:2242-55. [DOI: 10.1039/b719950c] [Citation(s) in RCA: 316] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
22
|
Taylor DM, Tradewell ML, Minotti S, Durham HD. Characterizing the role of Hsp90 in production of heat shock proteins in motor neurons reveals a suppressive effect of wild-type Hsf1. Cell Stress Chaperones 2007; 12:151-62. [PMID: 17688194 PMCID: PMC1949336 DOI: 10.1379/csc-254r.1] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Induction of heat shock proteins (Hsps) is under investigation as treatment for neurodegenerative disorders, yet many types of neurons, including motor neurons that degenerate in amyotrophic lateral sclerosis (ALS), have a high threshold for activation of the major transcription factor mediating stress-induced Hsp upregulation, heat shock transcription factor 1 (Hsf1). Hsf1 is tightly regulated by a series of inhibitory checkpoints that include sequestration in multichaperone complexes governed by Hsp90. This study examined the role of multichaperone complexes in governing the heat shock response in motor neurons. Hsp90 inhibitors induced expression of Hsp70 and Hsp40 and transactivation of a human inducible hsp70 promoter-green fluorescent protein (GFP) reporter construct in motor neurons of dissociated spinal cord-dorsal root ganglion (DRG) cultures. On the other hand, overexpression of activator of Hsp90 adenosine triphosphatase ([ATPase 1], Aha1), which should mobilize Hsf1 by accelerating turnover of mature, adenosine triphosphate-(ATP) bound Hsp90 complexes, and death domain-associated protein (Daxx), which in cell lines has been shown to promote transcription of heat shock genes by relieving inhibition exerted by interactions between nuclear Hsp90/multichaperone complexes and trimeric Hsf1, failed to induce Hsps in the absence or presence of heat shock. These results indicate that disruption of multichaperone complexes alone is not sufficient to activate the neuronal heat shock response. Furthermore, in motor neurons, induction of Hsp70 by Hsp90-inhibiting drugs was prevented by overexpression of wild-type Hsfl, contrary to what would be expected for a classical Hsf1-mediated pathway. These results point to additional differences in regulation of hsp genes in neuronal and nonneuronal cells.
Collapse
Affiliation(s)
- David M Taylor
- Montreal Neurological Institute, McGill University, 3801 University St., Montreal, Quebec H3A 2B4, Canada
| | | | | | | |
Collapse
|
23
|
Brusic V, Marina O, Wu CJ, Reinherz EL. Proteome informatics for cancer research: from molecules to clinic. Proteomics 2007; 7:976-91. [PMID: 17370257 DOI: 10.1002/pmic.200600965] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Proteomics offers the most direct approach to understand disease and its molecular biomarkers. Biomarkers denote the biological states of tissues, cells, or body fluids that are useful for disease detection and classification. Clinical proteomics is used for early disease detection, molecular diagnosis of disease, identification and formulation of therapies, and disease monitoring and prognostics. Bioinformatics tools are essential for converting raw proteomics data into knowledge and subsequently into useful applications. These tools are used for the collection, processing, analysis, and interpretation of the vast amounts of proteomics data. Management, analysis, and interpretation of large quantities of raw and processed data require a combination of various informatics technologies such as databases, sequence comparison, predictive models, and statistical tools. We have demonstrated the utility of bioinformatics in clinical proteomics through the analysis of the cancer antigen survivin and its suitability as a target for cancer immunotherapy.
Collapse
Affiliation(s)
- Vladimir Brusic
- Cancer Vaccine Center, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA.
| | | | | | | |
Collapse
|
24
|
Jardin F, Ruminy P, Bastard C, Tilly H. The BCL6 proto-oncogene: a leading role during germinal center development and lymphomagenesis. ACTA ACUST UNITED AC 2006; 55:73-83. [PMID: 16815642 DOI: 10.1016/j.patbio.2006.04.001] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2006] [Accepted: 04/04/2006] [Indexed: 10/24/2022]
Abstract
The BCL6 proto-oncogene encodes a nuclear transcriptional repressor, with pivotal roles in germinal center (GC) formation and regulation of lymphocyte function, differentiation, and survival. BCL6 suppresses p53 in GCB-cells and its constitutive expression can protect B-cell lines from apoptosis induced by DNA damage. BCL6-mediated expression may allow GCB-cells to sustain the low levels of physiological DNA breaks related to somatic mutation (SM) and immunoglobulin class switch recombination which physiologically occur in GCB-cells. Three types of genetic events occur in the BCL6 locus and involve invariably the 5' non-coding region and include translocations, deletions and SM actively targeted to the 5' untranslated region. These acquired mutations occur independently of translocations but may be involved in the deregulation of the gene and/or translocation mechanisms. The favorable prognostic value of high levels of BCL6 gene expression in NHL seems well-established. By contrast, the relevance of SM or translocation of the gene remains unclear. However, it is likely that non-Hodgkin's lymphomas (NHL) harboring the most frequent translocation involving BCL6, i.e. t(3;14), are characterized by a common cell of origin and similar oncogenic mechanisms. Several experiments and mouse models mimicking BCL6 translocation occurring in human lymphoma have demonstrated the oncogenic role of BCL6 and constitute a rational to consider BCL6 as a new therapeutic target in NHL. BCL6 blockade can be achieved by different strategies which include siRNA, interference by specific peptides or regulation of BCL6 acetylation by pharmacological agents such as SAHA or niacinamide and would be applicable to most type of B-cell NHL.
Collapse
MESH Headings
- 5' Untranslated Regions
- Animals
- Antineoplastic Agents/pharmacology
- Apoptosis/genetics
- B-Lymphocytes/cytology
- Cell Transformation, Neoplastic/genetics
- Chromosomes, Human, Pair 14/genetics
- Chromosomes, Human, Pair 14/ultrastructure
- Chromosomes, Human, Pair 3/genetics
- Chromosomes, Human, Pair 3/ultrastructure
- DNA Damage
- DNA-Binding Proteins/antagonists & inhibitors
- DNA-Binding Proteins/genetics
- DNA-Binding Proteins/physiology
- Genes, Neoplasm
- Germinal Center/cytology
- Humans
- Immunoglobulin Class Switching/genetics
- Lymphoma, B-Cell/genetics
- Lymphoma, B-Cell/pathology
- Mice
- Mice, Transgenic
- Neoplasm Proteins/antagonists & inhibitors
- Neoplasm Proteins/genetics
- Prognosis
- Proto-Oncogene Mas
- Proto-Oncogene Proteins c-bcl-6
- Proto-Oncogenes
- Sequence Deletion
- Somatic Hypermutation, Immunoglobulin/genetics
- Translocation, Genetic
Collapse
Affiliation(s)
- Fabrice Jardin
- Département d'Hématologie Clinique, Centre Henri-Becquerel, Rouen, France.
| | | | | | | |
Collapse
|