1
|
Danielsson BE, Tieu KV, Spagnol ST, Vu KK, Cabe JI, Raisch TB, Dahl KN, Conway DE. Chromatin condensation regulates endothelial cell adaptation to shear stress. Mol Biol Cell 2022; 33:ar101. [PMID: 35895088 DOI: 10.1091/mbc.e22-02-0064] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Vascular endothelial cells (ECs) have been shown to be mechanoresponsive to the forces of blood flow, including fluid shear stress (FSS), the frictional force of blood on the vessel wall. Recent reports have shown that FSS induces epigenetic changes in chromatin. Epigenetic changes, such as methylation and acetylation of histones, not only affect gene expression but also affect chromatin condensation, which can alter nuclear stiffness. Thus, we hypothesized that changes in chromatin condensation may be an important component for how ECs adapt to FSS. Using both in vitro and in vivo models of EC adaptation to FSS, we observed an increase in histone acetylation and a decrease in histone methylation in ECs adapted to flow as compared with static. Using small molecule drugs, as well as vascular endothelial growth factor, to change chromatin condensation, we show that decreasing chromatin condensation enables cells to more quickly align to FSS, whereas increasing chromatin condensation inhibited alignment. Additionally, we show data that changes in chromatin condensation can also prevent or increase DNA damage, as measured by phosphorylation of γH2AX. Taken together, these results indicate that chromatin condensation, and potentially by extension nuclear stiffness, is an important aspect of EC adaptation to FSS.
Collapse
Affiliation(s)
- Brooke E Danielsson
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, Virginia 23284
| | - Katie V Tieu
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, Virginia 23284
| | - Stephen T Spagnol
- Department of Chemical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213
| | - Kira K Vu
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, Virginia 23284
| | - Jolene I Cabe
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, Virginia 23284
| | - Tristan B Raisch
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, Virginia 23284
| | - Kris Noel Dahl
- Department of Chemical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213.,Forensics Department, Thornton Tomasetti, New York City, NY 10271
| | - Daniel E Conway
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, Virginia 23284.,Department of Biomedical Engineering, The Ohio State University, Columbus, OH 43210.,Center for Cancer Engineering, and Arthur G. James Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210
| |
Collapse
|
2
|
Knoch TA. Simulation of Different Three-Dimensional Models of Whole Interphase Nuclei Compared to Experiments - A Consistent Scale-Bridging Simulation Framework for Genome Organization. Results Probl Cell Differ 2022; 70:495-549. [PMID: 36348120 DOI: 10.1007/978-3-031-06573-6_18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The three-dimensional architecture of chromosomes, their arrangement, and dynamics within cell nuclei are still subject of debate. Obviously, the function of genomes-the storage, replication, and transcription of genetic information-has closely coevolved with this architecture and its dynamics, and hence are closely connected. In this work a scale-bridging framework investigates how of the 30 nm chromatin fibre organizes into chromosomes including their arrangement and morphology in the simulation of whole nuclei. Therefore, mainly two different topologies were simulated with corresponding parameter variations and comparing them to experiments: The Multi-Loop-Subcompartment (MLS) model, in which (stable) small loops form (stable) rosettes, connected by chromatin linkers, and the Random-Walk/Giant-Loop (RW/GL) model, in which large loops are attached to a flexible non-protein backbone, were simulated for various loop and linker sizes. The 30 nm chromatin fibre was modelled as a polymer chain with stretching, bending and excluded volume interactions. A spherical boundary potential simulated the confinement to nuclei with different radii. Simulated annealing and Brownian Dynamics methods were applied in a four-step decondensation procedure to generate from metaphase decondensated interphase configurations at thermodynamical equilibrium. Both the MLS and the RW/GL models form chromosome territories, with different morphologies: The MLS rosettes result in distinct subchromosomal domains visible in electron and confocal laser scanning microscopic images. In contrast, the big RW/GL loops lead to a mostly homogeneous chromatin distribution. Even small changes of the model parameters induced significant rearrangements of the chromatin morphology. The low overlap of chromosomes, arms, and subchromosomal domains observed in experiments agrees only with the MLS model. The chromatin density distribution in CLSM image stacks reveals a bimodal behaviour in agreement with recent experiments. Combination of these results with a variety of (spatial distance) measurements favour an MLS like model with loops and linkers of 63 to 126 kbp. The predicted large spaces between the chromatin fibres allow typically sized biological molecules to reach nearly every location in the nucleus by moderately obstructed diffusion and is in disagreement with the much simplified assumption that defined channels between territories for molecular transport as in the Interchromosomal Domain (ICD) hypothesis exist and are necessary for transport. All this is also in agreement with recent selective high-resolution chromosome interaction capture (T2C) experiments, the scaling behaviour of the DNA sequence, the dynamics of the chromatin fibre, the diffusion of molecules, and other measurements. Also all other chromosome topologies can in principle be excluded. In summary, polymer simulations of whole nuclei compared to experimental data not only clearly favour only a stable loop aggregate/rosette like genome architecture whose local topology is tightly connected to the global morphology and dynamics of the cell nucleus and hence can be used for understanding genome organization also in respect to diagnosis and treatment. This is in agreement with and also leads to a general novel framework of genome emergence, function, and evolution.
Collapse
Affiliation(s)
- Tobias A Knoch
- Biophysical Genomics, TAKnoch Joined Operations Administrative Office, Mannheim, Germany.
- Human Ecology and Complex Systems, German Society for Human Ecology (DGH), TAKnoch Joined Operations Administrative Office, Mannheim, Germany.
- TAK Renewable Energy UG, TAKnoch Joined Operations Administrative Office, Mannheim, Germany.
| |
Collapse
|
3
|
Golczyk H, Limanówka A, Uchman-Książek A. Pericentromere clustering in Tradescantia section Rhoeo involves self-associations of AT- and GC-rich heterochromatin fractions, is developmentally regulated, and increases during differentiation. Chromosoma 2020; 129:227-242. [PMID: 32681184 PMCID: PMC7666280 DOI: 10.1007/s00412-020-00740-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 06/30/2020] [Accepted: 07/01/2020] [Indexed: 11/30/2022]
Abstract
A spectacular but poorly recognized nuclear repatterning is the association of heterochromatic domains during interphase. Using base-specific fluorescence and extended-depth-of-focus imaging, we show that the association of heterochromatic pericentromeres composed of AT- and GC-rich chromatin occurs on a large scale in cycling meiotic and somatic cells and during development in ring- and bivalent-forming Tradescantia spathacea (section Rhoeo) varieties. The mean number of pericentromere AT-rich domains per root meristem nucleus was ca. half the expected diploid number in both varieties, suggesting chromosome pairing via (peri)centromeric regions. Indeed, regular pairing of AT-rich domains was observed. The AT- and GC-rich associations in differentiated cells contributed to a significant reduction of the mean number of the corresponding foci per nucleus in relation to root meristem. Within the first 10 mm of the root, the pericentromere attraction was in progress, as if it was an active process and involved both AT- and GC-rich associations. Complying with Rabl arrangement, the pericentromeres preferentially located on one nuclear pole, clustered into diverse configurations. Among them, a strikingly regular one with 5-7 ring-arranged pericentromeric AT-rich domains may be potentially engaged in chromosome positioning during mitosis. The fluorescent pattern of pachytene meiocytes and somatic nuclei suggests the existence of a highly prescribed ring/chain type of chromocenter architecture with side-by-side arranged pericentromeric regions. The dynamics of pericentromere associations together with their non-random location within nuclei was compared with nuclear architecture in other organisms, including the widely explored Arabidopsis model.
Collapse
Affiliation(s)
- Hieronim Golczyk
- Department of Molecular Biology, Institute of Biological Sciences, John Paul II Catholic University of Lublin, Konstantynów 1i, 20-708, Lublin, Poland.
| | - Arleta Limanówka
- Department of Plant Cytology and Embryology, Institute of Botany, Jagiellonian University, Grodzka 52, 31-044, Cracow, Poland
| | - Anna Uchman-Książek
- Department of Plant Cytology and Embryology, Institute of Botany, Jagiellonian University, Grodzka 52, 31-044, Cracow, Poland
| |
Collapse
|
4
|
Agrawal A, Ganai N, Sengupta S, Menon GI. Nonequilibrium Biophysical Processes Influence the Large-Scale Architecture of the Cell Nucleus. Biophys J 2019; 118:2229-2244. [PMID: 31818465 DOI: 10.1016/j.bpj.2019.11.017] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 10/30/2019] [Accepted: 11/11/2019] [Indexed: 10/25/2022] Open
Abstract
Model approaches to nuclear architecture have traditionally ignored the biophysical consequences of ATP-fueled active processes acting on chromatin. However, transcription-coupled activity is a source of stochastic forces that are substantially larger than the Brownian forces present at physiological temperatures. Here, we describe an approach to large-scale nuclear architecture in metazoans that incorporates cell-type-specific active processes. The model predicts the statistics of positional distributions, shapes, and overlaps of each chromosome. Simulations of the model reproduce common organizing principles underlying large-scale nuclear architecture across human cell nuclei in interphase. These include the differential positioning of euchromatin and heterochromatin, the territorial organization of chromosomes (including both gene-density-based and size-based chromosome radial positioning schemes), the nonrandom locations of chromosome territories, and the shape statistics of individual chromosomes. We propose that the biophysical consequences of the distribution of transcriptional activity across chromosomes should be central to any chromosome positioning code.
Collapse
Affiliation(s)
- Ankit Agrawal
- Computational Biology Group, The Institute of Mathematical Sciences, Taramani, Chennai, India; Homi Bhabha National Institute, Mumbai, India
| | - Nirmalendu Ganai
- Department of Physics, Nabadwip Vidyasagar College, Nabadwip, Nadia, India
| | - Surajit Sengupta
- TIFR Centre for Interdisciplinary Sciences, Serilingampally Mandal, Ranga Reddy District, Hyderabad, India
| | - Gautam I Menon
- Computational Biology Group, The Institute of Mathematical Sciences, Taramani, Chennai, India; Homi Bhabha National Institute, Mumbai, India; Department of Physics, Ashoka University, Rajiv Gandhi Education City, National Capital Region P.O.Rai, Sonepat, India.
| |
Collapse
|
5
|
Fritz AJ, Sehgal N, Pliss A, Xu J, Berezney R. Chromosome territories and the global regulation of the genome. Genes Chromosomes Cancer 2019; 58:407-426. [PMID: 30664301 DOI: 10.1002/gcc.22732] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 01/11/2019] [Accepted: 01/12/2019] [Indexed: 12/29/2022] Open
Abstract
Spatial positioning is a fundamental principle governing nuclear processes. Chromatin is organized as a hierarchy from nucleosomes to Mbp chromatin domains (CD) or topologically associating domains (TADs) to higher level compartments culminating in chromosome territories (CT). Microscopic and sequencing techniques have substantiated chromatin organization as a critical factor regulating gene expression. For example, enhancers loop back to interact with their target genes almost exclusively within TADs, distally located coregulated genes reposition into common transcription factories upon activation, and Mbp CDs exhibit dynamic motion and configurational changes in vivo. A longstanding question in the nucleus field is whether an interactive nuclear matrix provides a direct link between structure and function. The findings of nonrandom radial positioning of CT within the nucleus suggest the possibility of preferential interaction patterns among populations of CT. Sequential labeling up to 10 CT followed by application of computer imaging and geometric graph mining algorithms revealed cell-type specific interchromosomal networks (ICN) of CT that are altered during the cell cycle, differentiation, and cancer progression. It is proposed that the ICN correlate with the global level of genome regulation. These approaches also demonstrated that the large scale 3-D topology of CT is specific for each CT. The cell-type specific proximity of certain chromosomal regions in normal cells may explain the propensity of distinct translocations in cancer subtypes. Understanding how genes are dysregulated upon disruption of the normal "wiring" of the nucleus by translocations, deletions, and amplifications that are hallmarks of cancer, should enable more targeted therapeutic strategies.
Collapse
Affiliation(s)
- Andrew J Fritz
- Department of Biochemistry and University of Vermont Cancer Center, The University of Vermont Larner College of Medicine, Burlington, Vermont
| | - Nitasha Sehgal
- Department of Biological Sciences, University at Buffalo, Buffalo, New York
| | - Artem Pliss
- Institute for Lasers, Photonics and Biophotonics and the Department of Chemistry, University at Buffalo, Buffalo, New York
| | - Jinhui Xu
- Department of Computer Science and Engineering, University at Buffalo, Buffalo, New York
| | - Ronald Berezney
- Department of Biological Sciences, University at Buffalo, Buffalo, New York
| |
Collapse
|
6
|
Nutritional Programming of Lifespan by FOXO Inhibition on Sugar-Rich Diets. Cell Rep 2017; 18:299-306. [PMID: 28076775 PMCID: PMC5263231 DOI: 10.1016/j.celrep.2016.12.029] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Revised: 10/21/2016] [Accepted: 12/08/2016] [Indexed: 11/20/2022] Open
Abstract
Consumption of unhealthy diets is exacerbating the burden of age-related ill health in aging populations. Such diets can program mammalian physiology to cause long-term, detrimental effects. Here, we show that, in Drosophila melanogaster, an unhealthy, high-sugar diet in early adulthood programs lifespan to curtail later-life survival despite subsequent dietary improvement. Excess dietary sugar promotes insulin-like signaling, inhibits dFOXO-the Drosophila homolog of forkhead box O (FOXO) transcription factors-and represses expression of dFOXO target genes encoding epigenetic regulators. Crucially, dfoxo is required both for transcriptional changes that mark the fly's dietary history and for nutritional programming of lifespan by excess dietary sugar, and this mechanism is conserved in Caenorhabditis elegans. Our study implicates FOXO factors, the evolutionarily conserved determinants of animal longevity, in the mechanisms of nutritional programming of animal lifespan.
Collapse
|
7
|
Barton C, Iliopoulos CS, Pissis SP, Arhondakis S. Transcriptome activity of isochores during preimplantation process in human and mouse. FEBS Lett 2016; 590:2297-306. [PMID: 27279593 DOI: 10.1002/1873-3468.12245] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Revised: 05/27/2016] [Accepted: 06/03/2016] [Indexed: 12/17/2022]
Abstract
This work investigates the role of isochores during preimplantation process. Using RNA-seq data from human and mouse preimplantation stages, we created the spatio-temporal transcriptional profiles of the isochores during preimplantation. We found that from early to late stages, GC-rich isochores increase their expression while GC-poor ones decrease it. Network analysis revealed that modules with few coexpressed isochores are GC-poorer than medium-large ones, characterized by an opposite expression as preimplantation advances, decreasing and increasing respectively. Our results reveal a functional contribution of the isochores, supporting the presence of structural-functional interactions during maturation and early-embryonic development.
Collapse
Affiliation(s)
- Carl Barton
- The Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, UK
| | | | | | - Stilianos Arhondakis
- Institute of Molecular Biology and Biotechnology (IMBB), Foundation for Research and Technology - Hellas (FORTH), Heraklion, Crete, Greece
| |
Collapse
|
8
|
Spagnol ST, Armiger TJ, Dahl KN. Mechanobiology of Chromatin and the Nuclear Interior. Cell Mol Bioeng 2016; 9:268-276. [PMID: 28163791 PMCID: PMC5289645 DOI: 10.1007/s12195-016-0444-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Accepted: 05/03/2016] [Indexed: 02/06/2023] Open
Abstract
The view of the cell nucleus has evolved from an isolated, static organelle to a dynamic structure integrated with other mechanical elements of the cell. Both dynamics and integration appear to contribute to a mechanical regulation of genome expression. Here, we review physical structures inside the nucleus at different length scales and the dynamic reorganization modulated by cellular forces. First, we discuss nuclear organization focusing on self-assembly and disassembly of DNA structures and various nuclear bodies. We then discuss the importance of connections from the chromatin fiber through the nuclear envelope to the rest of the cell as they relate to mechanobiology. Finally, we discuss how cell stimulation, both chemical and physical, can alter nuclear structures and ultimately cellular function in healthy cells and in some model diseases. The view of chromatin and nuclear bodies as mechanical entities integrated with force generation from the cytoskeleton combines polymer physics with cell biology and medicine.
Collapse
Affiliation(s)
- Stephen T. Spagnol
- Department of Chemical Engineering, Carnegie Mellon University, 5000 Forbes Ave., Pittsburgh, PA 15213, USA
| | - Travis J. Armiger
- Department of Chemical Engineering, Carnegie Mellon University, 5000 Forbes Ave., Pittsburgh, PA 15213, USA
| | - Kris Noel Dahl
- Department of Chemical Engineering, Carnegie Mellon University, 5000 Forbes Ave., Pittsburgh, PA 15213, USA
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, USA
| |
Collapse
|
9
|
Spagnol ST, Dahl KN. Spatially Resolved Quantification of Chromatin Condensation through Differential Local Rheology in Cell Nuclei Fluorescence Lifetime Imaging. PLoS One 2016; 11:e0146244. [PMID: 26765322 PMCID: PMC4713418 DOI: 10.1371/journal.pone.0146244] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Accepted: 12/15/2015] [Indexed: 02/06/2023] Open
Abstract
The linear sequence of DNA encodes access to the complete set of proteins that carry out cellular functions. Yet, much of the functionality appropriate for each cell is nested within layers of dynamic regulation and organization, including a hierarchy of chromatin structural states and spatial arrangement within the nucleus. There remain limitations in our understanding of gene expression within the context of nuclear organization from an inability to characterize hierarchical chromatin organization in situ. Here we demonstrate the use of fluorescence lifetime imaging microscopy (FLIM) to quantify and spatially resolve chromatin condensation state using cell-permeable, DNA-binding dyes (Hoechst 33342 and PicoGreen). Through in vitro and in situ experiments we demonstrate the sensitivity of fluorescence lifetime to condensation state through the mechanical effects that accompany the structural changes and are reflected through altered viscosity. The establishment of FLIM for resolving and quantifying chromatin condensation state opens the door for single-measurement mechanical studies of the nucleus and for characterizing the role of genome structure and organization in nuclear processes that accompany physiological and pathological changes.
Collapse
Affiliation(s)
- Stephen T. Spagnol
- Department of Chemical Engineering, Carnegie Mellon University, 5000 Forbes Ave., Pittsburgh, Pennsylvania, 15213, United States of America
| | - Kris Noel Dahl
- Department of Chemical Engineering, Carnegie Mellon University, 5000 Forbes Ave., Pittsburgh, Pennsylvania, 15213, United States of America
- Department of Biomedical Engineering, Carnegie Mellon University, 5000 Forbes Ave., Pittsburgh, Pennsylvania, 15213, United States of America
- * E-mail:
| |
Collapse
|
10
|
Fritz A, Barutcu AR, Martin-Buley L, vanWijnen AJ, Zaidi SK, Imbalzano AN, Lian JB, Stein JL, Stein GS. Chromosomes at Work: Organization of Chromosome Territories in the Interphase Nucleus. J Cell Biochem 2016; 117:9-19. [PMID: 26192137 PMCID: PMC4715719 DOI: 10.1002/jcb.25280] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Accepted: 07/17/2015] [Indexed: 12/26/2022]
Abstract
The organization of interphase chromosomes in chromosome territories (CTs) was first proposed more than one hundred years ago. The introduction of increasingly sophisticated microscopic and molecular techniques, now provide complementary strategies for studying CTs in greater depth than ever before. Here we provide an overview of these strategies and how they are being used to elucidate CT interactions and the role of these dynamically regulated, nuclear-structure building blocks in directly supporting nuclear function in a physiologically responsive manner.
Collapse
Affiliation(s)
- Andrew Fritz
- University of Vermont Cancer Center, Department of Biochemistry, University of Vermont College of Medicine, 89 Beaumont Avenue, Burlington, VT 05405, USA
| | - A. Rasim Barutcu
- Department of Cell and Developmental Biology, University of Massachusetts Medical School, 55 Lake Avenue North, Worcester, MA 01655, USA
| | - Lori Martin-Buley
- University of Vermont Cancer Center, Department of Biochemistry, University of Vermont College of Medicine, 89 Beaumont Avenue, Burlington, VT 05405, USA
| | - André J. vanWijnen
- Departments of Orthopedic Surgery and Biochemistry & Molecular Biology, Mayo Clinic, Rochester, MN, USA
| | - Sayyed K. Zaidi
- University of Vermont Cancer Center, Department of Biochemistry, University of Vermont College of Medicine, 89 Beaumont Avenue, Burlington, VT 05405, USA
| | - Anthony N. Imbalzano
- Department of Cell and Developmental Biology, University of Massachusetts Medical School, 55 Lake Avenue North, Worcester, MA 01655, USA
| | - Jane B. Lian
- University of Vermont Cancer Center, Department of Biochemistry, University of Vermont College of Medicine, 89 Beaumont Avenue, Burlington, VT 05405, USA
| | - Janet L. Stein
- University of Vermont Cancer Center, Department of Biochemistry, University of Vermont College of Medicine, 89 Beaumont Avenue, Burlington, VT 05405, USA
| | - Gary S. Stein
- University of Vermont Cancer Center, Department of Biochemistry, University of Vermont College of Medicine, 89 Beaumont Avenue, Burlington, VT 05405, USA
| |
Collapse
|
11
|
Fritz AJ, Stojkovic B, Ding H, Xu J, Bhattacharya S, Berezney R. Cell type specific alterations in interchromosomal networks across the cell cycle. PLoS Comput Biol 2014; 10:e1003857. [PMID: 25275626 PMCID: PMC4183423 DOI: 10.1371/journal.pcbi.1003857] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2014] [Accepted: 08/16/2014] [Indexed: 11/18/2022] Open
Abstract
The interchromosomal organization of a subset of human chromosomes (#1, 4, 11, 12, 16, 17, and 18) was examined in G1 and S phase of human WI38 lung fibroblast and MCF10A breast epithelial cells. Radial positioning of the chromosome territories (CTs) was independent of gene density, but size dependent. While no changes in radial positioning during the cell cycle were detected, there were stage-specific differences between cell types. Each CT was in close proximity (interaction) with a similar number of other CT except the gene rich CT17 which had significantly more interactions. Furthermore, CT17 was a member of the highest pairwise CT combinations with multiple interactions. Major differences were detected in the pairwise interaction profiles of MCF10A versus WI38 including cell cycle alterations from G1 to S. These alterations in interaction profiles were subdivided into five types: overall increase, overall decrease, switching from 1 to ≥2 interactions, vice versa, or no change. A global data mining program termed the chromatic median determined the most probable overall association network for the entire subset of CT. This probabilistic interchromosomal network was nearly completely different between the two cell lines. It was also strikingly altered across the cell cycle in MCF10A, but only slightly in WI38. We conclude that CT undergo multiple and preferred interactions with other CT in the nucleus and form preferred -albeit probabilistic- interchromosomal networks. This network of interactions is altered across the cell cycle and between cell types. It is intriguing to consider the relationship of these alterations to the corresponding changes in the gene expression program across the cell cycle and in different cell types.
Collapse
Affiliation(s)
- Andrew J. Fritz
- Department of Biological Sciences, University at Buffalo, State University of New York, Buffalo, New York, United States of America
| | - Branislav Stojkovic
- Department of Computer Science and Engineering, University at Buffalo, State University of New York, Buffalo, New York, United States of America
| | - Hu Ding
- Department of Computer Science and Engineering, University at Buffalo, State University of New York, Buffalo, New York, United States of America
| | - Jinhui Xu
- Department of Computer Science and Engineering, University at Buffalo, State University of New York, Buffalo, New York, United States of America
| | - Sambit Bhattacharya
- Department of Computer Sciences, Fayetteville State University, Fayetteville, North Carolina, United States of America
| | - Ronald Berezney
- Department of Biological Sciences, University at Buffalo, State University of New York, Buffalo, New York, United States of America
| |
Collapse
|
12
|
Fritz AJ, Stojkovic B, Ding H, Xu J, Bhattacharya S, Gaile D, Berezney R. Wide-scale alterations in interchromosomal organization in breast cancer cells: defining a network of interacting chromosomes. Hum Mol Genet 2014; 23:5133-46. [PMID: 24833717 DOI: 10.1093/hmg/ddu237] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The interchromosomal spatial positionings of a subset of human chromosomes was examined in the human breast cell line MCF10A (10A) and its malignant counterpart MCF10CA1a (CA1a). The nine chromosomes selected (#1, 4, 11, 12, 15, 16, 18, 21 and X) cover a wide range in size and gene density and compose ∼40% of the total human genome. Radial positioning of the chromosome territories (CT) was size dependent with certain of the CT more peripheral in CA1a. Each CT was in close proximity (interaction) with a similar number of other CT except the inactive CTXi. It had lower levels of interchromosomal partners in 10A which increased strikingly in CA1a. Major alterations from 10A to CA1a were detected in the pairwise interaction profiles which were subdivided into five types of altered interaction profiles: overall increase, overall decrease, switching from 1 to ≥2, vice versa or no change. A global data mining program termed the chromatic median calculated the most probable overall association network for the entire subset of CT. This interchromosomal network was drastically altered in CA1a with only 1 of 20 shared connections. We conclude that CT undergo multiple and preferred interactions with other CT in the cell nucleus and form preferred-albeit probabilistic-interchromosomal networks. This network of interactions is highly altered in malignant human breast cells. It is intriguing to consider the relationship of these alterations to the corresponding changes in the gene expression program of these malignant cancer cells.
Collapse
Affiliation(s)
| | - Branislav Stojkovic
- Department of Computer Sciences, University at Buffalo, State University of New York, Buffalo, NY 14260, USA
| | - Hu Ding
- Department of Computer Sciences, University at Buffalo, State University of New York, Buffalo, NY 14260, USA
| | - Jinhui Xu
- Department of Computer Sciences, University at Buffalo, State University of New York, Buffalo, NY 14260, USA
| | - Sambit Bhattacharya
- Department of Computer Sciences, Fayetteville State University, Fayetteville, NC 28301, USA
| | - Daniel Gaile
- Department of Biostatistics, University at Buffalo, State University of New York, Buffalo, NY 14214, USA
| | | |
Collapse
|
13
|
Genome-wide analysis links emerin to neuromuscular junction activity in Caenorhabditis elegans. Genome Biol 2014; 15:R21. [PMID: 24490688 PMCID: PMC4053756 DOI: 10.1186/gb-2014-15-2-r21] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2013] [Accepted: 02/03/2014] [Indexed: 01/01/2023] Open
Abstract
Background Laminopathies are diseases characterized by defects in nuclear envelope structure. A well-known example is Emery-Dreifuss muscular dystrophy, which is caused by mutations in the human lamin A/C and emerin genes. While most nuclear envelope proteins are ubiquitously expressed, laminopathies often affect only a subset of tissues. The molecular mechanisms underlying these tissue-specific manifestations remain elusive. We hypothesize that different functional subclasses of genes might be differentially affected by defects in specific nuclear envelope components. Results Here we determine genome-wide DNA association profiles of two nuclear envelope components, lamin/LMN-1 and emerin/EMR-1 in adult Caenorhabditis elegans. Although both proteins bind to transcriptionally inactive regions of the genome, EMR-1 is enriched at genes involved in muscle and neuronal function. Deletion of either EMR-1 or LEM-2, another integral envelope protein, causes local changes in nuclear architecture as evidenced by altered association between DNA and LMN-1. Transcriptome analyses reveal that EMR-1 and LEM-2 are associated with gene repression, particularly of genes implicated in muscle and nervous system function. We demonstrate that emr-1, but not lem-2, mutants are sensitive to the cholinesterase inhibitor aldicarb, indicating altered activity at neuromuscular junctions. Conclusions We identify a class of elements that bind EMR-1 but do not associate with LMN-1, and these are enriched for muscle and neuronal genes. Our data support a redundant function of EMR-1 and LEM-2 in chromatin anchoring to the nuclear envelope and gene repression. We demonstrate a specific role of EMR-1 in neuromuscular junction activity that may contribute to Emery-Dreifuss muscular dystrophy in humans.
Collapse
|
14
|
Waldeck W, Mueller G, Glatting KH, Hotz-Wagenblatt A, Diessl N, Chotewutmonti S, Langowski J, Semmler W, Wiessler M, Braun K. Spatial localization of genes determined by intranuclear DNA fragmentation with the fusion proteins lamin KRED and histone KRED und visible light. Int J Med Sci 2013; 10:1136-48. [PMID: 23869190 PMCID: PMC3714390 DOI: 10.7150/ijms.6121] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2013] [Accepted: 06/06/2013] [Indexed: 12/02/2022] Open
Abstract
The highly organized DNA architecture inside of the nuclei of cells is accepted in the scientific world. In the human genome about 3 billion nucleotides are organized as chromatin in the cell nucleus. In general, they are involved in gene regulation and transcription by histone modification. Small chromosomes are localized in a central nuclear position whereas the large chromosomes are peripherally positioned. In our experiments we inserted fusion proteins consisting of a component of the nuclear lamina (lamin B1) and also histone H2A, both combined with the light inducible fluorescence protein KillerRed (KRED). After activation, KRED generates reactive oxygen species (ROS) producing toxic effects and may cause cell death. We analyzed the spatial damage distribution in the chromatin after illumination of the cells with visible light. The extent of DNA damage was strongly dependent on its localization inside of nuclei. The ROS activity allowed to gain information about the location of genes and their functions via sequencing and data base analysis of the double strand breaks of the isolated DNA. A connection between the damaged gene sequences and some diseases was found.
Collapse
Affiliation(s)
- Waldemar Waldeck
- 1. German Cancer Research Center, Dept. of Biophysics of Macromolecules, INF 580, D-69120 Heidelberg, Germany
| | - Gabriele Mueller
- 1. German Cancer Research Center, Dept. of Biophysics of Macromolecules, INF 580, D-69120 Heidelberg, Germany
| | - Karl-Heinz Glatting
- 3. German Cancer Research Center, Genomics Proteomics Core Facility HUSAR Bioinformatics Lab, INF 580, D-69120 Heidelberg, Germany
| | - Agnes Hotz-Wagenblatt
- 3. German Cancer Research Center, Genomics Proteomics Core Facility HUSAR Bioinformatics Lab, INF 580, D-69120 Heidelberg, Germany
| | - Nicolle Diessl
- 4. German Cancer Research Center, Genomics and Proteomics Core Facility High Throughput Sequencing, INF 580, D-69120 Heidelberg, Germany
| | - Sasithorn Chotewutmonti
- 4. German Cancer Research Center, Genomics and Proteomics Core Facility High Throughput Sequencing, INF 580, D-69120 Heidelberg, Germany
| | - Jörg Langowski
- 1. German Cancer Research Center, Dept. of Biophysics of Macromolecules, INF 580, D-69120 Heidelberg, Germany
| | - Wolfhard Semmler
- 2. German Cancer Research Center, Dept. of Medical Physics in Radiology, INF 280, D-69120 Heidelberg, Germany
| | - Manfred Wiessler
- 2. German Cancer Research Center, Dept. of Medical Physics in Radiology, INF 280, D-69120 Heidelberg, Germany
| | - Klaus Braun
- 2. German Cancer Research Center, Dept. of Medical Physics in Radiology, INF 280, D-69120 Heidelberg, Germany
| |
Collapse
|
15
|
Abstract
There is considerable evidence that transcription does not occur homogeneously or diffusely throughout the nucleus, but rather at a number of specialized, discrete sites termed transcription factories. The factories are composed of ~4–30 RNA polymerase molecules, and are associated with many other molecules involved in transcriptional activation and mRNA processing. Some data suggest that the polymerase molecules within a factory remain stationary relative to the transcribed DNA, which is thought to be reeled through the factory site. There is also some evidence that transcription factories could help organize chromatin and nuclear structure, contributing to both the formation of chromatin loops and the clustering of active and co-regulated genes.
Collapse
Affiliation(s)
- Dietmar Rieder
- Division of Bioinformatics, Biocenter, Innsbruck Medical University Innsbruck, Austria
| | | | | |
Collapse
|
16
|
Muck JS, Kandasamy K, Englmann A, Günther M, Zink D. Perinuclear positioning of the inactive human cystic fibrosis gene depends on CTCF, A-type lamins and an active histone deacetylase. J Cell Biochem 2012; 113:2607-21. [PMID: 22422629 DOI: 10.1002/jcb.24136] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The nuclear positioning of mammalian genes often correlates with their functional state. For instance, the human cystic fibrosis transmembrane conductance regulator (CFTR) gene associates with the nuclear periphery in its inactive state, but occupies interior positions when active. It is not understood how nuclear gene positioning is determined. Here, we investigated trichostatin A (TSA)-induced repositioning of CFTR in order to address molecular mechanisms controlling gene positioning. Treatment with the histone deacetylase (HDAC) inhibitor TSA induced increased histone acetylation and CFTR repositioning towards the interior within 20 min. When CFTR localized in the nuclear interior (either after TSA treatment or when the gene was active) consistent histone H3 hyperacetylation was observed at a CTCF site close to the CFTR promoter. Knockdown experiments revealed that CTCF was essential for perinuclear CFTR positioning and both, CTCF knockdown as well as TSA treatment had similar and CFTR-specific effects on radial positioning. Furthermore, knockdown experiments revealed that also A-type lamins were required for the perinuclear positioning of CFTR. Together, the results showed that CTCF, A-type lamins and an active HDAC were essential for perinuclear positioning of CFTR and these components acted on a CTCF site adjacent to the CFTR promoter. The results are consistent with the idea that CTCF bound close to the CFTR promoter, A-type lamins and an active HDAC form a complex at the nuclear periphery, which becomes disrupted upon inhibition of the HDAC, leading to the observed release of CFTR.
Collapse
Affiliation(s)
- Joscha S Muck
- Institute of Bioengineering and Nanotechnology (IBN), Department of Cell and Tissue Engineering, 31 Biopolis Way, The Nanos, Singapore 138669
| | | | | | | | | |
Collapse
|
17
|
Abstract
Recently, we demonstrated that leaf wounding results in the synthesis of pectin methylesterase (PME), which causes the plant to release methanol into the air. Methanol emitted by a wounded plant increases the accumulation of methanol-inducible gene mRNA and enhances antibacterial resistance as well as cell-to-cell communication, which facilitates virus spreading in neighboring plants. We concluded that methanol is a signaling molecule involved in within-plant and plant-to-plant communication. Methanol is considered to be a poison in humans because of the alcohol dehydrogenase (ADH)-mediated conversion of methanol into toxic formaldehyde. However, recent data showed that methanol is a natural compound in normal, healthy humans. These data call into question whether human methanol is a metabolic waste product or whether methanol has specific function in humans. Here, to reveal human methanol-responsive genes (MRGs), we used suppression subtractive hybridization cDNA libraries of HeLa cells lacking ADH and exposed to methanol. This design allowed us to exclude genes involved in formaldehyde and formic acid detoxification from our analysis. We identified MRGs and revealed a correlation between increases in methanol content in the plasma and changes in human leukocyte MRG mRNA levels after fresh salad consumption by volunteers. Subsequently, we showed that the methanol generated by the pectin/PME complex in the gastrointestinal tract of mice induces the up- and downregulation of brain MRG mRNA. We used an adapted Y-maze to measure the locomotor behavior of the mice while breathing wounded plant vapors in two-choice assays. We showed that mice prefer the odor of methanol to other plant volatiles and that methanol changed MRG mRNA accumulation in the mouse brain. We hypothesize that the methanol emitted by wounded plants may have a role in plant-animal signaling. The known positive effect of plant food intake on human health suggests a role for physiological methanol in human gene regulation.
Collapse
|
18
|
Toxic effects of expanded ataxin-1 involve mechanical instability of the nuclear membrane. Biochim Biophys Acta Mol Basis Dis 2012; 1822:906-17. [PMID: 22330095 DOI: 10.1016/j.bbadis.2012.01.016] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2011] [Revised: 01/26/2012] [Accepted: 01/30/2012] [Indexed: 01/01/2023]
Abstract
Ataxin 1 (ATXN1) is the protein involved in spinocerebellar ataxia type 1, one of nine dominantly inherited neurodegenerative diseases triggered by polyglutamine expansion. One of the isolated polyglutamine tracts properties is to interact with lipid bilayers. Here we used a multidisciplinary approach to test whether one of the mechanisms responsible for neuronal degeneration involves the destabilization of the nuclear membrane. We thus analyzed the interaction between ATXN1 and lipid membranes, both on cellular models and on artificial lipid bilayers, comparing pathological expanded polyglutamine and histidine interrupted non-harmful polyglutamine tracts of the same length. The toxicity of the different constructs was tested in transiently transfected COS1 cells. Cells expressing pathological ATXN1 presented a significantly higher frequency of anomalous nuclei with respect to those expressing non-harmful ATXN1. Immunofluorescence and electron microscopy showed severe damage in the nuclear membrane of cells expressing the pathological protein. Atomic force microscopy on artificial membranes containing interrupted and non-interrupted partial ATXN1 peptides revealed a different arrangement of the peptides within the lipid bilayer. Force-distance measurements indicated that membrane fragility increases with the lengthening of the uninterrupted glutamine. Transmembrane electrical measurements were performed on artificial bilayers and on the inner nuclear membrane of ATXN1 full length transfected cells. Both artificial lipid bilayers and cellular models demonstrated the dynamic appearance of ionic pathways. Uninterrupted polyglutamines showed not only a larger ionic flow, but also an increase in the single event conductance. Collectively, our results suggest that expanded ATXN1 may induce unregulated ionic pathways in the nuclear membrane, causing severe damage to the cell.
Collapse
|
19
|
Freson K, Izzi B, Van Geet C. From genetics to epigenetics in platelet research. Thromb Res 2011; 129:325-9. [PMID: 22192152 DOI: 10.1016/j.thromres.2011.11.050] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2011] [Revised: 11/25/2011] [Accepted: 11/25/2011] [Indexed: 01/25/2023]
Abstract
Proteomic and genomic technologies have recently defined almost the complete platelet transcriptome and proteome as well as many important protein-protein interactions that are critical for platelet function under normal and pathological conditions such as an abnormal platelet function and cardiovascular disease (CVD). In contrast, the study of epigenetic processes such as DNA methylation and histone modification is still an unexplored domain in this research. Epigenetic marks are erased in early embryogenesis and reset during development. Environmental influences can lead to stable changes in the epigenome that alter the individual's susceptibility to disease. We will focus on the progress of DNA methylation studies in CVD. Techniques for genomic-scale analysis of DNA methylation became available but at the current stage however, several questions are still open as methylation marks are tissue-specific and it is not yet known whether leukocyte DNA reflects the correct epigenetic signature. It also remains uncertain if the observed associations of epigenetic profiles with disease are causative or just epiphenomena. Preliminary evidence exists that changes in DNA methylation can alter platelet activity as shown for the imprinted GNAS cluster that codes for the stimulatory G protein alpha subunit (Gs). Gs interacts with adenylyl cyclase to generate cAMP, which is inhibitory for platelet function. Patients with abnormal GNAS methylation have platelet Gs hypofunction and can develop risk for thrombosis and ischemic stroke at young age. This review is a brief introduction to these different aspects in epigenomics with a focus on DNA methylation in CVD and platelet research.
Collapse
Affiliation(s)
- Kathleen Freson
- Center for Molecular and Vascular Biology, University of Leuven, Leuven, Belgium.
| | | | | |
Collapse
|
20
|
Uhl M, Mellert K, Striegl B, Deibler M, Lamla M, Spatz JP, Kemkemer R, Kaufmann D. Cyclic stretch increases splicing noise rate in cultured human fibroblasts. BMC Res Notes 2011; 4:470. [PMID: 22040907 PMCID: PMC3220655 DOI: 10.1186/1756-0500-4-470] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2011] [Accepted: 10/31/2011] [Indexed: 01/07/2023] Open
Abstract
Background Mechanical forces are known to alter the expression of genes, but it has so far not been reported whether they may influence the fidelity of nucleus-based processes. One experimental approach permitting to address this question is the application of cyclic stretch to cultured human fibroblasts. As a marker for the precision of nucleus-based processes, the number of errors that occur during co-transcriptional splicing can then be measured. This so-called splicing noise is found at low frequency in pre-mRNA splicing. Findings The amount of splicing noise was measured by RT-qPCR of seven exon skips from the test genes AATF, MAP3K11, NF1, PCGF2, POLR2A and RABAC1. In cells treated by altered uniaxial cyclic stretching for 18 h, a uniform and significant increase of splicing noise was found for all detectable exon skips. Conclusion Our data demonstrate that application of cyclic stretch to cultured fibroblasts correlates with a reduced transcriptional fidelity caused by increasing splicing noise.
Collapse
Affiliation(s)
- Michael Uhl
- Institute of Human Genetics, University of Ulm, Albert Einstein Allee 11, D 89070 Ulm, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Pairing of lacO tandem repeats in Arabidopsis thaliana nuclei requires the presence of hypermethylated, large arrays at two chromosomal positions, but does not depend on H3-lysine-9-dimethylation. Chromosoma 2011; 120:609-19. [DOI: 10.1007/s00412-011-0335-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2011] [Revised: 07/12/2011] [Accepted: 07/20/2011] [Indexed: 10/17/2022]
|
22
|
Elvenes J, Sjøttem E, Holm T, Bjørkøy G, Johansen T. Pax6 localizes to chromatin-rich territories and displays a slow nuclear mobility altered by disease mutations. Cell Mol Life Sci 2010; 67:4079-94. [PMID: 20577777 PMCID: PMC11115490 DOI: 10.1007/s00018-010-0429-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2010] [Revised: 05/26/2010] [Accepted: 06/01/2010] [Indexed: 01/02/2023]
Abstract
The transcription factor Pax6 is crucial for the embryogenesis of multiple organs, including the eyes, parts of the brain and the pancreas. Mutations in one allele of PAX6 lead to eye diseases including Peter's anomaly and aniridia. Here, we use fluorescence recovery after photobleaching to show that Pax6 and also other Pax family proteins display a strikingly low nuclear mobility compared to other transcriptional regulators. For Pax6, the slow mobility is largely due to the presence of two DNA-binding domains, but protein-protein interactions also contribute. Consistently, the subnuclear localization of Pax6 suggests that it interacts preferentially with chromatin-rich territories. Some aniridia-causing missense mutations in Pax6 have impaired DNA-binding affinity. Interestingly, when these mutants were analyzed by FRAP, they displayed a pronounced increased mobility compared to wild-type Pax6. Hence, our results support the conclusion that disease mutations result in proteins with impaired function because of altered DNA- and protein-interaction capabilities.
Collapse
Affiliation(s)
- Julianne Elvenes
- Molecular Cancer Research Group, Institute of Medical Biology, University of Tromsø, 9037 Tromso, Norway
| | - Eva Sjøttem
- Molecular Cancer Research Group, Institute of Medical Biology, University of Tromsø, 9037 Tromso, Norway
| | - Turid Holm
- Molecular Cancer Research Group, Institute of Medical Biology, University of Tromsø, 9037 Tromso, Norway
| | - Geir Bjørkøy
- Molecular Cancer Research Group, Institute of Medical Biology, University of Tromsø, 9037 Tromso, Norway
- University College of Sør-Trøndelag, 7006 Trondheim, Norway
| | - Terje Johansen
- Molecular Cancer Research Group, Institute of Medical Biology, University of Tromsø, 9037 Tromso, Norway
| |
Collapse
|
23
|
van Bemmel JG, Pagie L, Braunschweig U, Brugman W, Meuleman W, Kerkhoven RM, van Steensel B. The insulator protein SU(HW) fine-tunes nuclear lamina interactions of the Drosophila genome. PLoS One 2010; 5:e15013. [PMID: 21124834 PMCID: PMC2991331 DOI: 10.1371/journal.pone.0015013] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2010] [Accepted: 10/05/2010] [Indexed: 12/11/2022] Open
Abstract
Specific interactions of the genome with the nuclear lamina (NL) are thought to assist chromosome folding inside the nucleus and to contribute to the regulation of gene expression. High-resolution mapping has recently identified hundreds of large, sharply defined lamina-associated domains (LADs) in the human genome, and suggested that the insulator protein CTCF may help to demarcate these domains. Here, we report the detailed structure of LADs in Drosophila cells, and investigate the putative roles of five insulator proteins in LAD organization. We found that the Drosophila genome is also organized in discrete LADs, which are about five times smaller than human LADs but contain on average a similar number of genes. Systematic comparison to new and published insulator binding maps shows that only SU(HW) binds preferentially at LAD borders and at specific positions inside LADs, while GAF, CTCF, BEAF-32 and DWG are mostly absent from these regions. By knockdown and overexpression studies we demonstrate that SU(HW) weakens genome - NL interactions through a local antagonistic effect, but we did not obtain evidence that it is essential for border formation. Our results provide insights into the evolution of LAD organization and identify SU(HW) as a fine-tuner of genome - NL interactions.
Collapse
Affiliation(s)
- Joke G. van Bemmel
- Division of Gene Regulation, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Ludo Pagie
- Division of Gene Regulation, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Ulrich Braunschweig
- Division of Gene Regulation, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Wim Brugman
- Central Microarray Facility, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Wouter Meuleman
- Division of Gene Regulation, Netherlands Cancer Institute, Amsterdam, The Netherlands
- Division of Molecular Biology, Netherlands Cancer Institute, Amsterdam, The Netherlands
- Delft Bioinformatics Lab, Delft University of Technology, Delft, The Netherlands
| | - Ron M. Kerkhoven
- Central Microarray Facility, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Bas van Steensel
- Division of Gene Regulation, Netherlands Cancer Institute, Amsterdam, The Netherlands
- * E-mail:
| |
Collapse
|
24
|
Abstract
The spatial organization of chromosomes inside the cell nucleus is still poorly understood. This organization is guided by intra- and interchromosomal contacts and by interactions of specific chromosomal loci with relatively fixed nuclear 'landmarks' such as the nuclear envelope and the nucleolus. Researchers have begun to use new molecular genome-wide mapping techniques to uncover both types of molecular interactions, providing insights into the fundamental principles of interphase chromosome folding.
Collapse
Affiliation(s)
- Bas van Steensel
- Division of Gene Regulation, Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands; phone: +31.20.5122040
| | - Job Dekker
- Program in Gene Function and Expression, Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, 364 Plantation Street, Worcester, MA 01605; phone: (508) 856-4371
| |
Collapse
|
25
|
Abstract
Chromosome territories (CTs) constitute a major feature of nuclear architecture. In a brief statement, the possible contribution of nuclear architecture studies to the field of epigenomics is considered, followed by a historical account of the CT concept and the final compelling experimental evidence of a territorial organization of chromosomes in all eukaryotes studied to date. Present knowledge of nonrandom CT arrangements, of the internal CT architecture, and of structural interactions with other CTs is provided as well as the dynamics of CT arrangements during cell cycle and postmitotic terminal differentiation. The article concludes with a discussion of open questions and new experimental strategies to answer them.
Collapse
Affiliation(s)
- Thomas Cremer
- Biozentrum, Department of Biology II, Ludwig-Maximilians-University, Grosshadernerstrasse 2, 82152 Martinsried, Germany.
| | | |
Collapse
|
26
|
Rouquette J, Cremer C, Cremer T, Fakan S. Functional nuclear architecture studied by microscopy: present and future. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2010; 282:1-90. [PMID: 20630466 DOI: 10.1016/s1937-6448(10)82001-5] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
In this review we describe major contributions of light and electron microscopic approaches to the present understanding of functional nuclear architecture. The large gap of knowledge, which must still be bridged from the molecular level to the level of higher order structure, is emphasized by differences of currently discussed models of nuclear architecture. Molecular biological tools represent new means for the multicolor visualization of various nuclear components in living cells. New achievements offer the possibility to surpass the resolution limit of conventional light microscopy down to the nanometer scale and require improved bioinformatics tools able to handle the analysis of large amounts of data. In combination with the much higher resolution of electron microscopic methods, including ultrastructural cytochemistry, correlative microscopy of the same cells in their living and fixed state is the approach of choice to combine the advantages of different techniques. This will make possible future analyses of cell type- and species-specific differences of nuclear architecture in more detail and to put different models to critical tests.
Collapse
Affiliation(s)
- Jacques Rouquette
- Biocenter, Ludwig Maximilians University (LMU), Martinsried, Germany
| | | | | | | |
Collapse
|
27
|
Harnicarová Horáková A, Bártová E, Kozubek S. Chromatin structure with respect to histone signature changes during cell differentiation. Cell Struct Funct 2010; 35:31-44. [PMID: 20424340 DOI: 10.1247/csf.09021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Here, we would like to point out important milestones in the study of nuclear radial positioning and gene expression during differentiation processes. In addition, changes in the histone signature that significantly precede various differentiation pathways are reviewed. We address the regulatory functions of chromatin structure and histone epigenetic marks that give rise to gene expression patterns that are specific to distinct differentiation pathways. The functional relevance of nuclear architecture and epigenetic traits is preferentially discussed in the context of in vitro induced enterocytic differentiation and pluripotent or differentiated embryonic stem cells. We especially focus on the recapitulation of nuclear events that have been characterized for some genes and proto-oncogenes that are important for development and differentiation.
Collapse
|
28
|
Chromatin plasticity and genome organization in pluripotent embryonic stem cells. Curr Opin Cell Biol 2010; 22:334-41. [PMID: 20226651 DOI: 10.1016/j.ceb.2010.02.001] [Citation(s) in RCA: 98] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2010] [Revised: 02/04/2010] [Accepted: 02/10/2010] [Indexed: 12/23/2022]
Abstract
In search of the mechanisms that govern pluripotency and embryonic stem cell (ESC) self-renewal, a growing list of evidence highlights chromatin as a leading factor, controlling ESC maintenance and differentiation. In-depth investigation of chromatin in ESCs revealed distinct features, including DNA methylation, histone modifications, chromatin protein composition and nuclear architecture. Here we review recent literature describing different aspects of chromatin and genome organization in ESCs. The emerging theme seems to support a mechanism maintaining chromatin plasticity in ESCs but without any dramatic changes in the organization and nuclear positioning of chromosomes and gene loci themselves. Plasticity thus seems to be supported more by different mechanisms maintaining an open chromatin state and less by regulating the location of genomic regions.
Collapse
|
29
|
Abstract
Simple visual inspection of bacteria indicated that, at least in some otherwise symmetric cells, structures such as flagella were often seen at a single pole. Because these structures are composed of proteins, it was not clear how to reconcile these observations of morphological asymmetry with the widely held view of bacteria as unstructured "bags of enzymes." However, over the last decade, numerous GFP tagged proteins have been found at specific intracellular locations such as the poles of the cells, indicating that bacteria have a high degree of intracellular organization. Here we will explore the role of chromosomal asymmetry and the presence of "new" and "old" poles that result from the cytokinesis of rod-shaped cells in establishing bipolar and monopolar protein localization patterns. This article is intended to be illustrative, not exhaustive, so we have focused on examples drawn largely from Caulobacter crescentus and Bacillus subtilis, two bacteria that undergo dramatic morphological transformation. We will highlight how breaking monopolar symmetry is essential for the correct development of these organisms.
Collapse
Affiliation(s)
- Jonathan Dworkin
- Department of Microbiology, College of Physicians and Surgeons, Columbia University, New York 10032, USA.
| |
Collapse
|