1
|
Zhang L, Leonard N, Passaro R, Luan MS, Van Tuyen P, Han LTN, Cam NH, Vogelnest L, Lynch M, Fine AE, Nga NTT, Van Long N, Rawson BM, Behie A, Van Nguyen T, Le MD, Nadler T, Walter L, Marques-Bonet T, Hofreiter M, Li M, Liu Z, Roos C. Genomic adaptation to small population size and saltwater consumption in the critically endangered Cat Ba langur. Nat Commun 2024; 15:8531. [PMID: 39358348 PMCID: PMC11447269 DOI: 10.1038/s41467-024-52811-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 09/23/2024] [Indexed: 10/04/2024] Open
Abstract
Many mammal species have declining populations, but the consequences of small population size on the genomic makeup of species remain largely unknown. We investigated the evolutionary history, genetic load and adaptive potential of the Cat Ba langur (Trachypithecus poliocephalus), a primate species endemic to Vietnam's famous Ha Long Bay and with less than 100 living individuals one of the most threatened primates in the world. Using high-coverage whole genome data of four wild individuals, we revealed the Cat Ba langur as sister species to its conspecifics of the northern limestone langur clade and found no evidence for extensive secondary gene flow after their initial separation. Compared to other primates and mammals, the Cat Ba langur showed low levels of genetic diversity, long runs of homozygosity, high levels of inbreeding and an excess of deleterious mutations in homozygous state. On the other hand, genetic diversity has been maintained in protein-coding genes and on the gene-rich human chromosome 19 ortholog, suggesting that the Cat Ba langur retained most of its adaptive potential. The Cat Ba langur also exhibits several unique non-synonymous variants that are related to calcium and sodium metabolism, which may have improved adaptation to high calcium intake and saltwater consumption.
Collapse
Affiliation(s)
- Liye Zhang
- Primate Genetics Laboratory, German Primate Center, Leibniz Institute for Primate Research, Göttingen, Germany.
- International Max Planck Research School for Genome Science (IMPRS-GS), University of Göttingen, Göttingen, Germany.
- CAS Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.
| | - Neahga Leonard
- Cat Ba Langur Conservation Project (CBLCP), Cat Ba National Park, Cat Ba Island, Cat Hai District, Hai Phong Province, Vietnam
| | - Rick Passaro
- Cat Ba Langur Conservation Project (CBLCP), Cat Ba National Park, Cat Ba Island, Cat Hai District, Hai Phong Province, Vietnam
| | - Mai Sy Luan
- Cat Ba Langur Conservation Project (CBLCP), Cat Ba National Park, Cat Ba Island, Cat Hai District, Hai Phong Province, Vietnam
| | - Pham Van Tuyen
- Cat Ba Langur Conservation Project (CBLCP), Cat Ba National Park, Cat Ba Island, Cat Hai District, Hai Phong Province, Vietnam
| | - Le Thi Ngoc Han
- Cat Ba Langur Conservation Project (CBLCP), Cat Ba National Park, Cat Ba Island, Cat Hai District, Hai Phong Province, Vietnam
| | - Nguyen Huy Cam
- Cat Ba Langur Conservation Project (CBLCP), Cat Ba National Park, Cat Ba Island, Cat Hai District, Hai Phong Province, Vietnam
| | - Larry Vogelnest
- Taronga Conservation Society Australia, Mosman, NSW, Australia
| | - Michael Lynch
- Melbourne Zoo, Zoos Victoria, Parkville, VIC, Australia
| | - Amanda E Fine
- Wildlife Conservation Society (WCS), Health Program, New York, NY, USA
| | | | - Nguyen Van Long
- Wildlife Conservation Society (WCS), Vietnam Country Program, Hanoi, Vietnam
| | - Benjamin M Rawson
- World Wildlife Fund for Nature (WWF) International, Gland, Switzerland
| | - Alison Behie
- School of Archaeology and Anthropology, The Australian National University, Canberra, ACT, Australia
| | - Truong Van Nguyen
- Primate Genetics Laboratory, German Primate Center, Leibniz Institute for Primate Research, Göttingen, Germany
- Evolutionary Adaptive Genomics, Institute of Biochemistry and Biology, Department of Science, University of Potsdam, Potsdam, Germany
- Central Institute for Natural Resources and Environmental Studies, Vietnam National University, Hanoi, Vietnam
| | - Minh D Le
- Central Institute for Natural Resources and Environmental Studies, Vietnam National University, Hanoi, Vietnam
- Faculty of Environmental Sciences, University of Science, Vietnam National University, Hanoi, Vietnam
| | - Tilo Nadler
- Three Monkeys Wildlife Conservancy, Nho Quan District, Ninh Binh Province, Ninh Binh, Vietnam
| | - Lutz Walter
- Primate Genetics Laboratory, German Primate Center, Leibniz Institute for Primate Research, Göttingen, Germany
| | - Tomas Marques-Bonet
- Institute of Evolutionary Biology (UPF-CSIC), PRBB, Barcelona, Spain
- Catalan Institution of Research and Advanced Studies (ICREA), Barcelona, Spain
- CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
- Institut Català de Paleontologia Miquel Crusafont, Universitat Autònoma de Barcelona, Edifici ICTA-ICP, Cerdanyola del Vallès, Spain
| | - Michael Hofreiter
- Evolutionary Adaptive Genomics, Institute of Biochemistry and Biology, Department of Science, University of Potsdam, Potsdam, Germany.
| | - Ming Li
- CAS Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.
| | - Zhijin Liu
- College of Life Sciences, Capital Normal University, Beijing, China.
| | - Christian Roos
- Primate Genetics Laboratory, German Primate Center, Leibniz Institute for Primate Research, Göttingen, Germany.
- Gene Bank of Primates, German Primate Center, Leibniz Institute for Primate Research, Göttingen, Germany.
| |
Collapse
|
2
|
Nuñez JG, Paulose J, Möbius W, Beller DA. Range expansions across landscapes with quenched noise. Proc Natl Acad Sci U S A 2024; 121:e2411487121. [PMID: 39136984 PMCID: PMC11348022 DOI: 10.1073/pnas.2411487121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Accepted: 07/01/2024] [Indexed: 08/15/2024] Open
Abstract
When biological populations expand into new territory, the evolutionary outcomes can be strongly influenced by genetic drift, the random fluctuations in allele frequencies. Meanwhile, spatial variability in the environment can also significantly influence the competition between subpopulations vying for space. Little is known about the interplay of these intrinsic and extrinsic sources of noise in population dynamics: When does environmental heterogeneity dominate over genetic drift or vice versa, and what distinguishes their population genetics signatures? Here, in the context of neutral evolution, we examine the interplay between a population's intrinsic, demographic noise and an extrinsic, quenched random noise provided by a heterogeneous environment. Using a multispecies Eden model, we simulate a population expanding over a landscape with random variations in local growth rates and measure how this variability affects genealogical tree structure, and thus genetic diversity. We find that, for strong heterogeneity, the genetic makeup of the expansion front is to a great extent predetermined by the set of fastest paths through the environment. The landscape-dependent statistics of these optimal paths then supersede those of the population's intrinsic noise as the main determinant of evolutionary dynamics. Remarkably, the statistics for coalescence of genealogical lineages, derived from those deterministic paths, strongly resemble the statistics emerging from demographic noise alone in uniform landscapes. This cautions interpretations of coalescence statistics and raises new challenges for inferring past population dynamics.
Collapse
Affiliation(s)
- Jimmy Gonzalez Nuñez
- Department of Physics and Astronomy, Johns Hopkins University, Baltimore, MD21218
| | - Jayson Paulose
- Department of Physics, Institute for Fundamental Science, University of Oregon, Eugene, OR97403
| | - Wolfram Möbius
- Living Systems Institute, Faculty of Health and Life Sciences, University of Exeter, ExeterEX4 4QH, United Kingdom
- Physics and Astronomy, Faculty of Environment, Science and Economy, University of Exeter, ExeterEX4 4QL, United Kingdom
| | - Daniel A. Beller
- Department of Physics and Astronomy, Johns Hopkins University, Baltimore, MD21218
| |
Collapse
|
3
|
Quilodrán CS, Rio J, Tsoupas A, Currat M. Past human expansions shaped the spatial pattern of Neanderthal ancestry. SCIENCE ADVANCES 2023; 9:eadg9817. [PMID: 37851812 PMCID: PMC10584333 DOI: 10.1126/sciadv.adg9817] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 09/11/2023] [Indexed: 10/20/2023]
Abstract
The worldwide expansion of modern humans (Homo sapiens) started before the extinction of Neanderthals (Homo neanderthalensis). Both species coexisted and interbred, leading to slightly higher introgression in East Asians than in Europeans. This distinct ancestry level has been argued to result from selection, but range expansions of modern humans could provide an alternative explanation. This hypothesis would lead to spatial introgression gradients, increasing with distance from the expansion source. We investigate the presence of Neanderthal introgression gradients after past human expansions by analyzing Eurasian paleogenomes. We show that the out-of-Africa expansion resulted in spatial gradients of Neanderthal ancestry that persisted through time. While keeping the same gradient orientation, the expansion of early Neolithic farmers contributed decisively to reducing the Neanderthal introgression in European populations compared to Asian populations. This is because Neolithic farmers carried less Neanderthal DNA than preceding Paleolithic hunter-gatherers. This study shows that inferences about past human population dynamics can be made from the spatiotemporal variation in archaic introgression.
Collapse
Affiliation(s)
| | - Jérémy Rio
- Department of Genetics and Evolution, University of Geneva, Geneva, Switzerland
| | - Alexandros Tsoupas
- Department of Genetics and Evolution, University of Geneva, Geneva, Switzerland
| | - Mathias Currat
- Department of Genetics and Evolution, University of Geneva, Geneva, Switzerland
- Institute of Genetics and Genomics in Geneva (IGE3), University of Geneva, Geneva, Switzerland
| |
Collapse
|
4
|
Moinet A, Schlichta F, Peischl S, Excoffier L. Strong neutral sweeps occurring during a population contraction. Genetics 2022; 220:6529544. [PMID: 35171980 PMCID: PMC8982045 DOI: 10.1093/genetics/iyac021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 01/22/2022] [Indexed: 11/14/2022] Open
Abstract
A strong reduction in diversity around a specific locus is often interpreted as a recent rapid fixation of a positively selected allele, a phenomenon called a selective sweep. Rapid fixation of neutral variants can however lead to a similar reduction in local diversity, especially when the population experiences changes in population size, e.g. bottlenecks or range expansions. The fact that demographic processes can lead to signals of nucleotide diversity very similar to signals of selective sweeps is at the core of an ongoing discussion about the roles of demography and natural selection in shaping patterns of neutral variation. Here, we quantitatively investigate the shape of such neutral valleys of diversity under a simple model of a single population size change, and we compare it to signals of a selective sweep. We analytically describe the expected shape of such "neutral sweeps" and show that selective sweep valleys of diversity are, for the same fixation time, wider than neutral valleys. On the other hand, it is always possible to parametrize our model to find a neutral valley that has the same width as a given selected valley. Our findings provide further insight into how simple demographic models can create valleys of genetic diversity similar to those attributed to positive selection.
Collapse
Affiliation(s)
- Antoine Moinet
- Interfaculty Bioinformatics Unit, University of Bern, Bern 3012, Switzerland,Swiss Institute of Bioinformatics, Lausanne 1015, Switzerland,Computational and Molecular Population Genetics Lab, Institute of Ecology and Evolution, University of Bern, Baltzerstrasse 6, 3012 Bern, Switzerland
| | - Flávia Schlichta
- Swiss Institute of Bioinformatics, Lausanne 1015, Switzerland,Computational and Molecular Population Genetics Lab, Institute of Ecology and Evolution, University of Bern, Baltzerstrasse 6, 3012 Bern, Switzerland
| | - Stephan Peischl
- Interfaculty Bioinformatics Unit, University of Bern, Bern 3012, Switzerland,Swiss Institute of Bioinformatics, Lausanne 1015, Switzerland,Corresponding author.
| | - Laurent Excoffier
- Swiss Institute of Bioinformatics, Lausanne 1015, Switzerland,Computational and Molecular Population Genetics Lab, Institute of Ecology and Evolution, University of Bern, Baltzerstrasse 6, 3012 Bern, Switzerland
| |
Collapse
|
5
|
Lucek K, Willi Y. Drivers of linkage disequilibrium across a species' geographic range. PLoS Genet 2021; 17:e1009477. [PMID: 33770075 PMCID: PMC8026057 DOI: 10.1371/journal.pgen.1009477] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 04/07/2021] [Accepted: 03/09/2021] [Indexed: 11/25/2022] Open
Abstract
While linkage disequilibrium (LD) is an important parameter in genetics and evolutionary biology, the drivers of LD remain elusive. Using whole-genome sequences from across a species’ range, we assessed the impact of demographic history and mating system on LD. Both range expansion and a shift from outcrossing to selfing in North American Arabidopsis lyrata were associated with increased average genome-wide LD. Our results indicate that range expansion increases short-distance LD at the farthest range edges by about the same amount as a shift to selfing. However, the extent over which LD in genic regions unfolds was shorter for range expansion compared to selfing. Linkage among putatively neutral variants and between neutral and deleterious variants increased to a similar degree with range expansion, providing support that genome-wide LD was positively associated with mutational load. As a consequence, LD combined with mutational load may decelerate range expansions and set range limits. Finally, a small number of genes were identified as LD outliers, suggesting that they experience selection by either of the two demographic processes. These included genes involved in flowering and photoperiod for range expansion, and the self-incompatibility locus for mating system. Nearby genomic variants are often co-inherited because of limited recombination. The extent of non-random association of alleles at different loci is called linkage disequilibrium (LD) and is commonly used in genomic analyses, for example to detect regions under selection or to determine effective population size. Here we reversed testing and addressed how demographic history may affect LD within a species. Using genomic data from more than a thousand individuals of North American Arabidopsis lyrata from across the entire species’ range, we quantified the effect of postglacial range expansion and a shift in mating system from outcrossing to selfing on LD. We show that both factors lead to increased LD, and that the maximal effect of range expansion is comparable with a shift in mating system to selfing. Heightened LD involves deleterious mutations, and therefore, LD can also serve as an indicator of mutation accumulation. Furthermore, we provide evidence that some genes experienced stronger increases in LD possibly due to selection associated with the two demographic changes. Our results provide a novel and broad view on the evolutionary factors shaping LD that may also apply to the very many species that underwent postglacial range expansion.
Collapse
Affiliation(s)
- Kay Lucek
- Department of Environmental Sciences, University of Basel, Basel, Switzerland
- * E-mail:
| | - Yvonne Willi
- Department of Environmental Sciences, University of Basel, Basel, Switzerland
| |
Collapse
|
6
|
Marchi N, Excoffier L. Gene flow as a simple cause for an excess of high-frequency-derived alleles. Evol Appl 2020; 13:2254-2263. [PMID: 33005222 PMCID: PMC7513730 DOI: 10.1111/eva.12998] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 04/30/2020] [Accepted: 05/04/2020] [Indexed: 01/19/2023] Open
Abstract
Most human populations exhibit an excess of high-frequency variants, leading to a U-shaped site-frequency spectrum (uSFS). This pattern has been generally interpreted as a signature of ongoing episodes of positive selection, or as evidence for a mis-assignment of ancestral/derived allelic states, but uSFS has also been observed in populations receiving gene flow from a ghost population, in structured populations, or after range expansions. In order to better explain the prevalence of high-frequency variants in humans and other populations, we describe here which patterns of gene flow and population demography can lead to uSFS by using extensive coalescent simulations. We find that uSFS can often be observed in a population if gene flow brings a few ancestral alleles from a well-differentiated population. Gene flow can either consist in single pulses of admixture or continuous immigration, but different demographic conditions are necessary to observe uSFS in these two scenarios. Indeed, an extremely low and recent gene flow is required in the case of single admixture events, while with continuous immigration, uSFS occurs only if gene flow started recently at a high rate or if it lasted for a long time at a low rate. Overall, we find that a neutral uSFS occurs under more restrictive conditions in populations having received single pulses of gene flow than in populations exposed to continuous gene flow. We also show that the uSFS observed in human populations from the 1000 Genomes Project can easily be explained by gene flow from surrounding populations without requiring past episodes of positive selection. These results imply that uSFS should be common in non-isolated populations, such as most wild or domesticated plants and animals.
Collapse
Affiliation(s)
- Nina Marchi
- CMPGInstitute of Ecology and EvolutionUniversity of BerneBerneSwitzerland
- Swiss Institute of BioinformaticsLausanneSwitzerland
| | - Laurent Excoffier
- CMPGInstitute of Ecology and EvolutionUniversity of BerneBerneSwitzerland
- Swiss Institute of BioinformaticsLausanneSwitzerland
| |
Collapse
|
7
|
Abstract
Range expansions lead to distinctive patterns of genetic variation in populations, even in the absence of selection. These patterns and their genetic consequences have been well studied for populations advancing through successive short-ranged migration events. However, most populations harbor some degree of long-range dispersal, experiencing rare yet consequential migration events over arbitrarily long distances. Although dispersal is known to strongly affect spatial genetic structure during range expansions, the resulting patterns and their impact on neutral diversity remain poorly understood. Here, we systematically study the consequences of long-range dispersal on patterns of neutral variation during range expansion in a class of dispersal models which spans the extremes of local (effectively short-ranged) and global (effectively well-mixed) migration. We find that sufficiently long-ranged dispersal leaves behind a mosaic of monoallelic patches, whose number and size are highly sensitive to the distribution of dispersal distances. We develop a coarse-grained model which connects statistical features of these spatial patterns to the evolution of neutral diversity during the range expansion. We show that growth mechanisms that appear qualitatively similar can engender vastly different outcomes for diversity: Depending on the tail of the dispersal distance distribution, diversity can be either preserved (i.e., many variants survive) or lost (i.e., one variant dominates) at long times. Our results highlight the impact of spatial and migratory structure on genetic variation during processes as varied as range expansions, species invasions, epidemics, and the spread of beneficial mutations in established populations.
Collapse
|
8
|
Kleisner K, Pokorný Š, Čížková M, Froment A, Černý V. Nomadic pastoralists and sedentary farmers of the Sahel/Savannah Belt of Africa in the light of geometric morphometrics based on facial portraits. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2019; 169:632-645. [DOI: 10.1002/ajpa.23845] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 04/09/2019] [Accepted: 04/15/2019] [Indexed: 11/10/2022]
Affiliation(s)
- Karel Kleisner
- Department of Philosophy and History of Science, Faculty of ScienceCharles University Prague Czech Republic
| | - Šimon Pokorný
- Department of Philosophy and History of Science, Faculty of ScienceCharles University Prague Czech Republic
| | - Martina Čížková
- Department of Anthropology and Human Genetics, Faculty of ScienceCharles University Prague Czech Republic
- Archaeogenetics LaboratoryInstitute of Archaeology of the Academy of Sciences of the Czech Republic Prague Czech Republic
| | - Alain Froment
- UMR 208‐PalocIRD‐MNHN, Musée de l'Homme Paris France
| | - Viktor Černý
- Department of Anthropology and Human Genetics, Faculty of ScienceCharles University Prague Czech Republic
- Archaeogenetics LaboratoryInstitute of Archaeology of the Academy of Sciences of the Czech Republic Prague Czech Republic
| |
Collapse
|
9
|
Braga RT, Rodrigues JFM, Diniz-Filho JAF, Rangel TF. Genetic Population Structure and Allele Surfing During Range Expansion in Dynamic Habitats. AN ACAD BRAS CIENC 2019; 91:e20180179. [PMID: 31038531 DOI: 10.1590/0001-3765201920180179] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Accepted: 09/10/2018] [Indexed: 12/24/2022] Open
Abstract
Expanding populations may loss genetic diversity because sequential founder events throughout a wave of demographic expansion may cause "allele surfing", as the alleles of founder individuals may propagate rapidly through space. The spatial components of allele surfing have been studied by geneticists, but have never been investigate on dynamic and shifting habitats. Here we used an individual-based-model (IBM) to study how interactions between different habitat restoration scenarios and biological characteristics (dispersal capacity) affect the spatial patterns of the genetic structure of a population during demographic expansion. We found that both habitat dynamics and dispersal capacity, as well as their interaction, were the drivers of emergent pattern of genetic diversity and allele surfing. Specifically, allele surfing is more common when a species with low dispersal capacity colonizes a large geographic area with slow restoration (low carrying capacity). Despite this, we showed that allele surfing can be reduced, or even avoided, by dispersal management through suitable habitat restoration. Thus, investigating how colonization generates a spatial variation in genetic diversity, and which parameters control the emergent genetic pattern, are essential steps to planning assisted gene flow, which is fundamental for an effective planning of habitat restoration.
Collapse
Affiliation(s)
- Rosana T Braga
- Programa de Pós-Graduação em Ecologia e Evolução, Departamento de Ecologia, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Avenida Esperança, s/n, 74001-970 Goiânia, GO, Brazil
| | - João F M Rodrigues
- Programa de Pós-Graduação em Ecologia e Evolução, Departamento de Ecologia, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Avenida Esperança, s/n, 74001-970 Goiânia, GO, Brazil
| | - José A F Diniz-Filho
- Programa de Pós-Graduação em Ecologia e Evolução, Departamento de Ecologia, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Avenida Esperança, s/n, 74001-970 Goiânia, GO, Brazil
| | - Thiago F Rangel
- Programa de Pós-Graduação em Ecologia e Evolução, Departamento de Ecologia, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Avenida Esperança, s/n, 74001-970 Goiânia, GO, Brazil
| |
Collapse
|
10
|
Relaxed Selection During a Recent Human Expansion. Genetics 2017; 208:763-777. [PMID: 29187508 DOI: 10.1534/genetics.117.300551] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Accepted: 11/22/2017] [Indexed: 01/15/2023] Open
Abstract
Humans have colonized the planet through a series of range expansions, which deeply impacted genetic diversity in newly settled areas and potentially increased the frequency of deleterious mutations on expanding wave fronts. To test this prediction, we studied the genomic diversity of French Canadians who colonized Quebec in the 17th century. We used historical information and records from ∼4000 ascending genealogies to select individuals whose ancestors lived mostly on the colonizing wave front and individuals whose ancestors remained in the core of the settlement. Comparison of exomic diversity reveals that: (i) both new and low-frequency variants are significantly more deleterious in front than in core individuals, (ii) equally deleterious mutations are at higher frequencies in front individuals, and (iii) front individuals are two times more likely to be homozygous for rare very deleterious mutations present in Europeans. These differences have emerged in the past six to nine generations and cannot be explained by differential inbreeding, but are consistent with relaxed selection mainly due to higher rates of genetic drift on the wave front. Demographic inference and modeling of the evolution of rare variants suggest lower effective size on the front, and lead to an estimation of selection coefficients that increase with conservation scores. Even though range expansions have had a relatively limited impact on the overall fitness of French Canadians, they could explain the higher prevalence of recessive genetic diseases in recently settled regions of Quebec.
Collapse
|
11
|
Accumulation of Deleterious Mutations During Bacterial Range Expansions. Genetics 2017; 207:669-684. [PMID: 28821588 PMCID: PMC5629331 DOI: 10.1534/genetics.117.300144] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Accepted: 07/28/2017] [Indexed: 12/15/2022] Open
Abstract
Recent theory predicts that the fitness of pioneer populations can decline when species expand their range, due to high rates of genetic drift on wave fronts making selection less efficient at purging deleterious variants. To test these predictions, we studied the fate of mutator bacteria expanding their range for 1650 generations on agar plates. In agreement with theory, we find that growth abilities of strains with a high mutation rate (HMR lines) decreased significantly over time, unlike strains with a lower mutation rate (LMR lines) that present three to four times fewer mutations. Estimation of the distribution of fitness effect under a spatially explicit model reveals a mean negative effect for new mutations (-0.38%), but it suggests that both advantageous and deleterious mutations have accumulated during the experiment. Furthermore, the fitness of HMR lines measured in different environments has decreased relative to the ancestor strain, whereas that of LMR lines remained unchanged. Contrastingly, strains with a HMR evolving in a well-mixed environment accumulated less mutations than agar-evolved strains and showed an increased fitness relative to the ancestor. Our results suggest that spatially expanding species are affected by deleterious mutations, leading to a drastic impairment of their evolutionary potential.
Collapse
|
12
|
Gilbert KJ, Sharp NP, Angert AL, Conte GL, Draghi JA, Guillaume F, Hargreaves AL, Matthey-Doret R, Whitlock MC. Local Adaptation Interacts with Expansion Load during Range Expansion: Maladaptation Reduces Expansion Load. Am Nat 2017; 189:368-380. [PMID: 28350500 DOI: 10.1086/690673] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
The biotic and abiotic factors that facilitate or hinder species range expansions are many and complex. We examine the impact of two genetic processes and their interaction on fitness at expanding range edges: local maladaptation resulting from the presence of an environmental gradient and expansion load resulting from increased genetic drift at the range edge. Results from spatially explicit simulations indicate that the presence of an environmental gradient during range expansion reduces expansion load; conversely, increasing expansion load allows only locally adapted populations to persist at the range edge. Increased maladaptation reduces the speed of range expansion, resulting in less genetic drift at the expanding front and more immigration from the range center, therefore reducing expansion load at the range edge. These results may have ramifications for species being forced to shift their ranges because of climate change or other anthropogenic changes. If rapidly changing climate leads to faster expansion as populations track their shifting climatic optima, populations may suffer increased expansion load beyond previous expectations.
Collapse
|
13
|
Bagley RK, Sousa VC, Niemiller ML, Linnen CR. History, geography and host use shape genomewide patterns of genetic variation in the redheaded pine sawfly (
Neodiprion lecontei
). Mol Ecol 2017; 26:1022-1044. [DOI: 10.1111/mec.13972] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Revised: 11/10/2016] [Accepted: 12/01/2016] [Indexed: 01/03/2023]
Affiliation(s)
- Robin K. Bagley
- Department of Biology University of Kentucky Lexington KY 40506 USA
| | - Vitor C. Sousa
- cE3c ‐ Centre for Ecology, Evolution and Environmental Changes Faculdade de Ciências Universidade de Lisboa 1749‐016 Lisboa Portugal
| | - Matthew L. Niemiller
- Illinois Natural History Survey Prairie Research Institute University of Illinois Urbana‐Champaign Champaign IL 61820 USA
| | | |
Collapse
|
14
|
Genetic surfing in human populations: from genes to genomes. Curr Opin Genet Dev 2016; 41:53-61. [DOI: 10.1016/j.gde.2016.08.003] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Revised: 07/06/2016] [Accepted: 08/02/2016] [Indexed: 12/20/2022]
|
15
|
Abstract
The wealth of available genetic information is allowing the reconstruction of human demographic and adaptive history. Demography and purifying selection affect the purge of rare, deleterious mutations from the human population, whereas positive and balancing selection can increase the frequency of advantageous variants, improving survival and reproduction in specific environmental conditions. In this review, I discuss how theoretical and empirical population genetics studies, using both modern and ancient DNA data, are a powerful tool for obtaining new insight into the genetic basis of severe disorders and complex disease phenotypes, rare and common, focusing particularly on infectious disease risk.
Collapse
Affiliation(s)
- Lluis Quintana-Murci
- Human Evolutionary Genetics Unit, Department of Genomes & Genetics, Institut Pasteur, Paris, 75015, France.
- Centre National de la Recherche Scientifique, URA3012, Paris, 75015, France.
- Center of Bioinformatics, Biostatistics and Integrative Biology, Institut Pasteur, Paris, 75015, France.
| |
Collapse
|
16
|
Shen QK, Sulaiman X, Yao YG, Peng MS, Zhang YP. Was ADH1B under Selection in European Populations? Am J Hum Genet 2016; 99:1217-1219. [PMID: 27814524 DOI: 10.1016/j.ajhg.2016.09.017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Accepted: 09/20/2016] [Indexed: 11/18/2022] Open
Affiliation(s)
- Quan-Kuan Shen
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China; KIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming 650223, China; Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming 650204, China
| | | | - Yong-Gang Yao
- KIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming 650223, China; Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming 650204, China; Key Laboratory of Animal Models and Human Disease Mechanisms, Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Kunming 650223, China
| | - Min-Sheng Peng
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China; KIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming 650223, China; Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming 650204, China.
| | - Ya-Ping Zhang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China; KIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming 650223, China; Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming 650204, China; State Key Laboratory for Conservation and Utilization of Bio-Resources, Yunnan University, Kunming 650091, China.
| |
Collapse
|
17
|
Novembre J, Peter BM. Recent advances in the study of fine-scale population structure in humans. Curr Opin Genet Dev 2016; 41:98-105. [PMID: 27662060 DOI: 10.1016/j.gde.2016.08.007] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Revised: 08/18/2016] [Accepted: 08/24/2016] [Indexed: 01/17/2023]
Abstract
Empowered by modern genotyping and large samples, population structure can be accurately described and quantified even when it only explains a fraction of a percent of total genetic variance. This is especially relevant and interesting for humans, where fine-scale population structure can both confound disease-mapping studies and reveal the history of migration and divergence that shaped our species' diversity. Here we review notable recent advances in the detection, use, and understanding of population structure. Our work addresses multiple areas where substantial progress is being made: improved statistics and models for better capturing differentiation, admixture, and the spatial distribution of variation; computational speed-ups that allow methods to scale to modern data; and advances in haplotypic modeling that have wide ranging consequences for the analysis of population structure. We conclude by outlining four important open challenges: the limitations of discrete population models, uncertainty in individual origins, the incorporation of both fine-scale structure and ancient DNA in parametric models, and the development of efficient computational tools, particularly for haplotype-based methods.
Collapse
Affiliation(s)
- John Novembre
- Department of Human Genetics, University of Chicago, IL 60636, United States; Department of Ecology and Evolutionary Biology, University of Chicago, IL 60636, United States
| | - Benjamin M Peter
- Department of Human Genetics, University of Chicago, IL 60636, United States
| |
Collapse
|
18
|
Creanza N, Feldman MW. Worldwide genetic and cultural change in human evolution. Curr Opin Genet Dev 2016; 41:85-92. [PMID: 27644074 DOI: 10.1016/j.gde.2016.08.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2016] [Revised: 08/04/2016] [Accepted: 08/19/2016] [Indexed: 01/04/2023]
Abstract
Both genetic variation and certain culturally transmitted phenotypes show geographic signatures of human demographic history. As a result of the human cultural predisposition to migrate to new areas, humans have adapted to a large number of different environments. Migration to new environments alters genetic selection pressures, and comparative genetic studies have pinpointed numerous likely targets of this selection. However, humans also exhibit many cultural adaptations to new environments, such as practices related to clothing, shelter, and food. Human culture interacts with genes and the environment in complex ways, and studying genes and culture together can deepen our understanding of human evolution.
Collapse
Affiliation(s)
- Nicole Creanza
- Department of Biology Stanford University, Gilbert Hall, 371 Serra Mall, Stanford, CA 94305, United States; Department of Biological Sciences, Vanderbilt University, 465 21st Ave. South, Nashville, TN 37212, United States.
| | - Marcus W Feldman
- Department of Biology Stanford University, Gilbert Hall, 371 Serra Mall, Stanford, CA 94305, United States
| |
Collapse
|
19
|
Mona S. On the role played by the carrying capacity and the ancestral population size during a range expansion. Heredity (Edinb) 2016; 118:143-153. [PMID: 27599574 DOI: 10.1038/hdy.2016.73] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2015] [Revised: 07/19/2016] [Accepted: 07/26/2016] [Indexed: 01/05/2023] Open
Abstract
Most species are structured and various population genetics models have been proposed to investigate their history. For mathematical tractability, most of these models make the simplifying assumption of equilibrium. Here we focus on the properties of a nonequilibrium spatial explicit model, range expansions (REs). Despite their abundance, many details of their genetic consequences need yet to be fully investigated. The model we studied is characterized by four main parameters: the effective population size of each deme (N), the migration rate per generation per deme (m), the time of the expansion (Texp) and the effective size of the deme from which the expansion started (Nanc). By means of extensive coalescent simulations, we focused on two aspects of range expansions for fixed Nm: (1) the separate influence of N and m and (2) the role of Nanc. We compared our results with an equilibrium stepping stone model and found two main features typical of REs: an excess of rare variants for larger N and a complex interaction between N, Texp and Nanc in shaping the degree of population differentiation (which depends only on Nm in the stepping stone model). Finally, we developed an approximate Bayesian computation approach to jointly estimate N and m and to infer Nanc. When applied to pseudo-observed data sets, we could correctly recover both N and m (but not Nanc), provided a large number of demes were sampled. These findings highlight how it will be possible to estimate the dispersal rate in nonequilibrium metapopulations by using population genetics approaches.
Collapse
Affiliation(s)
- S Mona
- EPHE, PSL Research University, Paris, France.,Institut de Systématique, Évolution, Biodiversité (ISYEB), UMR 7205 - CNRS, MNHN, UPMC, EPHE, Ecole Pratique des Hautes Etudes, Paris Sorbonne Universités, Paris, France
| |
Collapse
|
20
|
Robinson JA, Ortega-Del Vecchyo D, Fan Z, Kim BY, vonHoldt BM, Marsden CD, Lohmueller KE, Wayne RK. Genomic Flatlining in the Endangered Island Fox. Curr Biol 2016; 26:1183-9. [PMID: 27112291 DOI: 10.1016/j.cub.2016.02.062] [Citation(s) in RCA: 154] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Revised: 02/22/2016] [Accepted: 02/23/2016] [Indexed: 12/11/2022]
Abstract
Genetic studies of rare and endangered species often focus on defining and preserving genetically distinct populations, especially those having unique adaptations [1, 2]. Much less attention is directed at understanding the landscape of deleterious variation, an insidious consequence of geographic isolation and the inefficiency of natural selection to eliminate harmful variants in small populations [3-5]. With population sizes of many vertebrates decreasing and isolation increasing through habitat fragmentation and loss, understanding the extent and nature of deleterious variation in small populations is essential for predicting and enhancing population persistence. The Channel Island fox (Urocyon littoralis) is a dwarfed species that inhabits six of California's Channel Islands and is derived from the mainland gray fox (U. cinereoargenteus). These isolated island populations have persisted for thousands of years at extremely small population sizes [6, 7] and, consequently, are a model for testing ideas about the accumulation of deleterious variation in small populations under natural conditions. Analysis of complete genome sequence data from island foxes shows a dramatic decrease in genome-wide variation and a sharp increase in the homozygosity of deleterious variants. The San Nicolas Island population has a near absence of variation, demonstrating a unique genetic flatlining that is punctuated by heterozygosity hotspots, enriched for olfactory receptor genes and other genes with high levels of ancestral variation. These findings question the generality of the small-population paradigm that maintains substantial genetic variation is necessary for short- and long-term persistence.
Collapse
Affiliation(s)
- Jacqueline A Robinson
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Diego Ortega-Del Vecchyo
- Interdepartmental Program in Bioinformatics, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Zhenxin Fan
- Key Laboratory of Bioresources and Ecoenvironment (Ministry of Education), College of Life Sciences, Sichuan University, Chengdu 610064, People's Republic of China
| | - Bernard Y Kim
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Bridgett M vonHoldt
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ 08544, USA
| | - Clare D Marsden
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Kirk E Lohmueller
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, Los Angeles, CA 90095, USA; Interdepartmental Program in Bioinformatics, University of California, Los Angeles, Los Angeles, CA 90095, USA; Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Robert K Wayne
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, Los Angeles, CA 90095, USA.
| |
Collapse
|
21
|
Brandvain Y, Wright SI. The Limits of Natural Selection in a Nonequilibrium World. Trends Genet 2016; 32:201-210. [PMID: 26874998 DOI: 10.1016/j.tig.2016.01.004] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Revised: 12/23/2015] [Accepted: 01/19/2016] [Indexed: 11/19/2022]
Abstract
Evolutionary theory predicts that factors such as a small population size or low recombination rate can limit the action of natural selection. The emerging field of comparative population genomics offers an opportunity to evaluate these hypotheses. However, classical theoretical predictions assume that populations are at demographic equilibrium. This assumption is likely to be violated in the very populations researchers use to evaluate selection's limits: populations that have experienced a recent shift in population size and/or effective recombination rates. Here we highlight theory and data analyses concerning limitations on the action of natural selection in nonequilibrial populations and argue that substantial care is needed to appropriately test whether species and populations show meaningful differences in selection efficacy. A move toward model-based inferences that explicitly incorporate nonequilibrium dynamics provides a promising approach to more accurately contrast selection efficacy across populations and interpret its significance.
Collapse
Affiliation(s)
- Yaniv Brandvain
- Department of Plant Biology, University of Minnesota, St Paul, MN 55108, USA
| | - Stephen I Wright
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, ON M5S 3B2, Canada.
| |
Collapse
|
22
|
Chuang A, Peterson CR. Expanding population edges: theories, traits, and trade-offs. GLOBAL CHANGE BIOLOGY 2016; 22:494-512. [PMID: 26426311 DOI: 10.1111/gcb.13107] [Citation(s) in RCA: 128] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Revised: 08/13/2015] [Accepted: 09/17/2015] [Indexed: 05/28/2023]
Abstract
Recent patterns of global change have highlighted the importance of understanding the dynamics and mechanisms of species range shifts and expansions. Unique demographic features, spatial processes, and selective pressures can result in the accumulation and evolution of distinctive phenotypic traits at the leading edges of expansions. We review the characteristics of expanding range margins and highlight possible mechanisms for the appearance of phenotypic differences between individuals at the leading edge and core of the range. The development of life history traits that increase dispersal or reproductive ability is predicted by theory and supported with extensive empirical evidence. Many examples of rapid phenotypic change are associated with trade-offs that may influence the persistence of the trait once expansion ends. Accounting for the effects of edge phenotypes and related trade-offs could be critical for predicting the spread of invasive species and population responses to climate change.
Collapse
Affiliation(s)
- Angela Chuang
- Department of Ecology and Evolutionary Biology, University of Tennessee, Knoxville, TN, 37996, USA
| | - Christopher R Peterson
- Department of Ecology and Evolutionary Biology, University of Tennessee, Knoxville, TN, 37996, USA
| |
Collapse
|
23
|
Distance from sub-Saharan Africa predicts mutational load in diverse human genomes. Proc Natl Acad Sci U S A 2015; 113:E440-9. [PMID: 26712023 DOI: 10.1073/pnas.1510805112] [Citation(s) in RCA: 150] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
The Out-of-Africa (OOA) dispersal ∼ 50,000 y ago is characterized by a series of founder events as modern humans expanded into multiple continents. Population genetics theory predicts an increase of mutational load in populations undergoing serial founder effects during range expansions. To test this hypothesis, we have sequenced full genomes and high-coverage exomes from seven geographically divergent human populations from Namibia, Congo, Algeria, Pakistan, Cambodia, Siberia, and Mexico. We find that individual genomes vary modestly in the overall number of predicted deleterious alleles. We show via spatially explicit simulations that the observed distribution of deleterious allele frequencies is consistent with the OOA dispersal, particularly under a model where deleterious mutations are recessive. We conclude that there is a strong signal of purifying selection at conserved genomic positions within Africa, but that many predicted deleterious mutations have evolved as if they were neutral during the expansion out of Africa. Under a model where selection is inversely related to dominance, we show that OOA populations are likely to have a higher mutation load due to increased allele frequencies of nearly neutral variants that are recessive or partially recessive.
Collapse
|
24
|
Abstract
Next-generation sequencing technology has facilitated the discovery of millions of genetic variants in human genomes. A sizeable fraction of these variants are predicted to be deleterious. Here, we review the pattern of deleterious alleles as ascertained in genome sequencing data sets and ask whether human populations differ in their predicted burden of deleterious alleles - a phenomenon known as mutation load. We discuss three demographic models that are predicted to affect mutation load and relate these models to the evidence (or the lack thereof) for variation in the efficacy of purifying selection in diverse human genomes. We also emphasize why accurate estimation of mutation load depends on assumptions regarding the distribution of dominance and selection coefficients - quantities that remain poorly characterized for current genomic data sets.
Collapse
|
25
|
Peischl S, Excoffier L. Expansion load: recessive mutations and the role of standing genetic variation. Mol Ecol 2015; 24:2084-94. [DOI: 10.1111/mec.13154] [Citation(s) in RCA: 121] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Revised: 03/11/2015] [Accepted: 03/11/2015] [Indexed: 12/13/2022]
Affiliation(s)
- Stephan Peischl
- Institute of Ecology and Evolution; University of Berne; Berne 3012 Switzerland
- Swiss Institute of Bioinformatics; Lausanne 1015 Switzerland
| | - Laurent Excoffier
- Institute of Ecology and Evolution; University of Berne; Berne 3012 Switzerland
- Swiss Institute of Bioinformatics; Lausanne 1015 Switzerland
| |
Collapse
|
26
|
Wollstein A, Stephan W. Inferring positive selection in humans from genomic data. INVESTIGATIVE GENETICS 2015; 6:5. [PMID: 25834723 PMCID: PMC4381672 DOI: 10.1186/s13323-015-0023-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 11/21/2014] [Accepted: 02/23/2015] [Indexed: 01/06/2023]
Abstract
Adaptation can be described as an evolutionary process that leads to an adjustment of the phenotypes of a population to their environment. In the classical view, new mutations can introduce novel phenotypic features into a population that leave footprints in the genome after fixation, such as selective sweeps. Alternatively, existing genetic variants may become beneficial after an environmental change and increase in frequency. Although they may not reach fixation, they may cause a shift of the optimum of a phenotypic trait controlled by multiple loci. With the availability of polymorphism data from various organisms, including humans and chimpanzees, it has become possible to detect molecular evidence of adaptation and to estimate the strength and target of positive selection. In this review, we discuss the two competing models of adaptation and suitable approaches for detecting the footprints of positive selection on the molecular level.
Collapse
Affiliation(s)
- Andreas Wollstein
- Section of Evolutionary Biology, Department of Biology II, University of Munich, Großhaderner Str. 2, 82152 Planegg-Martinsried, Germany
| | - Wolfgang Stephan
- Section of Evolutionary Biology, Department of Biology II, University of Munich, Großhaderner Str. 2, 82152 Planegg-Martinsried, Germany
| |
Collapse
|