1
|
Dory EK, Gueta A, Loterstein Y, Moshe L, Matas D, Koren L, Weller A. Intergenerational transfer of binge eating-like behavior: The additive impact of juvenile stress. Appetite 2024; 203:107713. [PMID: 39396762 DOI: 10.1016/j.appet.2024.107713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 10/10/2024] [Accepted: 10/11/2024] [Indexed: 10/15/2024]
Abstract
Binge eating (BE) is consuming large amounts of food in a short time, while experiencing loss of control over eating behavior. BE can be hereditary, and juvenile stress (JS) may contribute to its onset. We examined the impact of JS on BE-like behavior, in an animal model of intergenerational BE. Twenty-four female Wistar rats received 2-h access to palatable food (PF) three or five times a week (3 TW or 5 TW) for 4 weeks, followed by the open field test (OFT). At postnatal day (PND)27-29, female offspring either underwent JS (O-JSC) or not (O-CC). At PND51-53, offspring's stress levels were assessed behaviorally. At PND70-85, offspring received 2-h access to PF three times a week to assess their BE-like tendency. Hair samples were collected afterwards. Compared to 5 TW, 3 TW had a greater binge size. In the elevated plus maze and dark\light box, in O-JSC, offspring of 3 TW (O-3TW) spent less time in the open arms and lit area compared to O-5TW. O-3TW consumed more PF than O-5TW. O-JSC consumed more than O-CC. O-3TW-JSC had higher hair CORT levels than O-3TW-CC and O-5TW-JSC. This study highlights the interplay between maternal and offspring experiences, allowing for the study of underlying mechanisms.
Collapse
Affiliation(s)
- Elin Kachuki Dory
- Department of Psychology, Bar Ilan University, Ramat Gan, Israel; Gonda Multidisciplinary Brain Research Center, Bar Ilan University, Ramat-Gan, Israel
| | - Avi Gueta
- Gonda Multidisciplinary Brain Research Center, Bar Ilan University, Ramat-Gan, Israel
| | - Yoni Loterstein
- Department of Psychology, Bar Ilan University, Ramat Gan, Israel; Gonda Multidisciplinary Brain Research Center, Bar Ilan University, Ramat-Gan, Israel
| | - Lital Moshe
- Department of Psychology, Bar Ilan University, Ramat Gan, Israel; Gonda Multidisciplinary Brain Research Center, Bar Ilan University, Ramat-Gan, Israel
| | - Devorah Matas
- Gonda Multidisciplinary Brain Research Center, Bar Ilan University, Ramat-Gan, Israel; Faculty of Life Sciences, Bar Ilan University, Ramat-Gan, Israel
| | - Lee Koren
- Gonda Multidisciplinary Brain Research Center, Bar Ilan University, Ramat-Gan, Israel; Faculty of Life Sciences, Bar Ilan University, Ramat-Gan, Israel
| | - Aron Weller
- Department of Psychology, Bar Ilan University, Ramat Gan, Israel; Gonda Multidisciplinary Brain Research Center, Bar Ilan University, Ramat-Gan, Israel.
| |
Collapse
|
2
|
Khatib H, Townsend J, Konkel MA, Conidi G, Hasselkus JA. Calling the question: what is mammalian transgenerational epigenetic inheritance? Epigenetics 2024; 19:2333586. [PMID: 38525788 DOI: 10.1080/15592294.2024.2333586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 03/17/2024] [Indexed: 03/26/2024] Open
Abstract
While transgenerational epigenetic inheritance has been extensively documented in plants, nematodes, and fruit flies, its existence in mammals remains controversial. Several factors have contributed to this debate, including the lack of a clear distinction between intergenerational and transgenerational epigenetic inheritance (TEI), the inconsistency of some studies, the potential confounding effects of in-utero vs. epigenetic factors, and, most importantly, the biological challenge of epigenetic reprogramming. Two waves of epigenetic reprogramming occur: in the primordial germ cells and the developing embryo after fertilization, characterized by global erasure of DNA methylation and remodelling of histone modifications. Consequently, TEI can only occur if specific genetic regions evade this reprogramming and persist through embryonic development. These challenges have revived the long-standing debate about the possibility of inheriting acquired traits, which has been strongly contested since the Lamarckian and Darwinian eras. As a result, coupled with the absence of universally accepted criteria for transgenerational epigenetic studies, a vast body of literature has emerged claiming evidence of TEI. Therefore, the goal of this study is to advocate for establishing fundamental criteria that must be met for a study to qualify as evidence of TEI. We identified five criteria based on the consensus of studies that critically evaluated TEI. To assess whether published original research papers adhere to these criteria, we examined 80 studies that either claimed or were cited as supporting TEI. The findings of this analysis underscore the widespread confusion in this field and highlight the urgent need for a unified scientific consensus on TEI requirements.
Collapse
Affiliation(s)
- Hasan Khatib
- The Department of Animal and Dairy Sciences, The University of Wisconsin, Madison, WI, USA
| | - Jessica Townsend
- The Department of Animal and Dairy Sciences, The University of Wisconsin, Madison, WI, USA
| | - Melissa A Konkel
- The Department of Animal and Dairy Sciences, The University of Wisconsin, Madison, WI, USA
| | - Gabi Conidi
- The Department of Animal and Dairy Sciences, The University of Wisconsin, Madison, WI, USA
| | - Julia A Hasselkus
- The Department of Animal and Dairy Sciences, The University of Wisconsin, Madison, WI, USA
| |
Collapse
|
3
|
Garfinkel AM, Ilker E, Miyazawa H, Schmeisser K, Tennessen JM. Historic obstacles and emerging opportunities in the field of developmental metabolism - lessons from Heidelberg. Development 2024; 151:dev202937. [PMID: 38912552 PMCID: PMC11299503 DOI: 10.1242/dev.202937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/25/2024]
Abstract
The field of developmental metabolism is experiencing a technological revolution that is opening entirely new fields of inquiry. Advances in metabolomics, small-molecule sensors, single-cell RNA sequencing and computational modeling present new opportunities for exploring cell-specific and tissue-specific metabolic networks, interorgan metabolic communication, and gene-by-metabolite interactions in time and space. Together, these advances not only present a means by which developmental biologists can tackle questions that have challenged the field for centuries, but also present young scientists with opportunities to define new areas of inquiry. These emerging frontiers of developmental metabolism were at the center of a highly interactive 2023 EMBO workshop 'Developmental metabolism: flows of energy, matter, and information'. Here, we summarize key discussions from this forum, emphasizing modern developmental biology's challenges and opportunities.
Collapse
Affiliation(s)
- Alexandra M. Garfinkel
- Pediatric Genomics Discovery Program, Department of Pediatrics and Genetics, Yale University School of Medicine, New Haven, CT 06510, USA
- Section of Endocrinology, Department of Internal Medicine, Yale University, New Haven, CT 06510, USA
| | - Efe Ilker
- Max Planck Institute for the Physics of Complex Systems, Dresden 01187, Germany
| | - Hidenobu Miyazawa
- Developmental Biology Unit, European Molecular Biology Laboratory, Heidelberg 69117, Germany
| | - Kathrin Schmeisser
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden 01307, Germany
| | | |
Collapse
|
4
|
Crean AJ, Senior AM, Freire T, Clark TD, Mackay F, Austin G, Pulpitel TJ, Nobrega MA, Barrès R, Simpson SJ. Paternal dietary macronutrient balance and energy intake drive metabolic and behavioral differences among offspring. Nat Commun 2024; 15:2982. [PMID: 38582785 PMCID: PMC10998877 DOI: 10.1038/s41467-024-46782-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 03/11/2024] [Indexed: 04/08/2024] Open
Abstract
Paternal diet can influence the phenotype of the next generation, yet, the dietary components inducing specific responses in the offspring are not identified. Here, we use the Nutritional Geometry Framework to determine the effects of pre-conception paternal dietary macronutrient balance on offspring metabolic and behavioral traits in mice. Ten isocaloric diets varying in the relative proportion of protein, fats, and carbohydrates are fed to male mice prior to mating. Dams and offspring are fed standard chow and never exposed to treatment diets. Body fat in female offspring is positively associated with the paternal consumption of fat, while in male offspring, an anxiety-like phenotype is associated to paternal diets low in protein and high in carbohydrates. Our study uncovers that the nature and the magnitude of paternal effects are driven by interactions between macronutrient balance and energy intake and are not solely the result of over- or undernutrition.
Collapse
Affiliation(s)
- Angela Jane Crean
- Charles Perkins Centre and School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Alistair McNair Senior
- Charles Perkins Centre and School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Therese Freire
- Charles Perkins Centre and School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Thomas Daniel Clark
- Charles Perkins Centre and School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Flora Mackay
- Charles Perkins Centre and School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Gracie Austin
- Charles Perkins Centre and School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Tamara Jayne Pulpitel
- Charles Perkins Centre and School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW, 2006, Australia
| | | | - Romain Barrès
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, DK, 2200, Denmark.
- Institut de Pharmacologie Moléculaire et Cellulaire, Université Côte d'Azur & Centre National pour la Recherche Scientifique (CNRS), Valbonne, 06560, France.
| | - Stephen James Simpson
- Charles Perkins Centre and School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW, 2006, Australia.
| |
Collapse
|
5
|
Sengupta T, St. Ange J, Kaletsky R, Moore RS, Seto RJ, Marogi J, Myhrvold C, Gitai Z, Murphy CT. A natural bacterial pathogen of C. elegans uses a small RNA to induce transgenerational inheritance of learned avoidance. PLoS Genet 2024; 20:e1011178. [PMID: 38547071 PMCID: PMC10977744 DOI: 10.1371/journal.pgen.1011178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 02/09/2024] [Indexed: 04/02/2024] Open
Abstract
C. elegans can learn to avoid pathogenic bacteria through several mechanisms, including bacterial small RNA-induced learned avoidance behavior, which can be inherited transgenerationally. Previously, we discovered that a small RNA from a clinical isolate of Pseudomonas aeruginosa, PA14, induces learned avoidance and transgenerational inheritance of that avoidance in C. elegans. Pseudomonas aeruginosa is an important human pathogen, and there are other Pseudomonads in C. elegans' natural habitat, but it is unclear whether C. elegans ever encounters PA14-like bacteria in the wild. Thus, it is not known if small RNAs from bacteria found in C. elegans' natural habitat can also regulate host behavior and produce heritable behavioral effects. Here we screened a set of wild habitat bacteria, and found that a pathogenic Pseudomonas vranovensis strain isolated from the C. elegans microbiota, GRb0427, regulates worm behavior: worms learn to avoid this pathogenic bacterium following exposure, and this learned avoidance is inherited for four generations. The learned response is entirely mediated by bacterially-produced small RNAs, which induce avoidance and transgenerational inheritance, providing further support that such mechanisms of learning and inheritance exist in the wild. We identified Pv1, a small RNA expressed in P. vranovensis, that has a 16-nucleotide match to an exon of the C. elegans gene maco-1. Pv1 is both necessary and sufficient to induce learned avoidance of Grb0427. However, Pv1 also results in avoidance of a beneficial microbiome strain, P. mendocina. Our findings suggest that bacterial small RNA-mediated regulation of host behavior and its transgenerational inheritance may be functional in C. elegans' natural environment, and that this potentially maladaptive response may favor reversal of the transgenerational memory after a few generations. Our data also suggest that different bacterial small RNA-mediated regulation systems evolved independently, but define shared molecular features of bacterial small RNAs that produce transgenerationally-inherited effects.
Collapse
Affiliation(s)
- Titas Sengupta
- Lewis Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey, United States of America
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, United States of America
| | - Jonathan St. Ange
- Lewis Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey, United States of America
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, United States of America
| | - Rachel Kaletsky
- Lewis Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey, United States of America
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, United States of America
| | - Rebecca S. Moore
- Lewis Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey, United States of America
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, United States of America
| | - Renee J. Seto
- Lewis Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey, United States of America
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, United States of America
| | - Jacob Marogi
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, United States of America
| | - Cameron Myhrvold
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, United States of America
| | - Zemer Gitai
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, United States of America
| | - Coleen T. Murphy
- Lewis Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey, United States of America
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, United States of America
| |
Collapse
|
6
|
Jimenez-Gonzalez A, Ansaloni F, Nebendahl C, Alavioon G, Murray D, Robak W, Sanges R, Müller F, Immler S. Paternal starvation affects metabolic gene expression during zebrafish offspring development and lifelong fitness. Mol Ecol 2024; 33:e17296. [PMID: 38361456 DOI: 10.1111/mec.17296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 01/03/2024] [Accepted: 01/12/2024] [Indexed: 02/17/2024]
Abstract
Dietary restriction in the form of fasting is a putative key to a healthier and longer life, but these benefits may come at a trade-off with reproductive fitness and may affect the following generation(s). The potential inter- and transgenerational effects of long-term fasting and starvation are particularly poorly understood in vertebrates when they originate from the paternal line. We utilised the externally fertilising zebrafish amenable to a split-egg clutch design to explore the male-specific effects of fasting/starvation on fertility and fitness of offspring independently of maternal contribution. Eighteen days of fasting resulted in reduced fertility in exposed males. While average offspring survival was not affected, we detected increased larval growth rate in F1 offspring from starved males and more malformed embryos at 24 h post-fertilisation in F2 offspring produced by F1 offspring from starved males. Comparing the transcriptomes of F1 embryos sired by starved and fed fathers revealed robust and reproducible increased expression of muscle composition genes but lower expression of lipid metabolism and lysosome genes in embryos from starved fathers. A large proportion of these genes showed enrichment in the yolk syncytial layer suggesting gene regulatory responses associated with metabolism of nutrients through paternal effects on extra-embryonic tissues which are loaded with maternal factors. We compared the embryo transcriptomes to published adult transcriptome datasets and found comparable repressive effects of starvation on metabolism-associated genes. These similarities suggest a physiologically relevant, directed and potentially adaptive response transmitted by the father, independently from the offspring's nutritional state, which was defined by the mother.
Collapse
Affiliation(s)
- Ada Jimenez-Gonzalez
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Federico Ansaloni
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
- Central RNA Laboratory, Istituto Italiano di Tecnologia (IIT), Genova, Italy
- Area of Neuroscience, Scuola Internazionale Superiore di Studi Avanzati (SISSA), Trieste, Italy
| | | | - Ghazal Alavioon
- Department of Evolutionary Biology, Uppsala University, Uppsala, Sweden
| | - David Murray
- School of Biological Sciences, University of East Anglia, Norwich, UK
- Centre for Environment, Fisheries, and Aquaculture Science, Lowestoft, UK
| | - Weronika Robak
- School of Biological Sciences, University of East Anglia, Norwich, UK
| | - Remo Sanges
- Central RNA Laboratory, Istituto Italiano di Tecnologia (IIT), Genova, Italy
- Area of Neuroscience, Scuola Internazionale Superiore di Studi Avanzati (SISSA), Trieste, Italy
| | - Ferenc Müller
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Simone Immler
- Department of Evolutionary Biology, Uppsala University, Uppsala, Sweden
- School of Biological Sciences, University of East Anglia, Norwich, UK
| |
Collapse
|
7
|
Hamada H, Iwama N, Tomita H, Tagami K, Kumagai N, Kudo R, Wang H, Izumi S, Watanabe Z, Ishikuro M, Obara T, Tatsuta N, Metoki H, Saito M, Ota C, Kuriyama S, Arima T, Yaegashi N. Association between Maternal Birth Weight and Prevalence of Congenital Malformations in Offspring: The Japanese Environment and Children's Study. Nutrients 2024; 16:531. [PMID: 38398855 PMCID: PMC10893182 DOI: 10.3390/nu16040531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 02/11/2024] [Accepted: 02/12/2024] [Indexed: 02/25/2024] Open
Abstract
Congenital malformations are functional and structural alterations in embryonic or foetal development resulting from a variety of factors including maternal health status. This study aimed to investigate the association between maternal birth weight (MBW) and the prevalence of congenital malformations in offspring using data from a nationwide birth cohort study in Japan including 103,060 pregnancies. A binary logistic regression model with adjustment for various covariates revealed that an MBW of <2500 g (low MBW) was associated with an increased risk of congenital heart disease (adjusted odds ratio: 1.388, [95% confidence interval: 1.075-1.792]), angioma (1.491 [1.079-2.059]), and inguinal hernia (1.746, [1.189-2.565]), while those with an MBW of ≥4000 g (high MBW) were associated with congenital anomalies of the urinary tract (2.194, [1.261-3.819]) and arrhythmia (1.775, [1.157-2.725]) compared with those with an MBW of 3000-3499 g. Low MBW was associated with cleft lip and/or palate (1.473, [1.052-2.064]), congenital heart disease (1.615, [1.119-2.332]), genital organs (1.648, [1.130-2.405]), hypospadias (1.804, [1.130-2.881]), and inguinal hernia (1.484, [1.189-1.851]) in male infants and CAKUT (1.619, [1.154-2.273]) in female infants, whereas high MBW was associated with congenital heart disease (1.745, [1.058-2.877]) and CAKUT (2.470, [1.350-4.517]) in male infants. The present study is the first to demonstrate a link between MBW and congenital malformations in Japanese children. While these results must be interpreted with caution, MBW should be considered a major predictor of congenital malformation risk.
Collapse
Affiliation(s)
- Hirotaka Hamada
- Department of Obstetrics and Gynecology, Tohoku University Graduate School of Medicine, 1-1, Seiryomachi, Sendai 980-8574, Miyagi, Japan
| | - Noriyuki Iwama
- Department of Obstetrics and Gynecology, Tohoku University Graduate School of Medicine, 1-1, Seiryomachi, Sendai 980-8574, Miyagi, Japan
- Division of Molecular Epidemiology, Department of Preventive Medicine and Epidemiology, Tohoku Medical Megabank Organization, Tohoku University, 2-1, Seiryomachi, Sendai 980-8573, Miyagi, Japan
| | - Hasumi Tomita
- Department of Obstetrics and Gynecology, Tohoku University Graduate School of Medicine, 1-1, Seiryomachi, Sendai 980-8574, Miyagi, Japan
| | - Kazuma Tagami
- Department of Obstetrics and Gynecology, Tohoku University Graduate School of Medicine, 1-1, Seiryomachi, Sendai 980-8574, Miyagi, Japan
| | - Natsumi Kumagai
- Department of Obstetrics and Gynecology, Tohoku University Graduate School of Medicine, 1-1, Seiryomachi, Sendai 980-8574, Miyagi, Japan
| | - Rie Kudo
- Department of Obstetrics and Gynecology, Tohoku University Graduate School of Medicine, 1-1, Seiryomachi, Sendai 980-8574, Miyagi, Japan
| | - Hongxin Wang
- Department of Obstetrics and Gynecology, Tohoku University Graduate School of Medicine, 1-1, Seiryomachi, Sendai 980-8574, Miyagi, Japan
| | - Seiya Izumi
- Department of Obstetrics and Gynecology, Tohoku University Graduate School of Medicine, 1-1, Seiryomachi, Sendai 980-8574, Miyagi, Japan
| | - Zen Watanabe
- Department of Obstetrics and Gynecology, Tohoku University Graduate School of Medicine, 1-1, Seiryomachi, Sendai 980-8574, Miyagi, Japan
| | - Mami Ishikuro
- Division of Molecular Epidemiology, Department of Preventive Medicine and Epidemiology, Tohoku Medical Megabank Organization, Tohoku University, 2-1, Seiryomachi, Sendai 980-8573, Miyagi, Japan
- Division of Molecular Epidemiology, Tohoku University Graduate School of Medicine, 2-1, Seiryomachi, Sendai 980-8575, Miyagi, Japan
| | - Taku Obara
- Division of Molecular Epidemiology, Department of Preventive Medicine and Epidemiology, Tohoku Medical Megabank Organization, Tohoku University, 2-1, Seiryomachi, Sendai 980-8573, Miyagi, Japan
- Division of Molecular Epidemiology, Tohoku University Graduate School of Medicine, 2-1, Seiryomachi, Sendai 980-8575, Miyagi, Japan
| | - Nozomi Tatsuta
- Environment and Genome Research Center, Tohoku University Graduate School of Medicine, 2-1, Seiryomachi, Sendai 980-8575, Miyagi, Japan
| | - Hirohito Metoki
- Division of Public Health, Hygiene and Epidemiology, Tohoku Medical Pharmaceutical University, 1-15-1 Fukumuro, Sendai 983-8536, Miyagi, Japan
- Tohoku Medical Megabank Organization, Tohoku University, 2-1, Seiryomachi, Sendai 980-8573, Miyagi, Japan
| | - Masatoshi Saito
- Department of Obstetrics and Gynecology, Tohoku University Graduate School of Medicine, 1-1, Seiryomachi, Sendai 980-8574, Miyagi, Japan
- Department of Maternal and Fetal Therapeutics, Tohoku University Graduate School of Medicine, 1-1, Seiryomachi, Sendai 980-8574, Miyagi, Japan
| | - Chiharu Ota
- Environment and Genome Research Center, Tohoku University Graduate School of Medicine, 2-1, Seiryomachi, Sendai 980-8575, Miyagi, Japan
- Department of Paediatrics, Tohoku University Graduate School of Medicine, 1-1, Seiryomachi, Sendai 980-8574, Miyagi, Japan
| | - Shinichi Kuriyama
- Division of Molecular Epidemiology, Department of Preventive Medicine and Epidemiology, Tohoku Medical Megabank Organization, Tohoku University, 2-1, Seiryomachi, Sendai 980-8573, Miyagi, Japan
- Environment and Genome Research Center, Tohoku University Graduate School of Medicine, 2-1, Seiryomachi, Sendai 980-8575, Miyagi, Japan
- International Research Institute of Disaster Science, Tohoku University, 468-1, Aramaki, Sendai 980-8572, Miyagi, Japan
| | - Takahiro Arima
- Environment and Genome Research Center, Tohoku University Graduate School of Medicine, 2-1, Seiryomachi, Sendai 980-8575, Miyagi, Japan
| | - Nobuo Yaegashi
- Department of Obstetrics and Gynecology, Tohoku University Graduate School of Medicine, 1-1, Seiryomachi, Sendai 980-8574, Miyagi, Japan
- Environment and Genome Research Center, Tohoku University Graduate School of Medicine, 2-1, Seiryomachi, Sendai 980-8575, Miyagi, Japan
| | | |
Collapse
|
8
|
Díez-Villanueva A, Martín B, Moratalla-Navarro F, Morón-Duran FD, Galván-Femenía I, Obón-Santacana M, Carreras A, de Cid R, Peinado MA, Moreno V. Identification of intergenerational epigenetic inheritance by whole genome DNA methylation analysis in trios. Sci Rep 2023; 13:21266. [PMID: 38042866 PMCID: PMC10693549 DOI: 10.1038/s41598-023-48517-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 11/27/2023] [Indexed: 12/04/2023] Open
Abstract
Genome-wide association studies have identified thousands of loci associated with common diseases and traits. However, a large fraction of heritability remains unexplained. Epigenetic modifications, such as the observed in DNA methylation have been proposed as a mechanism of intergenerational inheritance. To investigate the potential contribution of DNA methylation to the missing heritability, we analysed the methylomes of four healthy trios (two parents and one offspring) using whole genome bisulphite sequencing. Of the 1.5 million CpGs (19%) with over 20% variability between parents in at least one family and compatible with a Mendelian inheritance pattern, only 3488 CpGs (0.2%) lacked correlation with any SNP in the genome, marking them as potential sites for intergenerational epigenetic inheritance. These markers were distributed genome-wide, with some preference to be located in promoters. They displayed a bimodal distribution, being either fully methylated or unmethylated, and were often found at the boundaries of genomic regions with high/low GC content. This analysis provides a starting point for future investigations into the missing heritability of simple and complex traits.
Collapse
Affiliation(s)
- Anna Díez-Villanueva
- Unit of Biomarkers and Susceptibility (UBS), Oncology Data Analytics Program (ODAP), Catalan Institute of Oncology (ICO), L'Hospitalet del Llobregat, 08908, Barcelona, Spain
- ONCOBELL Program, Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, 08908, Barcelona, Spain
- Consortium for Biomedical Research in Epidemiology and Public Health (CIBERESP), 28029, Madrid, Spain
| | - Berta Martín
- Germans Trias i Pujol Institute (IGTP), Translational Program in Cancer Research (CARE), Camí de les Escoles, s/n, Can Ruti Biomedical Campus, 08916, Badalona, Catalonia, Spain
| | - Ferran Moratalla-Navarro
- Unit of Biomarkers and Susceptibility (UBS), Oncology Data Analytics Program (ODAP), Catalan Institute of Oncology (ICO), L'Hospitalet del Llobregat, 08908, Barcelona, Spain
- ONCOBELL Program, Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, 08908, Barcelona, Spain
- Consortium for Biomedical Research in Epidemiology and Public Health (CIBERESP), 28029, Madrid, Spain
- Department of Clinical Sciences, Faculty of Medicine and Universitat de Barcelona Institute of Complex Systems (UBICS), University of Barcelona, 08907, Barcelona, Spain
| | - Francisco D Morón-Duran
- Unit of Biomarkers and Susceptibility (UBS), Oncology Data Analytics Program (ODAP), Catalan Institute of Oncology (ICO), L'Hospitalet del Llobregat, 08908, Barcelona, Spain
- ONCOBELL Program, Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, 08908, Barcelona, Spain
- Department of Clinical Sciences, Faculty of Medicine and Universitat de Barcelona Institute of Complex Systems (UBICS), University of Barcelona, 08907, Barcelona, Spain
| | - Iván Galván-Femenía
- Genomes for Life-GCAT lab., Germans Trias i Pujol Research Institute (IGTP), Camí de les Escoles, s/n, Can Ruti Biomedical Campus, 08916, Badalona, Catalonia, Spain
| | - Mireia Obón-Santacana
- Unit of Biomarkers and Susceptibility (UBS), Oncology Data Analytics Program (ODAP), Catalan Institute of Oncology (ICO), L'Hospitalet del Llobregat, 08908, Barcelona, Spain
- ONCOBELL Program, Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, 08908, Barcelona, Spain
- Consortium for Biomedical Research in Epidemiology and Public Health (CIBERESP), 28029, Madrid, Spain
| | - Anna Carreras
- Genomes for Life-GCAT lab., Germans Trias i Pujol Research Institute (IGTP), Camí de les Escoles, s/n, Can Ruti Biomedical Campus, 08916, Badalona, Catalonia, Spain
| | - Rafael de Cid
- Genomes for Life-GCAT lab., Germans Trias i Pujol Research Institute (IGTP), Camí de les Escoles, s/n, Can Ruti Biomedical Campus, 08916, Badalona, Catalonia, Spain
| | - Miguel A Peinado
- Germans Trias i Pujol Institute (IGTP), Translational Program in Cancer Research (CARE), Camí de les Escoles, s/n, Can Ruti Biomedical Campus, 08916, Badalona, Catalonia, Spain
| | - Victor Moreno
- Unit of Biomarkers and Susceptibility (UBS), Oncology Data Analytics Program (ODAP), Catalan Institute of Oncology (ICO), L'Hospitalet del Llobregat, 08908, Barcelona, Spain.
- ONCOBELL Program, Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, 08908, Barcelona, Spain.
- Consortium for Biomedical Research in Epidemiology and Public Health (CIBERESP), 28029, Madrid, Spain.
- Department of Clinical Sciences, Faculty of Medicine and Universitat de Barcelona Institute of Complex Systems (UBICS), University of Barcelona, 08907, Barcelona, Spain.
| |
Collapse
|
9
|
Sengupta T, St. Ange J, Moore R, Kaletsky R, Marogi J, Myhrvold C, Gitai Z, Murphy CT. A natural bacterial pathogen of C. elegans uses a small RNA to induce transgenerational inheritance of learned avoidance. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.20.549962. [PMID: 37503135 PMCID: PMC10370180 DOI: 10.1101/2023.07.20.549962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
Previously, we discovered that a small RNA from a clinical isolate of Pseudomonas aeruginosa, PA14, induces learned avoidance and its transgenerational inheritance in C. elegans. Pseudomonas aeruginosa is an important human pathogen, and there are other Pseudomonads in C. elegans' natural habitat, but it is unclear whether C. elegans ever encounters PA14-like bacteria in the wild. Thus, it is not known if small RNAs from bacteria found in C. elegans' natural habitat can also regulate host behavior and produce heritable behavioral effects. Here we found that a pathogenic Pseudomonas vranovensis strain isolated from the C. elegans microbiota, GRb0427, like PA14, regulates worm behavior: worms learn to avoid this pathogenic bacterium following exposure to GRb0427, and this learned avoidance is inherited for four generations. The learned response is entirely mediated by bacterially-produced small RNAs, which induce avoidance and transgenerational inheritance, providing further support that such mechanisms of learning and inheritance exist in the wild. Using bacterial small RNA sequencing, we identified Pv1, a small RNA from GRb0427, that matches the sequence of C. elegans maco-1. We find that Pv1 is both necessary and sufficient to induce learned avoidance of Grb0427. However, Pv1 also results in avoidance of a beneficial microbiome strain, P. mendocina; this potentially maladaptive response may favor reversal of the transgenerational memory after a few generations. Our findings suggest that bacterial small RNA-mediated regulation of host behavior and its transgenerational inheritance are functional in C. elegans' natural environment, and that different bacterial small RNA-mediated regulation systems evolved independently but define shared molecular features of bacterial small RNAs that produce transgenerationally-inherited effects.
Collapse
Affiliation(s)
- Titas Sengupta
- Lewis Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Jonathan St. Ange
- Lewis Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Rebecca Moore
- Lewis Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Rachel Kaletsky
- Lewis Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Jacob Marogi
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Cameron Myhrvold
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Zemer Gitai
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Coleen T. Murphy
- Lewis Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| |
Collapse
|
10
|
Machado FR, Boeira SP, Bortolotto VC, Araujo SM, Poetini MR, Viana CE, Prigol M, Souza LC, de Gomes MG. HDAC3 inhibition protects against peripheral and central alterations in an animal model of obesity. Pharmacol Rep 2023; 75:1177-1186. [PMID: 37698830 DOI: 10.1007/s43440-023-00528-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 08/27/2023] [Accepted: 08/29/2023] [Indexed: 09/13/2023]
Abstract
BACKGROUND Obesity is a multifactorial disease with epigenetic manifestations that increases the prevalence of associated comorbidities such as metabolic syndrome, cardiovascular dysfunction, and major depression disorder. Given the aforementioned, a search for new pharmacological alternatives for the treatment of this disease is necessary. The current study aimed to evaluate the effects of histone deacetylase-3 (HDAC3) inhibition caused by RGFP966 (a benzamide-type HDAC inhibitor selective for HDAC3) administration, in an animal model of obesity induced by high-fat diet (HFD). METHODS Adult male mice C57BJ/6 were fed with a normal pellet diet (NPD) or HFD for 120 days. The HDAC3 inhibitor (RGFP966; 10 mg/kg; sc) was administered on the 91st to 120th day of the experiment (per 30 days). After the last inhibitor administration, animals were euthanized, blood was collected, and the hippocampus was removed for biochemical determinations. RESULTS In an overall manner, the administration of RGFP966 protected against changes in body weight gain, glucose, insulin, lipid profile, adipokines, and increase of hippocampal proinflammatory cytokines levels caused by HFD. CONCLUSION Therefore, HDAC3 inhibition can represent a promising pharmacological target for the treatment of obesity.
Collapse
Affiliation(s)
- Franciéle Romero Machado
- Laboratory of Pharmacological and Toxicological Evaluations Applied to Bioactive Molecules, LaftamBio Pampa, Federal University of Pampa, Campus Itaqui, Itaqui, RS, 97650-000, Brazil
| | - Silvana Peterini Boeira
- Laboratory of Pharmacological and Toxicological Evaluations Applied to Bioactive Molecules, LaftamBio Pampa, Federal University of Pampa, Campus Itaqui, Itaqui, RS, 97650-000, Brazil
| | - Vandreza Cardoso Bortolotto
- Laboratory of Pharmacological and Toxicological Evaluations Applied to Bioactive Molecules, LaftamBio Pampa, Federal University of Pampa, Campus Itaqui, Itaqui, RS, 97650-000, Brazil
| | - Stífani Machado Araujo
- Laboratory of Pharmacological and Toxicological Evaluations Applied to Bioactive Molecules, LaftamBio Pampa, Federal University of Pampa, Campus Itaqui, Itaqui, RS, 97650-000, Brazil
| | - Márcia Rósula Poetini
- Laboratory of Pharmacological and Toxicological Evaluations Applied to Bioactive Molecules, LaftamBio Pampa, Federal University of Pampa, Campus Itaqui, Itaqui, RS, 97650-000, Brazil
| | - Cristini Escobar Viana
- Laboratory of Pharmacological and Toxicological Evaluations Applied to Bioactive Molecules, LaftamBio Pampa, Federal University of Pampa, Campus Itaqui, Itaqui, RS, 97650-000, Brazil
| | - Marina Prigol
- Laboratory of Pharmacological and Toxicological Evaluations Applied to Bioactive Molecules, LaftamBio Pampa, Federal University of Pampa, Campus Itaqui, Itaqui, RS, 97650-000, Brazil
| | - Leandro Cattelan Souza
- Laboratory of Pharmacological and Toxicological Evaluations Applied to Bioactive Molecules, LaftamBio Pampa, Federal University of Pampa, Campus Itaqui, Itaqui, RS, 97650-000, Brazil
| | - Marcelo Gomes de Gomes
- Laboratory of Pharmacological and Toxicological Evaluations Applied to Bioactive Molecules, LaftamBio Pampa, Federal University of Pampa, Campus Itaqui, Itaqui, RS, 97650-000, Brazil.
| |
Collapse
|
11
|
Mc Auley MT. An evolutionary perspective of lifespan and epigenetic inheritance. Exp Gerontol 2023; 179:112256. [PMID: 37460026 DOI: 10.1016/j.exger.2023.112256] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 07/04/2023] [Accepted: 07/12/2023] [Indexed: 07/21/2023]
Abstract
In the last decade epigenetics has come to the fore as a discipline which is central to biogerontology. Age associated epigenetic changes are routinely linked with pathologies, including cardiovascular disease, cancer, and Alzheimer's disease; moreover, epigenetic clocks are capable of correlating biological age with chronological age in many species including humans. Recent intriguing empirical observations also suggest that inherited epigenetic effects could influence lifespan/longevity in a variety of organisms. If this is the case, an imperative exists to reconcile lifespan/longevity associated inherited epigenetic processes with the evolution of ageing. This review will critically evaluate inherited epigenetic effects from an evolutionary perspective. The overarching aim is to integrate the evidence which suggests epigenetic inheritance modulates lifespan/longevity with the main evolutionary theories of ageing.
Collapse
|
12
|
Cox B, Walters BJ. Post-transcriptional & post-translational control of gene expression in the inner ear. Hear Res 2023; 436:108823. [PMID: 37329863 DOI: 10.1016/j.heares.2023.108823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Affiliation(s)
- Brandon Cox
- Department of Pharmacology, Southern Illinois University, School of Medicine 801 N. Rutledge Street, Springfield, IL 62702
| | - Bradely J Walters
- Department of Otolaryngology - Head and Neck Surgery, The University of Mississippi Medical Center, 2500 North State Street Jackson, MS 39216, USA
| |
Collapse
|