1
|
Centromere Chromatin Dynamics at a Glance. EPIGENOMES 2022; 6:epigenomes6040039. [PMID: 36412794 PMCID: PMC9680212 DOI: 10.3390/epigenomes6040039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 10/27/2022] [Accepted: 11/01/2022] [Indexed: 11/06/2022] Open
Abstract
The centromere is a specialized DNA locus that ensures the faithful segregation of chromosomes during cell division. It does so by directing the assembly of an essential proteinaceous structure called the kinetochore. The centromere identity is primarily epigenetically defined by a nucleosome containing an H3 variant called CENP-A as well as by the interplay of several factors such as differential chromatin organization driven by CENP-A and H2A.Z, centromere-associated proteins, and post-translational modifications. At the centromere, CENP-A is not just a driving force for kinetochore assembly but also modifies the structural and dynamic properties of the centromeric chromatin, resulting in a distinctive chromatin organization. An additional level of regulation of the centromeric chromatin conformation is provided by post-translational modifications of the histones in the CENP-A nucleosomes. Further, H2A.Z is present in the regions flanking the centromere for heterochromatinization. In this review, we focus on the above-mentioned factors to describe how they contribute to the organization of the centromeric chromatin: CENP-A at the core centromere, post-translational modifications that decorate CENP-A, and the variant H2A.Z.
Collapse
|
2
|
Romanenko SA, Prokopov DY, Proskuryakova AA, Davletshina GI, Tupikin AE, Kasai F, Ferguson-Smith MA, Trifonov VA. The Cytogenetic Map of the Nile Crocodile ( Crocodylus niloticus, Crocodylidae, Reptilia) with Fluorescence In Situ Localization of Major Repetitive DNAs. Int J Mol Sci 2022; 23:13063. [PMID: 36361851 PMCID: PMC9656864 DOI: 10.3390/ijms232113063] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 10/21/2022] [Accepted: 10/24/2022] [Indexed: 01/16/2024] Open
Abstract
Tandemly arranged and dispersed repetitive DNA sequences are important structural and functional elements that make up a significant portion of vertebrate genomes. Using high throughput, low coverage whole genome sequencing followed by bioinformatics analysis, we have identified seven major tandem repetitive DNAs and two fragments of LTR retrotransposons in the genome of the Nile crocodile (Crocodylus niloticus, 2n = 32). The repeats showed great variability in structure, genomic organization, and chromosomal distribution as revealed by fluorescence in situ hybridization (FISH). We found that centromeric and pericentromeric heterochromatin of C. niloticus is composed of previously described in Crocodylus siamensis CSI-HindIII and CSI-DraI repetitive sequence families, a satellite revealed in Crocodylus porosus, and additionally contains at least three previously unannotated tandem repeats. Both LTR sequences identified here belong to the ERV1 family of endogenous retroviruses. Each pericentromeric region was characterized by a diverse set of repeats, with the exception of chromosome pair 4, in which we found only one type of satellite. Only a few repeats showed non-centromeric signals in addition to their centromeric localization. Mapping of 18S-28S ribosomal RNA genes and telomeric sequences (TTAGGG)n did not demonstrate any co-localization of these sequences with revealed centromeric and pericentromeric heterochromatic blocks.
Collapse
Affiliation(s)
- Svetlana A. Romanenko
- Institute of Molecular and Cellular Biology, Russian Academy of Sciences, Siberian Branch, 630090 Novosibirsk, Russia
| | - Dmitry Yu. Prokopov
- Institute of Molecular and Cellular Biology, Russian Academy of Sciences, Siberian Branch, 630090 Novosibirsk, Russia
| | - Anastasia A. Proskuryakova
- Institute of Molecular and Cellular Biology, Russian Academy of Sciences, Siberian Branch, 630090 Novosibirsk, Russia
| | - Guzel I. Davletshina
- Institute of Molecular and Cellular Biology, Russian Academy of Sciences, Siberian Branch, 630090 Novosibirsk, Russia
- Institute of Cytology and Genetics, Russian Academy of Sciences, Siberian Branch, 630090 Novosibirsk, Russia
| | - Alexey E. Tupikin
- Institute of Chemical Biology and Fundamental Medicine, Russian Academy of Sciences, Siberian Branch, 630090 Novosibirsk, Russia
| | - Fumio Kasai
- Japanese Collection of Research Bioresources (JCRB) Cell Bank, Laboratory of Cell Cultures, The National Institute of Biomedical Innovation, Health and Nutrition, Saito-Asagi, Ibaraki 567-0085, Osaka, Japan
- Department of Veterinary Medicine, University of Cambridge, Cambridge CB3 0ES, UK
| | | | - Vladimir A. Trifonov
- Institute of Molecular and Cellular Biology, Russian Academy of Sciences, Siberian Branch, 630090 Novosibirsk, Russia
- Department of Natural Science, Novosibirsk State University, 630090 Novosibirsk, Russia
| |
Collapse
|
3
|
Endo Y, Takemori N, Nagy SK, Okimune KI, Kamakaka R, Onouchi H, Takasuka TE. De novo reconstitution of chromatin using wheat germ cell-free protein synthesis. FEBS Open Bio 2021; 11:1552-1564. [PMID: 33960726 PMCID: PMC8167859 DOI: 10.1002/2211-5463.13178] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 04/12/2021] [Accepted: 04/21/2021] [Indexed: 01/12/2023] Open
Abstract
DNA is packaged with histones to form chromatin that impinges on all nuclear processes, including transcription, replication and repair, in the eukaryotic nucleus. A complete understanding of these molecular processes requires analysis of chromatin context in vitro. Here, Drosophila four core histones were produced in a native and unmodified form using wheat germ cell‐free protein synthesis. In the assembly reaction, four unpurified core histones and three chromatin assembly factors (dNAP‐1, dAcf1 and dISWI) were incubated with template DNA. We then assessed stoichiometry with the histones, nucleosome arrays, supercoiling and the ability of the chromatin to serve as a substrate for histone‐modifying enzymes. Overall, our method provides a new avenue to produce chromatin that can be useful in a wide range of chromatin research.
Collapse
Affiliation(s)
- Yaeta Endo
- Proteo-Science Center, Ehime University, Matsuyama, Japan
| | - Nobuaki Takemori
- Division of Proteomics Research Proteo-Science Center, Ehime University, Toon, Japan
| | - Szilvia K Nagy
- Department of Molecular Biology, Institute of Biochemistry and Molecular Biology, Semmelweis University, Budapest, Hungary.,Research Faculty of Agriculture, Hokkaido University, Sapporo, Japan
| | - Kei-Ichi Okimune
- Research Faculty of Agriculture, Hokkaido University, Sapporo, Japan
| | - Rohinton Kamakaka
- Department of Molecular Cell and Developmental Biology, University of California at Santa Cruz, CA, USA
| | - Hitoshi Onouchi
- Research Faculty of Agriculture, Hokkaido University, Sapporo, Japan
| | - Taichi E Takasuka
- Research Faculty of Agriculture, Hokkaido University, Sapporo, Japan.,Global Institute for Collaborative Research and Education, Hokkaido University, Sapporo, Japan
| |
Collapse
|
4
|
Analysis of mRNA abundance for histone variants, histone- and DNA-modifiers in bovine in vivo and in vitro oocytes and embryos. Sci Rep 2019; 9:1217. [PMID: 30718778 PMCID: PMC6362035 DOI: 10.1038/s41598-018-38083-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Accepted: 12/13/2018] [Indexed: 12/18/2022] Open
Abstract
Transcript abundance of histone variants, modifiers of histone and DNA in bovine in vivo oocytes and embryos were measured as mean transcripts per million (TPM). Six of 14 annotated histone variants, 8 of 52 histone methyl-transferases, 5 of 29 histone de-methylases, 5 of 20 acetyl-transferases, 5 of 19 de-acetylases, 1 of 4 DNA methyl-transferases and 0 of 3 DNA de-methylases were abundant (TPM >50) in at least one stage studied. Overall, oocytes and embryos contained more varieties of mRNAs for histone modification than for DNA. Three expression patterns were identified for histone modifiers: (1) transcription before embryonic genome activation (EGA) and down-regulated thereafter such as PRMT1; (2) low in oocytes but transiently increased for EGA such as EZH2; (3) high in oocytes but decreased by EGA such as SETD3. These expression patterns were altered by in vitro culture. Additionally, the presence of mRNAs for the TET enzymes throughout pre-implantation development suggests persistent de-methylation. Together, although DNA methylation changes are well-recognized, the first and second orders of significance in epigenetic changes by in vivo embryos may be histone variant replacements and modifications of histones.
Collapse
|
5
|
Biscotti MA, Canapa A, Capriglione T, Forconi M, Odierna G, Olmo E, Petraccioli A, Barucca M. Novel repeated DNAs in the antarctic polyplacophoran Nuttallochiton mirandus (Thiele, 1906). Cytogenet Genome Res 2015; 144:212-9. [PMID: 25592394 DOI: 10.1159/000370054] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/06/2014] [Indexed: 11/19/2022] Open
Abstract
Within the scope of a project on the characterization of satellite DNAs in polar mollusks, the Antarctic chiton Nuttallochitonmirandus (Thiele, 1906) was analyzed. Two novel families of tandemly repeated DNAs, namely NmH and NmP, are described in their structure and chromosomal localization, and, furthermore, their presence was analyzed in related species. Data reported here display a particular variability in the structural organization of DNA satellites within this species. Processes driving satellite evolution, which are likely responsible for the intriguing variability of the identified satellite DNAs, are discussed.
Collapse
Affiliation(s)
- Maria A Biscotti
- Dipartimento di Scienze della Vita e dell'Ambiente, Università Politecnica delle Marche, Ancona, Italy
| | | | | | | | | | | | | | | |
Collapse
|
6
|
Hoeijmakers WAM, Flueck C, Françoijs KJ, Smits AH, Wetzel J, Volz JC, Cowman AF, Voss T, Stunnenberg HG, Bártfai R. Plasmodium falciparum centromeres display a unique epigenetic makeup and cluster prior to and during schizogony. Cell Microbiol 2012; 14:1391-401. [PMID: 22507744 DOI: 10.1111/j.1462-5822.2012.01803.x] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2011] [Revised: 04/05/2012] [Accepted: 04/11/2012] [Indexed: 11/30/2022]
Abstract
Centromeres are essential for the faithful transmission of chromosomes to the next generation, therefore being essential in all eukaryotic organisms. The centromeres of Plasmodium falciparum, the causative agent of the most severe form of malaria, have been broadly mapped on most chromosomes, but their epigenetic composition remained undefined. Here, we reveal that the centromeric histone variant PfCENH3 occupies a 4-4.5 kb region on each P. falciparum chromosome, which is devoid of pericentric heterochromatin but harbours another histone variant, PfH2A.Z. These CENH3 covered regions pinpoint the exact position of the centromere on all chromosomes and revealed that all centromeric regions have similar size and sequence composition. Immunofluorescence assay of PfCENH3 strongly suggests that P. falciparum centromeres cluster to a single nuclear location prior to and during mitosis and cytokinesis but dissociate soon after invasion. In summary, we reveal a dynamic association of Plasmodium centromeres, which bear a unique epigenetic signature and conform to a strict structure. These findings suggest that DNA-associated and epigenetic elements play an important role in centromere establishment in this important human pathogen.
Collapse
Affiliation(s)
- Wieteke A M Hoeijmakers
- Department of Molecular Biology, Radboud University, Nijmegen Centre for Molecular Life Sciences, Nijmegen, The Netherlands
| | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Moreno-Moreno O, Medina-Giró S, Torras-Llort M, Azorín F. The F Box Protein Partner of Paired Regulates Stability of Drosophila Centromeric Histone H3, CenH3CID. Curr Biol 2011; 21:1488-93. [DOI: 10.1016/j.cub.2011.07.041] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2011] [Revised: 06/07/2011] [Accepted: 07/28/2011] [Indexed: 12/22/2022]
|
8
|
Verdaasdonk JS, Bloom K. Centromeres: unique chromatin structures that drive chromosome segregation. Nat Rev Mol Cell Biol 2011; 12:320-32. [PMID: 21508988 DOI: 10.1038/nrm3107] [Citation(s) in RCA: 157] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Fidelity during chromosome segregation is essential to prevent aneuploidy. The proteins and chromatin at the centromere form a unique site for kinetochore attachment and allow the cell to sense and correct errors during chromosome segregation. Centromeric chromatin is characterized by distinct chromatin organization, epigenetics, centromere-associated proteins and histone variants. These include the histone H3 variant centromeric protein A (CENPA), the composition and deposition of which have been widely investigated. Studies have examined the structural and biophysical properties of the centromere and have suggested that the centromere is not simply a 'landing pad' for kinetochore formation, but has an essential role in mitosis by assembling and directing the organization of the kinetochore.
Collapse
Affiliation(s)
- Jolien S Verdaasdonk
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | | |
Collapse
|
9
|
Valdivia MM, Hamdouch K, Ortiz M, Astola A. CENPA a genomic marker for centromere activity and human diseases. Curr Genomics 2011; 10:326-35. [PMID: 20119530 PMCID: PMC2729997 DOI: 10.2174/138920209788920985] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2009] [Revised: 05/25/2009] [Accepted: 05/28/2009] [Indexed: 01/15/2023] Open
Abstract
Inheritance of genetic material requires that chromosomes segregate faithfully during cell division. Failure in this process can drive to aneuploidy phenomenon. Kinetochores are unique centromere macromolecular protein structures that attach chromosomes to the spindle for a proper movement and segregation. A unique type of nucleosomes of centromeric chromatin provides the base for kinetochore formation. A specific histone H3 variant, CENPA, replaces conventional histone H3 and together with centromere-specific-DNA-binding factors directs the assembly of active kinetochores. Recent studies on CENPA nucleosomal structure, epigenetic inheritance of centromeric chromatin and transcription of pericentric heterochromatin provide new clues to our understanding of centromere structure and function. This review highlights the role and dynamics of CENPA assembly into centromeres and the potential contribution of this kinetochore protein to autoimmune and cancer diseases in humans.
Collapse
Affiliation(s)
- Manuel M Valdivia
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias, Universidad de Cádiz, 11510 Puerto Real, Cádiz, Spain.
| | | | | | | |
Collapse
|
10
|
Bernad R, Sánchez P, Rivera T, Rodríguez-Corsino M, Boyarchuk E, Vassias I, Ray-Gallet D, Arnaoutov A, Dasso M, Almouzni G, Losada A. Xenopus HJURP and condensin II are required for CENP-A assembly. ACTA ACUST UNITED AC 2011; 192:569-82. [PMID: 21321101 PMCID: PMC3044122 DOI: 10.1083/jcb.201005136] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Chromatin structure imposed by condensin II at centromeres enables xHJURP-mediated incorporation of CENP-A. Centromeric protein A (CENP-A) is the epigenetic mark of centromeres. CENP-A replenishment is necessary in each cell cycle to compensate for the dilution associated to DNA replication, but how this is achieved mechanistically is largely unknown. We have developed an assay using Xenopus egg extracts that can recapitulate the spatial and temporal specificity of CENP-A deposition observed in human cells, providing us with a robust in vitro system amenable to molecular dissection. Here we show that this deposition depends on Xenopus Holliday junction–recognizing protein (xHJURP), a member of the HJURP/Scm3 family recently identified in yeast and human cells, further supporting the essential role of these chaperones in CENP-A loading. Despite little sequence homology, human HJURP can substitute for xHJURP. We also report that condensin II, but not condensin I, is required for CENP-A assembly and contributes to retention of centromeric CENP-A nucleosomes both in mitosis and interphase. We propose that the chromatin structure imposed by condensin II at centromeres enables CENP-A incorporation initiated by xHJURP.
Collapse
Affiliation(s)
- Rafael Bernad
- Molecular Oncology Programme, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Torras-Llort M, Medina-Giró S, Moreno-Moreno O, Azorín F. A conserved arginine-rich motif within the hypervariable N-domain of Drosophila centromeric histone H3 (CenH3) mediates BubR1 recruitment. PLoS One 2010; 5:e13747. [PMID: 21060784 PMCID: PMC2966416 DOI: 10.1371/journal.pone.0013747] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2010] [Accepted: 10/07/2010] [Indexed: 12/13/2022] Open
Abstract
Background Centromere identity is determined epigenetically by deposition of CenH3, a centromere-specific histone H3 variant that dictates kinetochore assembly. The molecular basis of the contribution of CenH3 to centromere/kinetochore functions is, however, incompletely understood, as its interactions with the rest of centromere/kinetochore components remain largely uncharacterised at the molecular/structural level. Principal Findings Here, we report on the contribution of Drosophila CenH3CID to recruitment of BubR1, a conserved kinetochore protein that is a core component of the spindle attachment checkpoint (SAC). This interaction is mediated by the N-terminal domain of CenH3CID (NCenH3CID), as tethering NCenH3CID to an ectopic reporter construct results in BubR1 recruitment and BubR1-dependent silencing of the reporter gene. Here, we also show that this interaction depends on a short arginine (R)-rich motif and that, most remarkably, it appears to be evolutionarily conserved, as tethering constructs carrying the highly divergent NCenH3 of budding yeast and human also induce silencing of the reporter. Interestingly, though NCenH3 shows an exceedingly low degree of conservation, the presence of R-rich motives is a common feature of NCenH3 from distant species. Finally, our results also indicate that two other conserved sequence motives within NCenH3CID might also be involved in interactions with kinetochore components. Conclusions These results unveil an unexpected contribution of the hypervariable N-domain of CenH3 to recruitment of kinetochore components, identifying simple R-rich motives within it as evolutionary conserved structural determinants involved in BubR1 recruitment.
Collapse
Affiliation(s)
- Mònica Torras-Llort
- Institute of Molecular Biology of Barcelona, CSIC, and Institute for Research in Biomedicine, IRB Barcelona, Barcelona, Spain
| | - Sònia Medina-Giró
- Institute of Molecular Biology of Barcelona, CSIC, and Institute for Research in Biomedicine, IRB Barcelona, Barcelona, Spain
| | - Olga Moreno-Moreno
- Institute of Molecular Biology of Barcelona, CSIC, and Institute for Research in Biomedicine, IRB Barcelona, Barcelona, Spain
| | - Fernando Azorín
- Institute of Molecular Biology of Barcelona, CSIC, and Institute for Research in Biomedicine, IRB Barcelona, Barcelona, Spain
- * E-mail:
| |
Collapse
|
12
|
Overlapping regulation of CenH3 localization and histone H3 turnover by CAF-1 and HIR proteins in Saccharomyces cerevisiae. Genetics 2010; 187:9-19. [PMID: 20944015 DOI: 10.1534/genetics.110.123117] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Accurate chromosome segregation is dependent on the centromere-specific histone H3 isoform known generally as CenH3, or as Cse4 in budding yeast. Cytological experiments have shown that Cse4 appears at extracentromeric loci in yeast cells deficient for both the CAF-1 and HIR histone H3/H4 deposition complexes, consistent with increased nondisjunction in these double mutant cells. Here, we examined molecular aspects of this Cse4 mislocalization. Genome-scale chromatin immunoprecipitation analyses demonstrated broader distribution of Cse4 outside of centromeres in cac1Δ hir1Δ double mutant cells that lack both CAF-1 and HIR complexes than in either single mutant. However, cytological localization showed that the essential inner kinetochore component Mif2 (CENP-C) was not recruited to extracentromeric Cse4 in cac1Δ hir1Δ double mutant cells. We also observed that rpb1-1 mutants displayed a modestly increased Cse4 half-life at nonpermissive temperatures, suggesting that turnover of Cse4 is partially dependent on Pol II transcription. We used genome-scale assays to demonstrate that the CAF-1 and HIR complexes independently stimulate replication-independent histone H3 turnover rates. We discuss ways in which altered histone exchange kinetics may affect eviction of Cse4 from noncentromeric loci.
Collapse
|
13
|
Celton-Morizur S, Merlen G, Couton D, Margall-Ducos G, Desdouets C. The insulin/Akt pathway controls a specific cell division program that leads to generation of binucleated tetraploid liver cells in rodents. J Clin Invest 2009; 119:1880-7. [PMID: 19603546 PMCID: PMC2701880 DOI: 10.1172/jci38677] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2009] [Accepted: 05/06/2009] [Indexed: 01/10/2023] Open
Abstract
The formation of polyploid cells is part of the developmental program of several tissues. During postnatal development, binucleated tetraploid cells arise in the liver, caused by failure in cytokinesis. In this report, we have shown that the initiation of cytokinesis failure events and the subsequent appearance of binucleated tetraploid cells are strictly controlled by the suckling-to-weaning transition in rodents. We found that daily light/dark rhythms and carbohydrate intake did not affect liver tetraploidy. In contrast, impairment of insulin signaling drastically reduced the formation of binucleated tetraploid cells, whereas repeated insulin injections promoted the generation of these liver cells. Furthermore, inhibition of Akt activity decreased the number of cytokinesis failure events, possibly through the mammalian target of rapamycin signaling complex 2 (mTORC2), which indicates that the PI3K/Akt pathway lies downstream of the insulin signal to regulate the tetraploidization process. To our knowledge, these results are the first demonstration in a physiological context that insulin signaling through Akt controls a specific cell division program and leads to the physiologic generation of binucleated tetraploid liver cells.
Collapse
Affiliation(s)
- Séverine Celton-Morizur
- Institut Cochin, Université Paris Descartes, CNRS UMR 8104, Paris, France.
INSERM U567, Paris, France
| | - Grégory Merlen
- Institut Cochin, Université Paris Descartes, CNRS UMR 8104, Paris, France.
INSERM U567, Paris, France
| | - Dominique Couton
- Institut Cochin, Université Paris Descartes, CNRS UMR 8104, Paris, France.
INSERM U567, Paris, France
| | - Germain Margall-Ducos
- Institut Cochin, Université Paris Descartes, CNRS UMR 8104, Paris, France.
INSERM U567, Paris, France
| | - Chantal Desdouets
- Institut Cochin, Université Paris Descartes, CNRS UMR 8104, Paris, France.
INSERM U567, Paris, France
| |
Collapse
|
14
|
Abstract
Centromeres are the discrete sites of spindle microtubule attachment on chromosomes during mitosis and meiosis in all eukaryotes. These highly specialized chromatin structures typically occupy the same site for thousands of generations, yet the mechanism by which centromeres are established, maintained, and function remain a mystery. In metazoans, centromeric DNA sequence has proven not to be the key determinant of centromeric identity; therefore, centromeres are thought to be epigenetically specified by their specialized chromatin structure. In all eukaryotes, the centromere-specific histone H3 variant CenH3 replaces canonical H3 within nucleosomes at centric chromatin. This specialized nucleosome is the building block upon which all other centromere-associated proteins depend. This review highlights exciting new findings that have resulted in a paradigm shift in our understanding of CenH3 assembly into centromeric chromatin, CenH3 nucleosomal structure, CenH3 chromatin folding, the contribution of these factors to centromeric identity, and finally, the intimate role cell-cycle-regulated transcription and pericentric heterochromatin play in the maintenance and integrity of centromeres.
Collapse
Affiliation(s)
- Yamini Dalal
- Chromatin Structure and Epigenetic Mechanisms Unit, Laboratory of Receptor Biology and Gene Expression, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
15
|
Neocentromeres form efficiently at multiple possible loci in Candida albicans. PLoS Genet 2009; 5:e1000400. [PMID: 19266018 PMCID: PMC2642679 DOI: 10.1371/journal.pgen.1000400] [Citation(s) in RCA: 143] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2008] [Accepted: 02/03/2009] [Indexed: 12/20/2022] Open
Abstract
Centromeres are critically important for chromosome stability and integrity. Most eukaryotes have regional centromeres that include long tracts of repetitive DNA packaged into pericentric heterochromatin. Neocentromeres, new sites of functional kinetochore assembly, can form at ectopic loci because no DNA sequence is strictly required for assembly of a functional kinetochore. In humans, neocentromeres often arise in cells with gross chromosome rearrangements that rescue an acentric chromosome. Here, we studied the properties of centromeres in Candida albicans, the most prevalent fungal pathogen of humans, which has small regional centromeres that lack pericentric heterochromatin. We functionally delimited centromere DNA on Chromosome 5 (CEN5) and then replaced the entire region with the counter-selectable URA3 gene or other marker genes. All of the resulting cen5Δ::URA3 transformants stably retained both copies of Chr5, indicating that a functional neocentromere had assembled efficiently on the homolog lacking CEN5 DNA. Strains selected to maintain only the cen5Δ::URA3 homolog and no wild-type Chr5 homolog also grew well, indicating that neocentromere function is independent of the presence of any wild-type CEN5 DNA. Two classes of neocentromere (neoCEN) strains were distinguishable: “proximal neoCEN” and “distal neoCEN” strains. Neocentromeres in the distal neoCEN strains formed at loci about 200–450 kb from cen5Δ::URA3 on either chromosome arm, as detected by massively parallel sequencing of DNA isolated by CENP-ACse4p chromatin immunoprecipitation (ChIP). In the proximal neoCEN strains, the neocentromeres formed directly adjacent to cen5Δ::URA3 and moved onto the URA3 DNA, resulting in silencing of its expression. Functional neocentromeres form efficiently at several possible loci that share properties of low gene density and flanking repeated DNA sequences. Subsequently, neocentromeres can move locally, which can be detected by silencing of an adjacent URA3 gene, or can relocate to entirely different regions of the chromosome. The ability to select for neocentromere formation and movement in C. albicans permits mechanistic analysis of the assembly and maintenance of a regional centromere. Centromere function is essential for proper chromosomal segregation. Most organisms, including humans, have regional centromeres in which centromere function is not strictly dependent on DNA sequence. Upon alteration of chromosomes, new functional centromeres (neocentromeres) can form at ectopic positions. The mechanisms of neocentromere formation are not understood, primarily because neocentromere formation is rarely detected. Here. we show that C. albicans, an important fungal pathogen of humans, has small regional centromeres and can form neocentromeres very efficiently when normal centromere DNA is deleted, and the resulting chromosomes are stably propagated. Neocentromeres can form either very close to the position of the deleted centromere or at other positions along the chromosome arms, including at the telomeres. Subsequently, neocentromeres can move to new chromosomal positions, and this movement can be detected by silencing of a counterselectable gene. The features common to sites of neocentromere formation are longer-than-average intergenic regions and the proximity of inverted or direct repeat sequences. The ability to select for neocentromere formation and movement in C. albicans permits mechanistic analysis of the assembly and maintenance of a regional centromere.
Collapse
|
16
|
Hemmerich P, Weidtkamp-Peters S, Hoischen C, Schmiedeberg L, Erliandri I, Diekmann S. Dynamics of inner kinetochore assembly and maintenance in living cells. ACTA ACUST UNITED AC 2008; 180:1101-14. [PMID: 18347072 PMCID: PMC2290840 DOI: 10.1083/jcb.200710052] [Citation(s) in RCA: 147] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
To investigate the dynamics of centromere organization, we have assessed the exchange rates of inner centromere proteins (CENPs) by quantitative microscopy throughout the cell cycle in human cells. CENP-A and CENP-I are stable centromere components that are incorporated into centromeres via a “loading-only” mechanism in G1 and S phase, respectively. A subfraction of CENP-H also stays stably bound to centromeres. In contrast, CENP-B, CENP-C, and some CENP-H and hMis12 exhibit distinct and cell cycle–specific centromere binding stabilities, with residence times ranging from seconds to hours. CENP-C and CENP-H are immobilized at centromeres specifically during replication. In mitosis, all inner CENPs become completely immobilized. CENPs are highly mobile throughout bulk chromatin, which is consistent with a binding-diffusion behavior as the mechanism to scan for vacant high-affinity binding sites at centromeres. Our data reveal a wide range of cell cycle–specific assembly plasticity of the centromere that provides both stability through sustained binding of some components and flexibility through dynamic exchange of other components.
Collapse
Affiliation(s)
- Peter Hemmerich
- Leibniz Institute for Age Research, Fritz Lipmann Institute, 07745 Jena, Germany. phemmer@fl i-leibniz.de
| | | | | | | | | | | |
Collapse
|
17
|
Takayama Y, Sato H, Saitoh S, Ogiyama Y, Masuda F, Takahashi K. Biphasic incorporation of centromeric histone CENP-A in fission yeast. Mol Biol Cell 2008; 19:682-90. [PMID: 18077559 PMCID: PMC2230595 DOI: 10.1091/mbc.e07-05-0504] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2007] [Revised: 11/12/2007] [Accepted: 11/27/2007] [Indexed: 11/11/2022] Open
Abstract
CENP-A is a centromere-specific histone H3 variant that is essential for kinetochore formation. Here, we report that the fission yeast Schizosaccharomyces pombe has at least two distinct CENP-A deposition phases across the cell cycle: S and G2. The S phase deposition requires Ams2 GATA factor, which promotes histone gene activation. In Delta ams2, CENP-A fails to retain during S, but it reaccumulates onto centromeres via the G2 deposition pathway, which is down-regulated by Hip1, a homologue of HIRA histone chaperon. Reducing the length of G2 in Delta ams2 results in failure of CENP-A accumulation, leading to chromosome missegregation. N-terminal green fluorescent protein-tagging reduces the centromeric association of CENP-A, causing cell death in Delta ams2 but not in wild-type cells, suggesting that the N-terminal tail of CENP-A may play a pivotal role in the formation of centromeric nucleosomes at G2. These observations imply that CENP-A is normally localized to centromeres in S phase in an Ams2-dependent manner and that the G2 pathway may salvage CENP-A assembly to promote genome stability. The flexibility of CENP-A incorporation during the cell cycle may account for the plasticity of kinetochore formation when the authentic centromere is damaged.
Collapse
Affiliation(s)
- Yuko Takayama
- Division of Cell Biology, Institute of Life Science, Kurume University, Fukuoka 839-0864, Japan
| | - Hiroshi Sato
- Division of Cell Biology, Institute of Life Science, Kurume University, Fukuoka 839-0864, Japan
| | - Shigeaki Saitoh
- Division of Cell Biology, Institute of Life Science, Kurume University, Fukuoka 839-0864, Japan
| | - Yuki Ogiyama
- Division of Cell Biology, Institute of Life Science, Kurume University, Fukuoka 839-0864, Japan
| | - Fumie Masuda
- Division of Cell Biology, Institute of Life Science, Kurume University, Fukuoka 839-0864, Japan
| | - Kohta Takahashi
- Division of Cell Biology, Institute of Life Science, Kurume University, Fukuoka 839-0864, Japan
| |
Collapse
|
18
|
Gendler K, Paulsen T, Napoli C. ChromDB: the chromatin database. Nucleic Acids Res 2008; 36:D298-302. [PMID: 17942414 PMCID: PMC2238968 DOI: 10.1093/nar/gkm768] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2007] [Revised: 09/04/2007] [Accepted: 09/11/2007] [Indexed: 11/25/2022] Open
Abstract
The ChromDB website (http://www.chromdb.org) displays chromatin-associated proteins, including RNAi-associated proteins, for a broad range of organisms. Our primary focus is to display sets of highly curated plant genes predicted to encode proteins associated with chromatin remodeling. Our intent is to make this intensively curated sequence information available to the research and teaching communities in support of comparative analyses toward understanding the chromatin proteome in plants, especially in important crop species such as corn and rice. Model animal and fungal proteins are included in the database to facilitate a complete, comparative analysis of the chromatin proteome and to make the database applicable to all chromatin researchers and educators. Chromatin biology and chromatin remodeling are complex processes involving a multitude of proteins that regulate the dynamic changes in chromatin structure which either repress or activate transcription. We strive to organize ChromDB data in a straightforward and comparative manner to help users understand the complement of proteins involved in packaging DNA into chromatin.
Collapse
Affiliation(s)
| | | | - Carolyn Napoli
- BIO5 Institute, University of Arizona, Tucson, AZ 85719, USA
| |
Collapse
|
19
|
Siroky J. Chromosome landmarks as tools to study the genome of Arabidopsis thaliana. Cytogenet Genome Res 2008; 120:202-9. [DOI: 10.1159/000121068] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/17/2007] [Indexed: 12/17/2022] Open
|
20
|
Plohl M, Luchetti A, Mestrović N, Mantovani B. Satellite DNAs between selfishness and functionality: structure, genomics and evolution of tandem repeats in centromeric (hetero)chromatin. Gene 2007; 409:72-82. [PMID: 18182173 DOI: 10.1016/j.gene.2007.11.013] [Citation(s) in RCA: 234] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2007] [Revised: 11/08/2007] [Accepted: 11/20/2007] [Indexed: 12/21/2022]
Abstract
Satellite DNAs (tandemly repeated, non-coding DNA sequences) stretch over almost all native centromeres and surrounding pericentromeric heterochromatin. Once considered as inert by-products of genome dynamics in heterochromatic regions, recent studies showed that satellite DNA evolution is interplay of stochastic events and selective pressure. This points to a functional significance of satellite sequences, which in (peri)centromeres may play some fundamental functional roles. First, specific interactions with DNA-binding proteins are proposed to complement sequence-independent epigenetic processes. The second role is achieved through RNAi mechanism, in which transcripts of satellite sequences initialize heterochromatin formation. In addition, satellite DNAs in (peri)centromeric regions affect chromosomal dynamics and genome plasticity. Paradoxically, while centromeric function is conserved through eukaryotes, the profile of satellite DNAs in this region is almost always species-specific. We argue that tandem repeats may be advantageous forms of DNA sequences in (peri)centromeres due to concerted evolution, which maintains high intra-array and intrapopulation sequence homogeneity of satellite arrays, while allowing rapid changes in nucleotide sequence and/or composition of satellite repeats. This feature may be crucial for long-term stability of DNA-protein interactions in centromeric regions.
Collapse
Affiliation(s)
- Miroslav Plohl
- Department of Molecular Genetics, Ruder Bosković Institute, Bijenicka 54, HR-10002 Zagreb, Croatia.
| | | | | | | |
Collapse
|
21
|
Persistence of DNA threads in human anaphase cells suggests late completion of sister chromatid decatenation. Chromosoma 2007; 117:123-35. [PMID: 17989990 PMCID: PMC2755729 DOI: 10.1007/s00412-007-0131-7] [Citation(s) in RCA: 97] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2007] [Revised: 10/11/2007] [Accepted: 10/12/2007] [Indexed: 11/17/2022]
Abstract
PICH (Plk1-interacting checkpoint helicase) was recently identified as an essential component of the spindle assembly checkpoint and shown to localize to kinetochores, inner centromeres, and thin threads connecting separating chromosomes even during anaphase. In this paper, we have used immuno-fiber fluorescence in situ hybridization and chromatin-immunoprecipitation to demonstrate that PICH associates with centromeric chromatin during anaphase. Furthermore, by careful analysis of PICH-positive anaphase threads through FISH as well as bromo-deoxyurdine and CREST labeling, we strengthen the evidence that these threads comprise mainly alphoid centromere deoxyribonucleic acid. Finally, by timing the addition of ICRF-193 (a specific inhibitor of topoisomerase-II alpha) to cells synchronized in anaphase, we demonstrate that topoisomerase activity is required specifically to resolve PICH-positive threads during anaphase (as opposed to being required to prevent the formation of such threads during earlier cell cycle stages). These data indicate that PICH associates with centromeres during anaphase and that most PICH-positive threads evolve from inner centromeres as these stretch in response to tension. Moreover, they show that topoisomerase activity is required during anaphase for the resolution of PICH-positive threads, implying that the complete separation of sister chromatids occurs later than previously assumed.
Collapse
|
22
|
Dalal Y, Furuyama T, Vermaak D, Henikoff S. Structure, dynamics, and evolution of centromeric nucleosomes. Proc Natl Acad Sci U S A 2007; 104:15974-81. [PMID: 17893333 PMCID: PMC1993840 DOI: 10.1073/pnas.0707648104] [Citation(s) in RCA: 98] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2007] [Indexed: 12/18/2022] Open
Abstract
Centromeres are defining features of eukaryotic chromosomes, providing sites of attachment for segregation during mitosis and meiosis. The fundamental unit of centromere structure is the centromeric nucleosome, which differs from the conventional nucleosome by the presence of a centromere-specific histone variant (CenH3) in place of canonical H3. We have shown that the CenH3 nucleosome core found in interphase Drosophila cells is a heterotypic tetramer, a "hemisome" consisting of one molecule each of CenH3, H4, H2A, and H2B, rather than the octamer of canonical histones that is found in bulk nucleosomes. The surprising discovery of hemisomes at centromeres calls for a reevaluation of evidence that has long been interpreted in terms of a more conventional nucleosome. We describe how the hemisome structure of centromeric nucleosomes can account for enigmatic properties of centromeres, including kinetochore accessibility, epigenetic inheritance, rapid turnover of misincorporated CenH3, and transcriptional quiescence of pericentric heterochromatin. Structural differences mediated by loop 1 are proposed to account for the formation of stable tetramers containing CenH3 rather than stable octamers containing H3. Asymmetric CenH3 hemisomes might interrupt the global condensation of octameric H3 arrays and present an asymmetric surface for kinetochore formation. We suggest that this simple mechanism for differentiation between centromeric and packaging nucleosomes evolved from an archaea-like ancestor at the dawn of eukaryotic evolution.
Collapse
Affiliation(s)
| | - Takehito Furuyama
- Howard Hughes Medical Institute, Fred Hutchinson Cancer Research Center, 1100 Fairview Avenue North, Seattle, WA 98109
| | | | - Steven Henikoff
- Howard Hughes Medical Institute, Fred Hutchinson Cancer Research Center, 1100 Fairview Avenue North, Seattle, WA 98109
| |
Collapse
|