1
|
Sobroza TV, Gordo M, Dunn JC, Pequeno PACL, Naissinger BM, Barnett APA. Pied tamarins change their vocal behavior in response to noise levels in the largest city in the Amazon. Am J Primatol 2024; 86:e23606. [PMID: 38340360 DOI: 10.1002/ajp.23606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 01/14/2024] [Accepted: 01/27/2024] [Indexed: 02/12/2024]
Abstract
Many animal species depend on sound to communicate with conspecifics. However, human-generated (anthropogenic) noise may mask acoustic signals and so disrupt behavior. Animals may use various strategies to circumvent this, including shifts in the timing of vocal activity and changes to the acoustic parameters of their calls. We tested whether pied tamarins (Saguinus bicolor) adjust their vocal behavior in response to city noise. We predicted that both the probability of occurrence and the number of long calls would increase in response to anthropogenic noise and that pied tamarins would temporally shift their vocal activity to avoid noisier periods. At a finer scale, we anticipated that the temporal parameters of tamarin calls (e.g., call duration and syllable repetition rate) would increase with noise amplitude. We collected information on the acoustic environment and the emission of long calls in nine wild pied tamarin groups in Manaus, Brazil. We found that the probability of long-call occurrence increased with higher levels of anthropogenic noise, though the number of long calls did not. The number of long calls was related to the time of day and the distance from home range borders-a proxy for the distance to neighboring groups. Neither long-call occurrence nor call rate was related to noise levels at different times of day. We found that pied tamarins decreased their syllable repetition rate in response to anthropogenic noise. Long calls are important for group cohesion and intergroup communication. Thus, it is possible that the tamarins emit one long call with lower syllable repetition, which might facilitate signal reception. The occurrence and quantity of pied tamarin' long calls, as well as their acoustic proprieties, seem to be governed by anthropogenic noise, time of the day, and social mechanisms such as proximity to neighboring groups.
Collapse
Affiliation(s)
- Tainara Venturini Sobroza
- Projeto Sauim-de-Coleira, Universidade Federal do Amazonas, Manaus, Amazonas, Brazil
- Centro de Estudos Integrados da Biodiversidade Amazônica- CENBAM/PPBio de Pesquisa de Mamíferos Amazônicos, Instituto Nacional de Pesquisas da Amazônia, Manaus, Amazonas, Brazil
- Grupo de Pesquisa de Mamíferos Amazônicos, Instituto Nacional de Pesquisas da Amazônia, Manaus, Amazonas, Brazil
- Programa de Pós-Graduação em Conservação e Uso de Recursos Naturais, Universidade Federal de Rondônia, Boa Vista, Rondônia, Brazil
| | - Marcelo Gordo
- Projeto Sauim-de-Coleira, Universidade Federal do Amazonas, Manaus, Amazonas, Brazil
| | - Jacob C Dunn
- Department of Archaeology & Anthropology, University of Cambridge, Cambridge, UK
- Behavioural Ecology Research Group, Anglia Ruskin University, Cambridge, UK
- Department of Cognitive Biology, University of Vienna, Vienna, Austria
| | | | | | - Adrian Paul Ashton Barnett
- Grupo de Pesquisa de Mamíferos Amazônicos, Instituto Nacional de Pesquisas da Amazônia, Manaus, Amazonas, Brazil
- Departamento de Zoologia, Centro de Ciências Biológicas, Universidade Federal de Pernambuco, Recife, Pernambuco, Brazil
- Departamento de Ciências Biológicas, Universidade Estadual do Maranhão, São Luis, Maranhão, Brazil
- Department of Natural Sciences, Middlesex University, London, UK
| |
Collapse
|
2
|
Collins AC, Vickers TW, Shilling FM. Behavioral responses to anthropogenic noise at highways vary across temporal scales. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.891595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Anthropogenic noise is pervasive across the landscape and can be present at two temporal scales: acute (occurring sporadically and stochastically over the shortest time scales, e.g., milliseconds), and chronic (more persistent than instantaneous and occurring over longer timescales, e.g., minutes, days). Acute and chronic anthropogenic noise may induce a behavioral fear-mediated response in wildlife that is analogous to a prey response to predators. Understanding wildlife responses to anthropogenic noise is especially important in the case of wildlife crossing structures that provide wildlife with access to resources across busy roadways. Focusing on two species common at wildlife crossing structures, mule deer (Odocoileus hemionus) and coyotes (Canis latrans), we addressed the hypotheses that (1) acute traffic noise causes flight behavior; and (2) chronic traffic noise causes changes in a range of behaviors associated with the vigilance–foraging trade-off (vigilance, running, and foraging). We placed camera traps at entrances to ten crossing structures for a period of ∼ 2 months each throughout California, USA. Mule deer and coyotes demonstrated a flight response to acute traffic noise at entrances to crossing structures. Both species demonstrated shifts in behavioral response to chronic traffic noise within and among structures. Coyote behavior was indicative of fear, demonstrating increased vigilance at louder times within crossing structures, and switching from vigilance to running activity at louder crossings. Mule deer responded positively, increasing foraging at both spatial scales, and demonstrating decreased vigilance at louder structures, potentially using crossing structures as a Human Shield. Our results are the first to demonstrate that anthropogenic noise at crossing structures could alter wildlife passage, and that variations in fear response to anthropogenic noise exist across temporal, spatial, and amplitude scales. This dynamic response could alter natural predator-prey interactions and scale up to ecosystem-level consequences such as trophic cascades in areas with roads.
Collapse
|
3
|
Ortiz-Jiménez L, Iglesias-Merchan C, Martínez-Salazar AI, Barja I. Effect of intensity and duration of anthropic noises on European mink locomotor activity and fecal cortisol metabolite levels. Curr Zool 2022; 68:688-699. [PMID: 36743224 PMCID: PMC9892796 DOI: 10.1093/cz/zoab104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Accepted: 12/27/2021] [Indexed: 02/07/2023] Open
Abstract
Human activities involving noise emission can affect wild animals. European mink was exposed to road noise and human voice playbacks to analyze how sound intensity level and duration of both noises altered the time that individuals were active and if their fecal cortisol metabolite (FCM) levels varied. A Hierarchical Analysis Cluster was performed to establish 2 mink groups with respect to both noise source type: short duration/low intensity (SL) and long duration/high intensity (LH). We performed general linear mixed models to evaluate the variation in locomotor activity duration (s) and FCM (nanogram per gram) levels, respectively. The results showed both road noise and human voices decreased locomotor activity duration in SL more sharply compared with LH, and human voices were the triggers that induced the most pronounced response to both exposure conditions. FCM (ng/g) levels increased in SL compared with LH during road noise while the opposite happened during human voices. Differences based on sex and age of individuals were observed. In conclusion, noise characteristics given by the sound type determined the variations in locomotor activity duration while noise exposure level determined the variations in FCM (ng/g) levels. Attention should be paid to noisy activities (e.g., recreational activities for visitors in protected natural areas) and loud groups of people to conserve wildlife, especially noise sensitive species.
Collapse
Affiliation(s)
| | - Carlos Iglesias-Merchan
- Department of Forest and Environmental Engineering and Management, Universidad Politécnica de Madrid, Madrid, Spain
| | - Alba Itzel Martínez-Salazar
- Geographic Information Systems Laboratory, Institute of Biology, Universidad Nacional Autónoma de México, Mexico City, México
| | - Isabel Barja
- Department of Biology, Zoology Unit, Universidad Autónoma de Madrid, Madrid, 28049, Spain,Biodiversity and Global Change Research Centre (CIBC-UAM), Universidad Autónoma de Madrid, Madrid, Spain
| |
Collapse
|
4
|
Electric vehicles minimize disturbance to mammals. EUR J WILDLIFE RES 2021. [DOI: 10.1007/s10344-021-01516-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
5
|
Bednarz PA. Do Decibels Matter? A Review of Effects of Traffic Noise on Terrestrial Small Mammals and Bats. POLISH JOURNAL OF ECOLOGY 2021. [DOI: 10.3161/15052249pje2020.68.4.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Paula Antonina Bednarz
- Department of Systematic Zoology, Institute of Environmental Biology, Faculty of Biology, Adam Mickiewicz University, Uniwersytetu Poznańskiego str. 6, 61–614 Poznań, Poland, e-mail:
| |
Collapse
|
6
|
Behavioral responses of rural and urban greater white-toothed shrews (Crocidura russula) to sound disturbance. Urban Ecosyst 2021. [DOI: 10.1007/s11252-020-01079-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
7
|
He S, Shao W, Han J. Have artificial lighting and noise pollution caused zoonosis and the COVID-19 pandemic? A review. ENVIRONMENTAL CHEMISTRY LETTERS 2021; 19:4021-4030. [PMID: 34366755 PMCID: PMC8325529 DOI: 10.1007/s10311-021-01291-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 07/19/2021] [Indexed: 05/03/2023]
Abstract
Where did the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) come from? Did it spread to 'patient zero' through proactive human-animal contact? Why did humans faced an increasing number of zoonotic diseases in the past few decades? In this article, we propose a new theory by which human pollution such as artificial lighting and noise accentuate pathogen shedding from bats and other wild habitants in urban environments. This theory differs from the current hypothesis that wildlife trades and bushmeat consumption largely contribute to the spillover of zoonotic pathogens to humans. As natural reservoirs, bats harbor the greatest number of zoonotic viruses among all mammalian orders, while they also have a unique immune system to maintain functioning. Some bat species roost in proximity with human settlements, including urban communities and surrounding areas that are potentially most impacted by anthropogenic activities. We review the behavioral changes of wild habitants, including bats and other species, caused by environmental pollution such as artificial lighting and noise pollution, with focus on the spillover of zoonotic pathogens to humans. We found that there is a strong positive correlation between environmental stress and the behavior and health conditions of wild species, including bats. Specifically, artificial lighting attracts insectivorous bats to congregate around streetlights, resulting in changes in their diets and improved likelihood of close contact with humans and animals. Moreover, many bat species avoid lit areas by expending more energies on commuting and foraging. Noise pollution has similar effects on bat behavior. Bats exposed to chronic noise pollution have weakened immune functions, increased viral shedding, and declined immunity during pregnancy, lactation, and vulnerable periods due to noised-induced stress. Other wild species exposed to artificial lighting and noise pollution also show stress-induced behaviors and deteriorated health. Overall, evidence supports our hypothesis that artificial lighting and noise pollution have been overlooked as long-term contributors to the spillover of zoonotic pathogens to humans in urban environments.
Collapse
Affiliation(s)
- Shanshan He
- Department of Environmental Science and Engineering, Xi’an Jiaotong University, Xi’an, 710049 People’s Republic of China
| | - Wenyuan Shao
- School of Life Sciences and Technology, Xi’an Jiaotong University, Xi’an, 710049 People’s Republic of China
| | - Jie Han
- School of Human Settlements and Civil Engineering, Xi’an Jiaotong University, Xi’an, 710049 People’s Republic of China
| |
Collapse
|
8
|
Kleist NJ, Buxton RT, Lendrum PE, Linares C, Crooks KR, Wittemyer G. Noise and landscape features influence habitat use of mammalian herbivores in a natural gas field. J Anim Ecol 2020; 90:875-885. [PMID: 33368272 DOI: 10.1111/1365-2656.13416] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Accepted: 10/28/2020] [Indexed: 11/30/2022]
Abstract
Anthropogenic noise is a complex disturbance known to elicit a variety of responses in wild animals. Most studies examining the effects of noise on wildlife focus on vocal species, although theory suggests that the acoustic environment influences non-vocal species as well. Common mammalian prey species, like mule deer and hares and rabbits (members of the family Leporidae), rely on acoustic cues for information regarding predation, but the impacts of noise on their behaviour has received little attention. We paired acoustic recorders with camera traps to explore how average daily levels of anthropogenic noise from natural gas activity impacted occupancy and detection of mammalian herbivores in an energy field in the production phase of development. We consider the effects of noise in the context of several physical landscape variables associated with natural gas infrastructure that are known to influence habitat use patterns in mule deer. Our results suggest that mule deer detection probability was influenced by the interaction between physical landscape features and anthropogenic noise, with noise strongly reducing habitat use. In contrast, leporid habitat use was not related to noise but was influenced by landscape features. Notably, mule deer showed a stronger predicted negative response to roads with high noise exposure. This study highlights the complex interactions of anthropogenic disturbance and wildlife distribution and presents important evidence that the effects of anthropogenic noise should be considered in research focused on non-vocal specialist species and management plans for mule deer and other large ungulates.
Collapse
Affiliation(s)
- Nathan J Kleist
- Department of Fish, Wildlife, and Conservation Biology, Colorado State University, Fort Collins, CO, USA.,National Park Service, Natural Sounds and Night Skies Division, Fort Collins, CO, USA
| | - Rachel T Buxton
- Department of Fish, Wildlife, and Conservation Biology, Colorado State University, Fort Collins, CO, USA.,Department of Biology, Carleton University, Ottawa, ON, USA
| | - Patrick E Lendrum
- Northern Great Plains Program, World Wildlife Fund, Bozeman, MT, USA
| | - Carlos Linares
- Department of Biological Sciences, Boise State University, Boise, ID, USA
| | - Kevin R Crooks
- Department of Fish, Wildlife, and Conservation Biology, Colorado State University, Fort Collins, CO, USA
| | - George Wittemyer
- Department of Fish, Wildlife, and Conservation Biology, Colorado State University, Fort Collins, CO, USA
| |
Collapse
|