1
|
Ramirez Sierra MA, Sokolowski TR. AI-powered simulation-based inference of a genuinely spatial-stochastic gene regulation model of early mouse embryogenesis. PLoS Comput Biol 2024; 20:e1012473. [PMID: 39541410 DOI: 10.1371/journal.pcbi.1012473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 09/10/2024] [Indexed: 11/16/2024] Open
Abstract
Understanding how multicellular organisms reliably orchestrate cell-fate decisions is a central challenge in developmental biology, particularly in early mammalian development, where tissue-level differentiation arises from seemingly cell-autonomous mechanisms. In this study, we present a multi-scale, spatial-stochastic simulation framework for mouse embryogenesis, focusing on inner cell mass (ICM) differentiation into epiblast (EPI) and primitive endoderm (PRE) at the blastocyst stage. Our framework models key regulatory and tissue-scale interactions in a biophysically realistic fashion, capturing the inherent stochasticity of intracellular gene expression and intercellular signaling, while efficiently simulating these processes by advancing event-driven simulation techniques. Leveraging the power of Simulation-Based Inference (SBI) through the AI-driven Sequential Neural Posterior Estimation (SNPE) algorithm, we conduct a large-scale Bayesian inferential analysis to identify parameter sets that faithfully reproduce experimentally observed features of ICM specification. Our results reveal mechanistic insights into how the combined action of autocrine and paracrine FGF4 signaling coordinates stochastic gene expression at the cellular scale to achieve robust and reproducible ICM patterning at the tissue scale. We further demonstrate that the ICM exhibits a specific time window of sensitivity to exogenous FGF4, enabling lineage proportions to be adjusted based on timing and dosage, thereby extending current experimental findings and providing quantitative predictions for both mutant and wild-type ICM systems. Notably, FGF4 signaling not only ensures correct EPI-PRE lineage proportions but also enhances ICM resilience to perturbations, reducing fate-proportioning errors by 10-20% compared to a purely cell-autonomous system. Additionally, we uncover a surprising role for variability in intracellular initial conditions, showing that high gene-expression heterogeneity can improve both the accuracy and precision of cell-fate proportioning, which remains robust when fewer than 25% of the ICM population experiences perturbed initial conditions. Our work offers a comprehensive, spatial-stochastic description of the biochemical processes driving ICM differentiation and identifies the necessary conditions for its robust unfolding. It also provides a framework for future exploration of similar spatial-stochastic systems in developmental biology.
Collapse
Affiliation(s)
- Michael Alexander Ramirez Sierra
- Frankfurt Institute for Advanced Studies (FIAS), Frankfurt am Main, Germany
- Faculty of Computer Science and Mathematics, Goethe-Universität Frankfurt am Main, Frankfurt am Main, Germany
| | | |
Collapse
|
2
|
Guo R, Dong X, Chen F, Ji T, He Q, Zhang J, Sheng Y, Liu Y, Yang S, Liang W, Song Y, Fang K, Zhang L, Hu G, Yao H. TEAD2 initiates ground-state pluripotency by mediating chromatin looping. EMBO J 2024; 43:1965-1989. [PMID: 38605224 PMCID: PMC11099042 DOI: 10.1038/s44318-024-00086-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 02/26/2024] [Accepted: 03/03/2024] [Indexed: 04/13/2024] Open
Abstract
The transition of mouse embryonic stem cells (ESCs) between serum/LIF and 2i(MEK and GSK3 kinase inhibitor)/LIF culture conditions serves as a valuable model for exploring the mechanisms underlying ground and confused pluripotent states. Regulatory networks comprising core and ancillary pluripotency factors drive the gene expression programs defining stable naïve pluripotency. In our study, we systematically screened factors essential for ESC pluripotency, identifying TEAD2 as an ancillary factor maintaining ground-state pluripotency in 2i/LIF ESCs and facilitating the transition from serum/LIF to 2i/LIF ESCs. TEAD2 exhibits increased binding to chromatin in 2i/LIF ESCs, targeting active chromatin regions to regulate the expression of 2i-specific genes. In addition, TEAD2 facilitates the expression of 2i-specific genes by mediating enhancer-promoter interactions during the serum/LIF to 2i/LIF transition. Notably, deletion of Tead2 results in reduction of a specific set of enhancer-promoter interactions without significantly affecting binding of chromatin architecture proteins, CCCTC-binding factor (CTCF), and Yin Yang 1 (YY1). In summary, our findings highlight a novel prominent role of TEAD2 in orchestrating higher-order chromatin structures of 2i-specific genes to sustain ground-state pluripotency.
Collapse
Affiliation(s)
- Rong Guo
- State Key Laboratory of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou National Laboratory, Guangzhou Medical University, Guangzhou, China
- Center for Health Research, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Xiaotao Dong
- Center for Health Research, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- School of Basic Medical Science, Henan University, Kaifeng, China
| | - Feng Chen
- State Key Laboratory of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou National Laboratory, Guangzhou Medical University, Guangzhou, China
| | - Tianrong Ji
- Center for Health Research, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Qiannan He
- State Key Laboratory of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou National Laboratory, Guangzhou Medical University, Guangzhou, China
- Center for Health Research, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Jie Zhang
- State Key Laboratory of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou National Laboratory, Guangzhou Medical University, Guangzhou, China
- Center for Health Research, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Yingliang Sheng
- State Key Laboratory of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou National Laboratory, Guangzhou Medical University, Guangzhou, China
- Center for Health Research, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Yanjiang Liu
- State Key Laboratory of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou National Laboratory, Guangzhou Medical University, Guangzhou, China
- Center for Health Research, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Shengxiong Yang
- State Key Laboratory of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou National Laboratory, Guangzhou Medical University, Guangzhou, China
- Center for Health Research, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Weifang Liang
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong, China
| | - Yawei Song
- Center for Health Research, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Ke Fang
- Center for Health Research, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Lingling Zhang
- Institute of Clinical Pharmacology, Anhui Medical University, Hefei, China
| | - Gongcheng Hu
- State Key Laboratory of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou National Laboratory, Guangzhou Medical University, Guangzhou, China
- Center for Health Research, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Hongjie Yao
- State Key Laboratory of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou National Laboratory, Guangzhou Medical University, Guangzhou, China.
- Center for Health Research, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.
| |
Collapse
|
3
|
Minchiotti G, D’Aniello C, Fico A, De Cesare D, Patriarca EJ. Capturing Transitional Pluripotency through Proline Metabolism. Cells 2022; 11:cells11142125. [PMID: 35883568 PMCID: PMC9323356 DOI: 10.3390/cells11142125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 07/01/2022] [Accepted: 07/04/2022] [Indexed: 12/03/2022] Open
Abstract
In this paper, we summarize the current knowledge of the role of proline metabolism in the control of the identity of Embryonic Stem Cells (ESCs). An imbalance in proline metabolism shifts mouse ESCs toward a stable naïve-to-primed intermediate state of pluripotency. Proline-induced cells (PiCs), also named primitive ectoderm-like cells (EPLs), are phenotypically metastable, a trait linked to a rapid and reversible relocalization of E-cadherin from the plasma membrane to intracellular membrane compartments. The ESC-to-PiC transition relies on the activation of Erk and Tgfβ/Activin signaling pathways and is associated with extensive remodeling of the transcriptome, metabolome and epigenome. PiCs maintain several properties of naïve pluripotency (teratoma formation, blastocyst colonization and 3D gastruloid development) and acquire a few traits of primed cells (flat-shaped colony morphology, aerobic glycolysis metabolism and competence for primordial germ cell fate). Overall, the molecular and phenotypic features of PiCs resemble those of an early-primed state of pluripotency, providing a robust model to study the role of metabolic perturbations in pluripotency and cell fate decisions.
Collapse
|
4
|
Xu X, Ahmed T, Wang L, Cao X, Zhang Z, Wang M, Lv Y, Kanwal S, Tariq M, Lin R, Zhang H, Huang Y, Peng H, Lin D, Shi X, Geng D, Liu B, Zhang X, Yi W, Qin Y, Esteban MA, Qin B. The mTORC1-eIF4F axis controls paused pluripotency. EMBO Rep 2022; 23:e53081. [PMID: 34866316 PMCID: PMC8811634 DOI: 10.15252/embr.202153081] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Revised: 11/01/2021] [Accepted: 11/16/2021] [Indexed: 02/05/2023] Open
Abstract
Mouse embryonic stem cells (mESCs) can self-renew indefinitely and maintain pluripotency. Inhibition of mechanistic target of rapamycin (mTOR) by the kinase inhibitor INK128 is known to induce paused pluripotency in mESCs cultured with traditional serum/LIF medium (SL), but the underlying mechanisms remain unclear. In this study, we demonstrate that mTOR complex 1 (mTORC1) but not complex 2 (mTORC2) mediates mTOR inhibition-induced paused pluripotency in cells grown in both SL and 2iL medium (GSK3 and MEK inhibitors and LIF). We also show that mTORC1 regulates self-renewal in both conditions mainly through eIF4F-mediated translation initiation that targets mRNAs of both cytosolic and mitochondrial ribosome subunits. Moreover, inhibition of mitochondrial translation is sufficient to induce paused pluripotency. Interestingly, eIF4F also regulates maintenance of pluripotency in an mTORC1-independent but MEK/ERK-dependent manner in SL, indicating that translation of pluripotency genes is controlled differently in SL and 2iL. Our study reveals a detailed picture of how mTOR governs self-renewal in mESCs and uncovers a context-dependent function of eIF4F in pluripotency regulation.
Collapse
Affiliation(s)
- Xueting Xu
- School of Life SciencesUniversity of Science and Technology of ChinaHefeiChina
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cells and Regenerative Medicine, GIBH‐HKU Guangdong‐Hong Kong Stem Cell and Regenerative Medicine Research Center, Guangzhou Institutes of Biomedicine and HealthChinese Academy of SciencesGuangzhouChina
- Laboratory of Metabolism and Cell FateGuangzhou Institutes of Biomedicine and HealthChinese Academy of SciencesGuangzhouChina
| | - Tanveer Ahmed
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cells and Regenerative Medicine, GIBH‐HKU Guangdong‐Hong Kong Stem Cell and Regenerative Medicine Research Center, Guangzhou Institutes of Biomedicine and HealthChinese Academy of SciencesGuangzhouChina
- Laboratory of Metabolism and Cell FateGuangzhou Institutes of Biomedicine and HealthChinese Academy of SciencesGuangzhouChina
| | - Lulu Wang
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cells and Regenerative Medicine, GIBH‐HKU Guangdong‐Hong Kong Stem Cell and Regenerative Medicine Research Center, Guangzhou Institutes of Biomedicine and HealthChinese Academy of SciencesGuangzhouChina
- Laboratory of Metabolism and Cell FateGuangzhou Institutes of Biomedicine and HealthChinese Academy of SciencesGuangzhouChina
| | - Xintao Cao
- Key Laboratory of RNA BiologyInstitute of BiophysicsChinese Academy of SciencesBeijingChina
| | - Zeyu Zhang
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory)GuangzhouChina
| | - Ming Wang
- Guangdong Key Laboratory of Genome Stability and Human Disease PreventionDepartment of Biochemistry & Molecular BiologyShenzhen University Health Science CenterShenzhenChina
| | - Yuan Lv
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cells and Regenerative Medicine, GIBH‐HKU Guangdong‐Hong Kong Stem Cell and Regenerative Medicine Research Center, Guangzhou Institutes of Biomedicine and HealthChinese Academy of SciencesGuangzhouChina
- University of Chinese Academy of SciencesBeijingChina
- Laboratory of Integrative BiologyGuangzhou Institutes of Biomedicine and HealthChinese Academy of SciencesGuangzhouChina
| | - Shahzina Kanwal
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cells and Regenerative Medicine, GIBH‐HKU Guangdong‐Hong Kong Stem Cell and Regenerative Medicine Research Center, Guangzhou Institutes of Biomedicine and HealthChinese Academy of SciencesGuangzhouChina
- Laboratory of Integrative BiologyGuangzhou Institutes of Biomedicine and HealthChinese Academy of SciencesGuangzhouChina
| | - Muqddas Tariq
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory)GuangzhouChina
| | - Runxia Lin
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cells and Regenerative Medicine, GIBH‐HKU Guangdong‐Hong Kong Stem Cell and Regenerative Medicine Research Center, Guangzhou Institutes of Biomedicine and HealthChinese Academy of SciencesGuangzhouChina
- Laboratory of Metabolism and Cell FateGuangzhou Institutes of Biomedicine and HealthChinese Academy of SciencesGuangzhouChina
- University of Chinese Academy of SciencesBeijingChina
| | - Hui Zhang
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory)GuangzhouChina
| | - Yinghua Huang
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cells and Regenerative Medicine, GIBH‐HKU Guangdong‐Hong Kong Stem Cell and Regenerative Medicine Research Center, Guangzhou Institutes of Biomedicine and HealthChinese Academy of SciencesGuangzhouChina
- Laboratory of Metabolism and Cell FateGuangzhou Institutes of Biomedicine and HealthChinese Academy of SciencesGuangzhouChina
| | - Hao Peng
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cells and Regenerative Medicine, GIBH‐HKU Guangdong‐Hong Kong Stem Cell and Regenerative Medicine Research Center, Guangzhou Institutes of Biomedicine and HealthChinese Academy of SciencesGuangzhouChina
- Laboratory of Metabolism and Cell FateGuangzhou Institutes of Biomedicine and HealthChinese Academy of SciencesGuangzhouChina
- University of Chinese Academy of SciencesBeijingChina
| | - Danni Lin
- School of Life SciencesUniversity of Science and Technology of ChinaHefeiChina
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cells and Regenerative Medicine, GIBH‐HKU Guangdong‐Hong Kong Stem Cell and Regenerative Medicine Research Center, Guangzhou Institutes of Biomedicine and HealthChinese Academy of SciencesGuangzhouChina
- Laboratory of Metabolism and Cell FateGuangzhou Institutes of Biomedicine and HealthChinese Academy of SciencesGuangzhouChina
| | - Xue Shi
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cells and Regenerative Medicine, GIBH‐HKU Guangdong‐Hong Kong Stem Cell and Regenerative Medicine Research Center, Guangzhou Institutes of Biomedicine and HealthChinese Academy of SciencesGuangzhouChina
- University of Chinese Academy of SciencesBeijingChina
| | - Didi Geng
- MOE Key Laboratory of Biosystems Homeostasis & ProtectionCollege of Life SciencesZhejiang UniversityHangzhouChina
| | - Baohua Liu
- Guangdong Key Laboratory of Genome Stability and Human Disease PreventionDepartment of Biochemistry & Molecular BiologyShenzhen University Health Science CenterShenzhenChina
| | - Xiaofei Zhang
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cells and Regenerative Medicine, GIBH‐HKU Guangdong‐Hong Kong Stem Cell and Regenerative Medicine Research Center, Guangzhou Institutes of Biomedicine and HealthChinese Academy of SciencesGuangzhouChina
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory)GuangzhouChina
- University of Chinese Academy of SciencesBeijingChina
| | - Wen Yi
- MOE Key Laboratory of Biosystems Homeostasis & ProtectionCollege of Life SciencesZhejiang UniversityHangzhouChina
| | - Yan Qin
- Key Laboratory of RNA BiologyInstitute of BiophysicsChinese Academy of SciencesBeijingChina
| | - Miguel A Esteban
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cells and Regenerative Medicine, GIBH‐HKU Guangdong‐Hong Kong Stem Cell and Regenerative Medicine Research Center, Guangzhou Institutes of Biomedicine and HealthChinese Academy of SciencesGuangzhouChina
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory)GuangzhouChina
- University of Chinese Academy of SciencesBeijingChina
- Laboratory of Integrative BiologyGuangzhou Institutes of Biomedicine and HealthChinese Academy of SciencesGuangzhouChina
- Institute of Stem Cells and RegenerationChinese Academy of SciencesBeijingChina
- Joint School of Life SciencesGuangzhou Institutes of Biomedicine and Health and Guangzhou Medical UniversityGuangzhouChina
| | - Baoming Qin
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cells and Regenerative Medicine, GIBH‐HKU Guangdong‐Hong Kong Stem Cell and Regenerative Medicine Research Center, Guangzhou Institutes of Biomedicine and HealthChinese Academy of SciencesGuangzhouChina
- Laboratory of Metabolism and Cell FateGuangzhou Institutes of Biomedicine and HealthChinese Academy of SciencesGuangzhouChina
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory)GuangzhouChina
- University of Chinese Academy of SciencesBeijingChina
- Joint School of Life SciencesGuangzhou Institutes of Biomedicine and Health and Guangzhou Medical UniversityGuangzhouChina
| |
Collapse
|
5
|
Peng T, Zhai Y, Atlasi Y, Ter Huurne M, Marks H, Stunnenberg HG, Megchelenbrink W. STARR-seq identifies active, chromatin-masked, and dormant enhancers in pluripotent mouse embryonic stem cells. Genome Biol 2020; 21:243. [PMID: 32912294 PMCID: PMC7488044 DOI: 10.1186/s13059-020-02156-3] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Accepted: 08/26/2020] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Enhancers are distal regulators of gene expression that shape cell identity and control cell fate transitions. In mouse embryonic stem cells (mESCs), the pluripotency network is maintained by the function of a complex network of enhancers, that are drastically altered upon differentiation. Genome-wide chromatin accessibility and histone modification assays are commonly used as a proxy for identifying putative enhancers and for describing their activity levels and dynamics. RESULTS Here, we applied STARR-seq, a genome-wide plasmid-based assay, as a read-out for the enhancer landscape in "ground-state" (2i+LIF; 2iL) and "metastable" (serum+LIF; SL) mESCs. This analysis reveals that active STARR-seq loci show modest overlap with enhancer locations derived from peak calling of ChIP-seq libraries for common enhancer marks. We unveil ZIC3-bound loci with significant STARR-seq activity in SL-ESCs. Knock-out of Zic3 removes STARR-seq activity only in SL-ESCs and increases their propensity to differentiate towards the endodermal fate. STARR-seq also reveals enhancers that are not accessible, masked by a repressive chromatin signature. We describe a class of dormant, p53 bound enhancers that gain H3K27ac under specific conditions, such as after treatment with Nocodazol, or transiently during reprogramming from fibroblasts to pluripotency. CONCLUSIONS In conclusion, loci identified as active by STARR-seq often overlap with those identified by chromatin accessibility and active epigenetic marking, yet a significant fraction is epigenetically repressed or display condition-specific enhancer activity.
Collapse
Affiliation(s)
- Tianran Peng
- Department of Molecular Biology, Radboud Institute for Molecular Life Sciences, Radboud University, Geert Grooteplein Zuid 28, 6525 GA, Nijmegen, The Netherlands
| | - Yanan Zhai
- Department of Molecular Biology, Radboud Institute for Molecular Life Sciences, Radboud University, Geert Grooteplein Zuid 28, 6525 GA, Nijmegen, The Netherlands
- Princess Máxima Center for Pediatric Oncology, Heidelberglaan 25, 3584 CS, Utrecht, The Netherlands
- Department of Precision Medicine, University of Campania Luigi Vanvitelli, Vico L. De Crecchio 7, 80138, Naples, Italy
| | - Yaser Atlasi
- Department of Molecular Biology, Radboud Institute for Molecular Life Sciences, Radboud University, Geert Grooteplein Zuid 28, 6525 GA, Nijmegen, The Netherlands
| | - Menno Ter Huurne
- Department of Molecular Biology, Radboud Institute for Molecular Life Sciences, Radboud University, Geert Grooteplein Zuid 28, 6525 GA, Nijmegen, The Netherlands
| | - Hendrik Marks
- Department of Molecular Biology, Radboud Institute for Molecular Life Sciences, Radboud University, Geert Grooteplein Zuid 28, 6525 GA, Nijmegen, The Netherlands
| | - Hendrik G Stunnenberg
- Department of Molecular Biology, Radboud Institute for Molecular Life Sciences, Radboud University, Geert Grooteplein Zuid 28, 6525 GA, Nijmegen, The Netherlands.
- Princess Máxima Center for Pediatric Oncology, Heidelberglaan 25, 3584 CS, Utrecht, The Netherlands.
| | - Wout Megchelenbrink
- Department of Molecular Biology, Radboud Institute for Molecular Life Sciences, Radboud University, Geert Grooteplein Zuid 28, 6525 GA, Nijmegen, The Netherlands.
- Princess Máxima Center for Pediatric Oncology, Heidelberglaan 25, 3584 CS, Utrecht, The Netherlands.
- Department of Precision Medicine, University of Campania Luigi Vanvitelli, Vico L. De Crecchio 7, 80138, Naples, Italy.
| |
Collapse
|
6
|
ZIC3 Controls the Transition from Naive to Primed Pluripotency. Cell Rep 2020; 27:3215-3227.e6. [PMID: 31189106 PMCID: PMC6581693 DOI: 10.1016/j.celrep.2019.05.026] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 03/14/2019] [Accepted: 05/06/2019] [Indexed: 01/06/2023] Open
Abstract
Embryonic stem cells (ESCs) must transition through a series of intermediate cell states before becoming terminally differentiated. Here, we investigated the early events in this transition by determining the changes in the open chromatin landscape as naive mouse ESCs transition to epiblast-like cells (EpiLCs). Motif enrichment analysis of the newly opening regions coupled with expression analysis identified ZIC3 as a potential regulator of this cell fate transition. Chromatin binding and genome-wide transcriptional profiling following Zic3 depletion confirmed ZIC3 as an important regulatory transcription factor, and among its targets are genes encoding a number of transcription factors. Among these is GRHL2, which acts through enhancer switching to maintain the expression of a subset of genes from the ESC state. Our data therefore place ZIC3 upstream of a set of pro-differentiation transcriptional regulators and provide an important advance in our understanding of the regulatory factors governing the early steps in ESC differentiation. Transcription factor ZIC3 regulates gene expression during the ESC to EpiLC transition Extensive changes occur in the open chromatin landscape as ESCs progress to EpiLCs ZIC3 activates the expression of a network of transcription factors ZIC3-activated genes in EpiLCs are upregulated in the post-implantation epiblast
Collapse
|
7
|
Prajapati RS, Hintze M, Streit A. PRDM1 controls the sequential activation of neural, neural crest and sensory progenitor determinants. Development 2019; 146:dev.181107. [PMID: 31806661 DOI: 10.1242/dev.181107] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2019] [Accepted: 11/27/2019] [Indexed: 12/25/2022]
Abstract
During early embryogenesis, the ectoderm is rapidly subdivided into neural, neural crest and sensory progenitors. How the onset of lineage determinants and the loss of pluripotency markers are temporally and spatially coordinated in vivo is still debated. Here, we identify a crucial role for the transcription factor PRDM1 in the orderly transition from epiblast to defined neural lineages in chick. PRDM1 is initially expressed broadly in the entire epiblast, but becomes gradually restricted as cell fates are specified. We find that PRDM1 is required for the loss of some pluripotency markers and the onset of neural, neural crest and sensory progenitor specifier genes. PRDM1 directly activates their expression by binding to their promoter regions and recruiting the histone demethylase Kdm4a to remove repressive histone marks. However, once neural lineage determinants become expressed, they in turn repress PRDM1, whereas prolonged PRDM1 expression inhibits neural, neural crest and sensory progenitor genes, suggesting that its downregulation is necessary for cells to maintain their identity. Therefore, PRDM1 plays multiple roles during ectodermal cell fate allocation.
Collapse
Affiliation(s)
- Ravindra S Prajapati
- Centre for Craniofacial & Regenerative Biology, Faculty of Dental, Oral and Craniofacial Sciences, King's College London, London SE1 9RT, UK
| | - Mark Hintze
- Centre for Craniofacial & Regenerative Biology, Faculty of Dental, Oral and Craniofacial Sciences, King's College London, London SE1 9RT, UK
| | - Andrea Streit
- Centre for Craniofacial & Regenerative Biology, Faculty of Dental, Oral and Craniofacial Sciences, King's College London, London SE1 9RT, UK
| |
Collapse
|
8
|
Chen G, Wang J. A regulatory circuitry locking pluripotent stemness to embryonic stem cell: Interaction between threonine catabolism and histone methylation. Semin Cancer Biol 2019; 57:72-78. [PMID: 30710616 DOI: 10.1016/j.semcancer.2019.01.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 01/15/2019] [Accepted: 01/23/2019] [Indexed: 12/20/2022]
Abstract
Mouse embryonic stem cell (ESC) is a prototype of pluripotent stem cell that undergoes endless self-renewal in culture without losing the pluripotency, the ability to differentiate to all somatic lineages. The self-renewal of ESC relies on a gene expression program, epigenetic state, and cellular metabolism specific to ESC. In this review, we will present the evidence to exemplify how gene regulation, chromatin methylation, and threonine catabolism are specialized to boost ESC self-renewal. It is evident that a feedforward regulatory circuitry forms at the interfaces between the transcriptional, epigenetic and metabolic control to consolidate the pluripotency of ESC.
Collapse
Affiliation(s)
- Guohua Chen
- Department of Pathology, Wayne State of University School of Medicine, United States
| | - Jian Wang
- Department of Pathology, Wayne State of University School of Medicine, United States; Cardiovascular Research Institute, Wayne State of University School of Medicine, United States.
| |
Collapse
|
9
|
Pennings S, Revuelta A, McLaughlin KA, Abd Hadi NA, Petchreing P, Ottaviano R, Meehan RR. Dynamics and Mechanisms of DNA Methylation Reprogramming. EPIGENETICS AND REGENERATION 2019:19-45. [DOI: 10.1016/b978-0-12-814879-2.00002-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
|
10
|
Schlesinger S, Meshorer E. Open Chromatin, Epigenetic Plasticity, and Nuclear Organization in Pluripotency. Dev Cell 2019; 48:135-150. [DOI: 10.1016/j.devcel.2019.01.003] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Revised: 10/30/2018] [Accepted: 12/31/2018] [Indexed: 12/27/2022]
|
11
|
White MD, Zenker J, Bissiere S, Plachta N. Instructions for Assembling the Early Mammalian Embryo. Dev Cell 2018; 45:667-679. [DOI: 10.1016/j.devcel.2018.05.013] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2017] [Revised: 01/23/2018] [Accepted: 05/10/2018] [Indexed: 12/15/2022]
|