1
|
Liu Y, Liu C, Tang S, Xiao H, Wu X, Peng Y, Wang X, Que L, Di Z, Zhou D, Heinemann M. The "weaken-fill-repair" model for cell budding: Linking cell wall biosynthesis with mechanics. iScience 2024; 27:110981. [PMID: 39391722 PMCID: PMC11466628 DOI: 10.1016/j.isci.2024.110981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 06/08/2024] [Accepted: 09/13/2024] [Indexed: 10/12/2024] Open
Abstract
The interplay between cellular mechanics and biochemical processes in the cell cycle is not well understood. We propose a quantitative model of cell budding in Saccharomyces cerevisiae as a "weaken-fill-repair" process, linking Newtonian mechanics of the cell wall with biochemical changes that affect its properties. Our model reveals that (1) oscillations in mother cell size during budding are an inevitable outcome of the process; (2) asymmetric division is necessary for the daughter cell to maintain mechanical stiffness; and (3) although various aspects of the cell are constrained and interconnected, the budding process is governed by a single reduced parameter, ψ, which balances osmolyte accumulation with enzymatic wall-weakening to ensure homeostasis. This model provides insights into the evolution of cell walls and their role in cell division, offering a system-level perspective on cell morphology.
Collapse
Affiliation(s)
- Yu Liu
- Department of Systems Science, Faculty of Arts and Sciences, Beijing Normal University, Zhuhai, China
- International Academic Center of Complex Systems, Beijing Normal University, Zhuhai, China
| | - Chunxiuzi Liu
- Department of Systems Science, Faculty of Arts and Sciences, Beijing Normal University, Zhuhai, China
- International Academic Center of Complex Systems, Beijing Normal University, Zhuhai, China
- School of Systems Science, Beijing Normal University, Beijing, China
| | - Shaohua Tang
- Department of Systems Science, Faculty of Arts and Sciences, Beijing Normal University, Zhuhai, China
- International Academic Center of Complex Systems, Beijing Normal University, Zhuhai, China
- School of Systems Science, Beijing Normal University, Beijing, China
- Center for Cognition and Neuroergonomics, State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Zhuhai, China
| | - Hui Xiao
- Department of Systems Science, Faculty of Arts and Sciences, Beijing Normal University, Zhuhai, China
- International Academic Center of Complex Systems, Beijing Normal University, Zhuhai, China
| | - Xinlin Wu
- Department of Systems Science, Faculty of Arts and Sciences, Beijing Normal University, Zhuhai, China
- International Academic Center of Complex Systems, Beijing Normal University, Zhuhai, China
| | - Yunru Peng
- Department of Systems Science, Faculty of Arts and Sciences, Beijing Normal University, Zhuhai, China
- International Academic Center of Complex Systems, Beijing Normal University, Zhuhai, China
| | - Xianyi Wang
- Department of Systems Science, Faculty of Arts and Sciences, Beijing Normal University, Zhuhai, China
- International Academic Center of Complex Systems, Beijing Normal University, Zhuhai, China
| | - Linjie Que
- Department of Systems Science, Faculty of Arts and Sciences, Beijing Normal University, Zhuhai, China
- International Academic Center of Complex Systems, Beijing Normal University, Zhuhai, China
| | - Zengru Di
- Department of Systems Science, Faculty of Arts and Sciences, Beijing Normal University, Zhuhai, China
- International Academic Center of Complex Systems, Beijing Normal University, Zhuhai, China
| | - Da Zhou
- School of Mathematical Sciences, Xiamen University, Xiamen, China
| | - Matthias Heinemann
- Molecular Systems Biology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, 9747AG Groningen, The Netherlands
| |
Collapse
|
2
|
Alric B, Formosa-Dague C, Dague E, Holt LJ, Delarue M. Macromolecular crowding limits growth under pressure. NATURE PHYSICS 2022; 18:411-416. [PMID: 37152719 PMCID: PMC10162713 DOI: 10.1038/s41567-022-01506-1] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Cells that grow in confined spaces eventually build up mechanical compressive stress. This growth-induced pressure (GIP) decreases cell growth. GIP is important in a multitude of contexts from cancer, to microbial infections, to biofouling, yet our understanding of its origin and molecular consequences remains limited. Here, we combine microfluidic confinement of the yeast Saccharomyces cerevisiae, with rheological measurements using genetically encoded multimeric nanoparticles (GEMs) to reveal that growth-induced pressure is accompanied with an increase in a key cellular physical property: macromolecular crowding. We develop a fully calibrated model that predicts how increased macromolecular crowding hinders protein expression and thus diminishes cell growth. This model is sufficient to explain the coupling of growth rate to pressure without the need for specific molecular sensors or signaling cascades. As molecular crowding is similar across all domains of life, this could be a deeply conserved mechanism of biomechanical feedback that allows environmental sensing originating from the fundamental physical properties of cells.
Collapse
Affiliation(s)
- Baptiste Alric
- MILE team, CNRS, UPR8001, LAAS-CNRS, 7 Avenue du Colonel Roche, F-31400 Toulouse, France
| | | | - Etienne Dague
- ELIA team, CNRS, UPR8001, LAAS-CNRS, 7 Avenue du Colonel Roche, F-31400 Toulouse, France
| | - Liam J. Holt
- New York University Grossman School of Medicine, Institute for Systems Genetics, 435 E 30th Street, New York, NY, United States
- to whom correspondence should be addressed: ;
| | - Morgan Delarue
- MILE team, CNRS, UPR8001, LAAS-CNRS, 7 Avenue du Colonel Roche, F-31400 Toulouse, France
- to whom correspondence should be addressed: ;
| |
Collapse
|
3
|
Rivera-Yoshida N, Bottagisio M, Attanasi D, Savadori P, De Vecchi E, Bidossi A, Franci A. Host Environment Shapes S. aureus Social Behavior as Revealed by Microscopy Pattern Formation and Dynamic Aggregation Analysis. Microorganisms 2022; 10:microorganisms10030526. [PMID: 35336102 PMCID: PMC8949161 DOI: 10.3390/microorganisms10030526] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 02/17/2022] [Accepted: 02/24/2022] [Indexed: 02/01/2023] Open
Abstract
Understanding how bacteria adapt their social behavior to environmental changes is of crucial importance from both biological and clinical perspectives. Staphylococcus aureus is among the most common infecting agents in orthopedics, but its recalcitrance to the immune system and to antimicrobial treatments in the physiological microenvironment are still poorly understood. By means of optical and confocal microscopy, image pattern analysis, and mathematical modeling, we show that planktonic biofilm-like aggregates and sessile biofilm lifestyles are two co-existing and interacting phases of the same environmentally adaptive developmental process and that they exhibit substantial differences when S. aureus is grown in physiological fluids instead of common lab media. Physicochemical properties of the physiological microenvironment are proposed to be the key determinants of these differences. Besides providing a new tool for biofilm phenotypic analysis, our results suggest new insights into the social behavior of S. aureus in physiological conditions and highlight the inadequacy of commonly used lab media for both biological and clinical studies of bacterial development.
Collapse
Affiliation(s)
- Natsuko Rivera-Yoshida
- Department of Mathematics, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico;
| | - Marta Bottagisio
- Laboratory of Clinical Chemistry and Microbiology, IRCCS Istituto Ortopedico Galeazzi, 20161 Milan, Italy; (M.B.); (D.A.); (E.D.V.)
| | - Davide Attanasi
- Laboratory of Clinical Chemistry and Microbiology, IRCCS Istituto Ortopedico Galeazzi, 20161 Milan, Italy; (M.B.); (D.A.); (E.D.V.)
| | - Paolo Savadori
- Department of Endodontics, IRCCS Istituto Ortopedico Galeazzi, 20161 Milan, Italy;
| | - Elena De Vecchi
- Laboratory of Clinical Chemistry and Microbiology, IRCCS Istituto Ortopedico Galeazzi, 20161 Milan, Italy; (M.B.); (D.A.); (E.D.V.)
| | - Alessandro Bidossi
- Laboratory of Clinical Chemistry and Microbiology, IRCCS Istituto Ortopedico Galeazzi, 20161 Milan, Italy; (M.B.); (D.A.); (E.D.V.)
- Correspondence: (A.B.); (A.F.)
| | - Alessio Franci
- Department of Mathematics, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico;
- Correspondence: (A.B.); (A.F.)
| |
Collapse
|
4
|
Ramos CH, Rodríguez-Sánchez E, Del Angel JAA, Arzola AV, Benítez M, Escalante AE, Franci A, Volpe G, Rivera-Yoshida N. The environment topography alters the way to multicellularity in Myxococcus xanthus. SCIENCE ADVANCES 2021; 7:7/35/eabh2278. [PMID: 34433567 PMCID: PMC8386931 DOI: 10.1126/sciadv.abh2278] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 07/02/2021] [Indexed: 05/10/2023]
Abstract
The social soil-dwelling bacterium Myxococcus xanthus can form multicellular structures, known as fruiting bodies. Experiments in homogeneous environments have shown that this process is affected by the physicochemical properties of the substrate, but they have largely neglected the role of complex topographies. We experimentally demonstrate that the topography alters single-cell motility and multicellular organization in M. xanthus In topographies realized by randomly placing silica particles over agar plates, we observe that the cells' interaction with particles drastically modifies the dynamics of cellular aggregation, leading to changes in the number, size, and shape of the fruiting bodies and even to arresting their formation in certain conditions. We further explore this type of cell-particle interaction in a computational model. These results provide fundamental insights into how the environment topography influences the emergence of complex multicellular structures from single cells, which is a fundamental problem of biological, ecological, and medical relevance.
Collapse
Affiliation(s)
- Corina H Ramos
- Facultad de Ciencias, Universidad Nacional Autónoma de México, Cd. de México, C.P. 4510, Mexico
- Laboratorio Nacional de Ciencias de la Sostenibilidad, Instituto de Ecología, Universidad Nacional Autónoma de México, Cd. de México, C.P. 04510, Mexico
| | - Edna Rodríguez-Sánchez
- Laboratorio Nacional de Ciencias de la Sostenibilidad, Instituto de Ecología, Universidad Nacional Autónoma de México, Cd. de México, C.P. 04510, Mexico
| | - Juan Antonio Arias Del Angel
- Laboratorio Nacional de Ciencias de la Sostenibilidad, Instituto de Ecología, Universidad Nacional Autónoma de México, Cd. de México, C.P. 04510, Mexico
| | - Alejandro V Arzola
- Instituto de Física, Universidad Nacional Autónoma de México, Cd. de México, C.P. 04510, México
| | - Mariana Benítez
- Laboratorio Nacional de Ciencias de la Sostenibilidad, Instituto de Ecología, Universidad Nacional Autónoma de México, Cd. de México, C.P. 04510, Mexico
| | - Ana E Escalante
- Laboratorio Nacional de Ciencias de la Sostenibilidad, Instituto de Ecología, Universidad Nacional Autónoma de México, Cd. de México, C.P. 04510, Mexico
| | - Alessio Franci
- Facultad de Ciencias, Universidad Nacional Autónoma de México, Cd. de México, C.P. 4510, Mexico
| | - Giovanni Volpe
- Department of Physics, University of Gothenburg, Gothenburg, Sweden
| | - Natsuko Rivera-Yoshida
- Facultad de Ciencias, Universidad Nacional Autónoma de México, Cd. de México, C.P. 4510, Mexico.
- Laboratorio Nacional de Ciencias de la Sostenibilidad, Instituto de Ecología, Universidad Nacional Autónoma de México, Cd. de México, C.P. 04510, Mexico
| |
Collapse
|
5
|
Arias Del Angel JA, Nanjundiah V, Benítez M, Newman SA. Interplay of mesoscale physics and agent-like behaviors in the parallel evolution of aggregative multicellularity. EvoDevo 2020; 11:21. [PMID: 33062243 PMCID: PMC7549232 DOI: 10.1186/s13227-020-00165-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 09/08/2020] [Indexed: 12/12/2022] Open
Abstract
Myxobacteria and dictyostelids are prokaryotic and eukaryotic multicellular lineages, respectively, that after nutrient depletion aggregate and develop into structures called fruiting bodies. The developmental processes and resulting morphological outcomes resemble one another to a remarkable extent despite their independent origins, the evolutionary distance between them and the lack of traceable homology in molecular mechanisms. We hypothesize that the morphological parallelism between the two lineages arises as the consequence of the interplay within multicellular aggregates between generic processes, physical and physicochemical processes operating similarly in living and non-living matter at the mesoscale (~10-3-10-1 m) and agent-like behaviors, unique to living systems and characteristic of the constituent cells, considered as autonomous entities acting according to internal rules in a shared environment. Here, we analyze the contributions of generic and agent-like determinants in myxobacteria and dictyostelid development and their roles in the generation of their common traits. Consequent to aggregation, collective cell-cell contacts mediate the emergence of liquid-like properties, making nascent multicellular masses subject to novel patterning and morphogenetic processes. In both lineages, this leads to behaviors such as streaming, rippling, and rounding-up, as seen in non-living fluids. Later the aggregates solidify, leading them to exhibit additional generic properties and motifs. Computational models suggest that the morphological phenotypes of the multicellular masses deviate from the predictions of generic physics due to the contribution of agent-like behaviors of cells such as directed migration, quiescence, and oscillatory signal transduction mediated by responses to external cues. These employ signaling mechanisms that reflect the evolutionary histories of the respective organisms. We propose that the similar developmental trajectories of myxobacteria and dictyostelids are more due to shared generic physical processes in coordination with analogous agent-type behaviors than to convergent evolution under parallel selection regimes. Insights from the biology of these aggregative forms may enable a unified understanding of developmental evolution, including that of animals and plants.
Collapse
Affiliation(s)
- Juan A Arias Del Angel
- Laboratorio Nacional de Ciencias de La Sostenibilidad, Instituto de Ecología, Universidad Nacional Autónoma de México, Mexico City, Mexico.,Centro de Ciencias de La Complejidad, Universidad Nacional Autónoma de México, Mexico City, Mexico.,Department of Cell Biology and Anatomy, New York Medical College, Valhalla, NY 10595 USA.,Programa de Doctorado en Ciencias Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | | | - Mariana Benítez
- Laboratorio Nacional de Ciencias de La Sostenibilidad, Instituto de Ecología, Universidad Nacional Autónoma de México, Mexico City, Mexico.,Centro de Ciencias de La Complejidad, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Stuart A Newman
- Department of Cell Biology and Anatomy, New York Medical College, Valhalla, NY 10595 USA
| |
Collapse
|
6
|
Cont A, Rossy T, Al-Mayyah Z, Persat A. Biofilms deform soft surfaces and disrupt epithelia. eLife 2020; 9:56533. [PMID: 33025904 PMCID: PMC7556879 DOI: 10.7554/elife.56533] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 08/23/2020] [Indexed: 12/12/2022] Open
Abstract
During chronic infections and in microbiota, bacteria predominantly colonize their hosts as multicellular structures called biofilms. A common assumption is that biofilms exclusively interact with their hosts biochemically. However, the contributions of mechanics, while being central to the process of biofilm formation, have been overlooked as a factor influencing host physiology. Specifically, how biofilms form on soft, tissue-like materials remains unknown. Here, we show that biofilms of the pathogens Vibrio cholerae and Pseudomonas aeruginosa can induce large deformations of soft synthetic hydrogels. Biofilms buildup internal mechanical stress as single cells grow within the elastic matrix. By combining mechanical measurements and mutations in matrix components, we found that biofilms deform by buckling, and that adhesion transmits these forces to their substrates. Finally, we demonstrate that V. cholerae biofilms can generate sufficient mechanical stress to deform and even disrupt soft epithelial cell monolayers, suggesting a mechanical mode of infection.
Collapse
Affiliation(s)
- Alice Cont
- Institute of Bioengineering and Global Health Institute, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Tamara Rossy
- Institute of Bioengineering and Global Health Institute, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Zainebe Al-Mayyah
- Institute of Bioengineering and Global Health Institute, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Alexandre Persat
- Institute of Bioengineering and Global Health Institute, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| |
Collapse
|
7
|
Martínez-Soto D, Ortiz-Castellanos L, Robledo-Briones M, León-Ramírez CG. Molecular Mechanisms Involved in the Multicellular Growth of Ustilaginomycetes. Microorganisms 2020; 8:E1072. [PMID: 32708448 PMCID: PMC7409079 DOI: 10.3390/microorganisms8071072] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Revised: 07/12/2020] [Accepted: 07/16/2020] [Indexed: 12/23/2022] Open
Abstract
Multicellularity is defined as the developmental process by which unicellular organisms became pluricellular during the evolution of complex organisms on Earth. This process requires the convergence of genetic, ecological, and environmental factors. In fungi, mycelial and pseudomycelium growth, snowflake phenotype (where daughter cells remain attached to their stem cells after mitosis), and fruiting bodies have been described as models of multicellular structures. Ustilaginomycetes are Basidiomycota fungi, many of which are pathogens of economically important plant species. These fungi usually grow unicellularly as yeasts (sporidia), but also as simple multicellular forms, such as pseudomycelium, multicellular clusters, or mycelium during plant infection and under different environmental conditions: Nitrogen starvation, nutrient starvation, acid culture media, or with fatty acids as a carbon source. Even under specific conditions, Ustilago maydis can form basidiocarps or fruiting bodies that are complex multicellular structures. These fungi conserve an important set of genes and molecular mechanisms involved in their multicellular growth. In this review, we will discuss in-depth the signaling pathways, epigenetic regulation, required polyamines, cell wall synthesis/degradation, polarized cell growth, and other cellular-genetic processes involved in the different types of Ustilaginomycetes multicellular growth. Finally, considering their short life cycle, easy handling in the laboratory and great morphological plasticity, Ustilaginomycetes can be considered as model organisms for studying fungal multicellularity.
Collapse
Affiliation(s)
- Domingo Martínez-Soto
- Department of Microbiology and Plant Pathology, University of California, Riverside, CA 92521, USA
- Tecnológico Nacional de México, Instituto Tecnológico Superior de Los Reyes, Los Reyes 60300, Mexico
| | - Lucila Ortiz-Castellanos
- Departamento de Ingeniería Genética, Unidad Irapuato, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Irapuato 36821, Mexico; (L.O.-C.); (C.G.L.-R.)
| | - Mariana Robledo-Briones
- Departamento de Microbiología y Genética, Instituto Hispano-Luso de Investigaciones Agrarias (CIALE), Universidad de Salamanca, 37185 Salamanca, Spain;
| | - Claudia Geraldine León-Ramírez
- Departamento de Ingeniería Genética, Unidad Irapuato, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Irapuato 36821, Mexico; (L.O.-C.); (C.G.L.-R.)
| |
Collapse
|
8
|
Guzmán-Herrera A, Arias Del Angel JA, Rivera-Yoshida N, Benítez M, Franci A. Dynamical patterning modules and network motifs as joint determinants of development: Lessons from an aggregative bacterium. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2020; 336:300-314. [PMID: 32419346 DOI: 10.1002/jez.b.22946] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 03/26/2020] [Accepted: 04/04/2020] [Indexed: 12/15/2022]
Abstract
Development and evolution are dynamical processes under the continuous control of organismic and environmental factors. Generic physical processes, associated with biological materials and certain genes or molecules, provide a morphological template for the evolution and development of organism forms. Generic dynamical behaviors, associated with recurring network motifs, provide a temporal template for the regulation and coordination of biological processes. The role of generic physical processes and their associated molecules in development is the topic of the dynamical patterning module (DPM) framework. The role of generic dynamical behaviors in biological regulation is studied via the identification of the associated network motifs (NMs). We propose a joint DPM-NM perspective on the emergence and regulation of multicellularity focusing on a multicellular aggregative bacterium, Myxococcus xanthus. Understanding M. xanthus development as a dynamical process embedded in a physical substrate provides novel insights into the interaction between developmental regulatory networks and generic physical processes in the evolutionary transition to multicellularity.
Collapse
Affiliation(s)
- Alejandra Guzmán-Herrera
- Departamento de Matemáticas, Facultad de Ciencias, Universidad Nacional Autónoma de México, Mexico City, Mexico.,MRC Laboratory for Molecular Cell Biology, University College London, London, UK
| | - Juan A Arias Del Angel
- Laboratorio Nacional de Ciencias de la Sostenibilidad, Instituto de Ecología, Universidad Nacional Autónoma de México, Mexico City, Mexico.,Centro de Ciencias de la Complejidad, Universidad Nacional Autónoma de México, Mexico City, Mexico.,Programa de Doctorado en Ciencias Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Natsuko Rivera-Yoshida
- Departamento de Matemáticas, Facultad de Ciencias, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Mariana Benítez
- Laboratorio Nacional de Ciencias de la Sostenibilidad, Instituto de Ecología, Universidad Nacional Autónoma de México, Mexico City, Mexico.,Centro de Ciencias de la Complejidad, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Alessio Franci
- Departamento de Matemáticas, Facultad de Ciencias, Universidad Nacional Autónoma de México, Mexico City, Mexico
| |
Collapse
|
9
|
Mechanomicrobiology: how bacteria sense and respond to forces. Nat Rev Microbiol 2020; 18:227-240. [DOI: 10.1038/s41579-019-0314-2] [Citation(s) in RCA: 99] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/06/2019] [Indexed: 12/26/2022]
|
10
|
Rivera‐Yoshida N, Hernández‐Terán A, Escalante AE, Benítez M. Laboratory biases hinder Eco‐Evo‐Devo integration: Hints from the microbial world. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2019; 334:14-24. [DOI: 10.1002/jez.b.22917] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Revised: 09/09/2019] [Accepted: 10/02/2019] [Indexed: 12/18/2022]
Affiliation(s)
- Natsuko Rivera‐Yoshida
- Laboratorio Nacional de Ciencias de la Sostenibilidad (LANCIS), Instituto de EcologíaUniversidad Nacional Autónoma de México Mexico City Mexico
- Programa de Doctorado en Ciencias BiomédicasUniversidad Nacional Autónoma de México Mexico City Mexico
- Centro de Ciencias de la ComplejidadUniversidad Nacional Autónoma de México Mexico City Mexico
| | - Alejandra Hernández‐Terán
- Laboratorio Nacional de Ciencias de la Sostenibilidad (LANCIS), Instituto de EcologíaUniversidad Nacional Autónoma de México Mexico City Mexico
- Programa de Doctorado en Ciencias BiomédicasUniversidad Nacional Autónoma de México Mexico City Mexico
| | - Ana E. Escalante
- Laboratorio Nacional de Ciencias de la Sostenibilidad (LANCIS), Instituto de EcologíaUniversidad Nacional Autónoma de México Mexico City Mexico
| | - Mariana Benítez
- Laboratorio Nacional de Ciencias de la Sostenibilidad (LANCIS), Instituto de EcologíaUniversidad Nacional Autónoma de México Mexico City Mexico
- Centro de Ciencias de la ComplejidadUniversidad Nacional Autónoma de México Mexico City Mexico
| |
Collapse
|
11
|
Martínez-Soto D, Velez-Haro JM, León-Ramírez CG, Galán-Vásquez E, Chávez-Munguía B, Ruiz-Herrera J. Multicellular growth of the Basidiomycota phytopathogen fungus Sporisorium reilianum induced by acid conditions. Folia Microbiol (Praha) 2019; 65:511-521. [PMID: 31721091 DOI: 10.1007/s12223-019-00755-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Accepted: 10/25/2019] [Indexed: 12/18/2022]
Abstract
Fungi are considered model organisms for the analysis of important phenomena of eukaryotes. For example, some of them have been described as models to understand the phenomenon of multicellularity acquisition by different unicellular organisms phylogenetically distant. Interestingly, in this work, we describe the multicellular development in the model fungus S. reilianum. We observed that Sporisorium reilianum, a Basidiomycota cereal pathogen that at neutral pH grows with a yeast-like morphology during its saprophytic haploid stage, when incubated at acid pH grew in the form of multicellular clusters. The multicellularity observed in S. reilianum was of clonal type, where buds of "stem" cells growing as yeasts remain joined by their cell wall septa, after cytokinesis. The elaboration and analysis of a regulatory network of S. reilianum showed that the putative zinc finger transcription factor CBQ73544.1 regulates a number of genes involved in cell cycle, cellular division, signal transduction pathways, and biogenesis of cell wall. Interestingly, homologous of these genes have been found to be regulated during Saccharomyces cerevisiae multicellular growth. In adddition, some of these genes were found to be negatively regulated during multicellularity of S. reilianum. With these data, we suggest that S. reilianum is an interesting model for the study of multicellular development.
Collapse
Affiliation(s)
- Domingo Martínez-Soto
- Ingeniería en Innovación Agrícola Sustentable, Instituto Tecnológico Superior de Los Reyes, Los Reyes, Michoacán, México. .,Departamento de Ingeniería Genética, Unidad Irapuato, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Irapuato, Guanajuato, México. .,Department of Plant Pathology and Microbiology, University of California, Riverside, CA, 92521, USA. .,Ingeniería en Innovación Agrícola Sustentable, Instituto Tecnológico Superior de Los Reyes, Carretera Los Reyes-Jacona, Libertad, 60300, Los Reyes Michoacán, México.
| | - John Martin Velez-Haro
- Departamento de Ingeniería Genética, Unidad Irapuato, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Irapuato, Guanajuato, México.,Departamento de Ingeniería Bioquímica, Instituto Tecnológico de Celaya, Guanajuato, México
| | - Claudia Geraldine León-Ramírez
- Departamento de Ingeniería Genética, Unidad Irapuato, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Irapuato, Guanajuato, México
| | - Edgardo Galán-Vásquez
- Departamento de Ingeniería Genética, Unidad Irapuato, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Irapuato, Guanajuato, México
| | - Bibiana Chávez-Munguía
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, San Pedro Zacatenco, Cd. de México, México
| | - José Ruiz-Herrera
- Departamento de Ingeniería Genética, Unidad Irapuato, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Irapuato, Guanajuato, México
| |
Collapse
|
12
|
Miller WB, Torday JS, Baluška F. The N-space Episenome unifies cellular information space-time within cognition-based evolution. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2019; 150:112-139. [PMID: 31415772 DOI: 10.1016/j.pbiomolbio.2019.08.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 07/26/2019] [Accepted: 08/09/2019] [Indexed: 02/08/2023]
Abstract
Self-referential cellular homeostasis is maintained by the measured assessment of both internal status and external conditions based within an integrated cellular information field. This cellular field attachment to biologic information space-time coordinates environmental inputs by connecting the cellular senome, as the sum of the sensory experiences of the cell, with its genome and epigenome. In multicellular organisms, individual cellular information fields aggregate into a collective information architectural matrix, termed a N-space Episenome, that enables mutualized organism-wide information management. It is hypothesized that biological organization represents a dual heritable system constituted by both its biological materiality and a conjoining N-space Episenome. It is further proposed that morphogenesis derives from reciprocations between these inter-related facets to yield coordinated multicellular growth and development. The N-space Episenome is conceived as a whole cell informational projection that is heritable, transferable via cell division and essential for the synchronous integration of the diverse self-referential cells that constitute holobionts.
Collapse
Affiliation(s)
| | - John S Torday
- Department of Pediatrics, Harbor-UCLA Medical Center, USA.
| | | |
Collapse
|
13
|
Rivera-Yoshida N, Arzola AV, Arias Del Angel JA, Franci A, Travisano M, Escalante AE, Benítez M. Plastic multicellular development of Myxococcus xanthus: genotype-environment interactions in a physical gradient. ROYAL SOCIETY OPEN SCIENCE 2019; 6:181730. [PMID: 31032028 PMCID: PMC6458408 DOI: 10.1098/rsos.181730] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Accepted: 02/25/2019] [Indexed: 05/25/2023]
Abstract
In order to investigate the contribution of the physical environment to variation in multicellular development of Myxococcus xanthus, phenotypes developed by different genotypes in a gradient of substrate stiffness conditions were quantitatively characterized. Statistical analysis showed that plastic phenotypes result from the genotype, the substrate conditions and the interaction between them. Also, phenotypes were expressed in two distinguishable scales, the individual and the population levels, and the interaction with the environment showed scale and trait specificity. Overall, our results highlight the constructive role of the physical context in the development of microbial multicellularity, with both ecological and evolutionary implications.
Collapse
Affiliation(s)
- Natsuko Rivera-Yoshida
- Laboratorio Nacional de Ciencias de la Sostenibilidad (LANCIS), Instituto de Ecología, Universidad Nacional Autónoma de México, Mexico City, Mexico
- Centro de Ciencias de la Complejidad, Universidad Nacional Autónoma de México, Mexico City, Mexico
- Programa de Doctorado en Ciencias Biomédicas, Universidad Nacional Autónoma de México, Mexico
| | - Alejandro V. Arzola
- Instituto de Física, Universidad Nacional Autónoma de México, Apdo Postal 20-364, 01000 Cd de México, Mexico
| | - Juan A. Arias Del Angel
- Laboratorio Nacional de Ciencias de la Sostenibilidad (LANCIS), Instituto de Ecología, Universidad Nacional Autónoma de México, Mexico City, Mexico
- Centro de Ciencias de la Complejidad, Universidad Nacional Autónoma de México, Mexico City, Mexico
- Programa de Doctorado en Ciencias Biomédicas, Universidad Nacional Autónoma de México, Mexico
| | - Alessio Franci
- Facultad de Ciencias, Universidad Nacional Autonóma de México, Mexico
| | - Michael Travisano
- Department of Ecology, Evolution and Behavior, University of Minnesota, Saint Paul, MN, USA
| | - Ana E. Escalante
- Laboratorio Nacional de Ciencias de la Sostenibilidad (LANCIS), Instituto de Ecología, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Mariana Benítez
- Laboratorio Nacional de Ciencias de la Sostenibilidad (LANCIS), Instituto de Ecología, Universidad Nacional Autónoma de México, Mexico City, Mexico
- Centro de Ciencias de la Complejidad, Universidad Nacional Autónoma de México, Mexico City, Mexico
| |
Collapse
|