1
|
Joseph J, Ray JG. A critical review of soil algae as a crucial soil biological component of high ecological and economic significance. JOURNAL OF PHYCOLOGY 2024; 60:229-253. [PMID: 38502571 DOI: 10.1111/jpy.13444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 05/17/2023] [Revised: 11/14/2023] [Accepted: 01/08/2024] [Indexed: 03/21/2024]
Abstract
Aero-terrestrial algae are ecologically and economically valuable bioresources contributing to carbon sequestration, sustenance of soil health, and fertility. Compared to aquatic algae, the literature on subaerial algae is minimal, including studies of distinctive habitats such as forest soils, agricultural fields, deserts, polar regions, specific subaerial zones, artificial structures, and tropical soils. The primary goal here was to identify the gaps and scope of research on such algae. Accordingly, the literature was analyzed per sub-themes, such as the "nature of current research data on terrestrial algae," "methodological approaches," "diversity," "environmental relationships," "ecological roles," and "economic significance." The review showed there is a high diversity of algae in soils, especially members belonging to the Cyanophyta (Cyanobacteria) and Chlorophyta. Algal distributions in terrestrial environments depend on the microhabitat conditions, and many species of soil algae are sensitive to specific soil conditions. The ecological significance of soil algae includes primary production, the release of biochemical stimulants and plant growth promoters into soils, nitrogen fixation, solubilization of minerals, and the enhancement and maintenance of soil fertility. Since aero-terrestrial habitats are generally stressed environments, algae of such environments can be rich in rare metabolites and natural products. For example, epilithic soil algae use wet adhesive molecules to fix them firmly on the substratum. Exploring the ecological roles and economic utility of soil and other subaerial algae could be helpful for the development of algae-based industries and for achieving sustainable soil management.
Collapse
Affiliation(s)
- Jebin Joseph
- Department of Botany, St Berchmans College, Changanacherry, Kerala, India
- Laboratory of Ecology and Plant Science, School of Biosciences, Mahatma Gandhi University, Kottayam, Kerala, India
| | - Joseph George Ray
- School of Biosciences, Mahatma Gandhi University, Kottayam, Kerala, India
| |
Collapse
|
2
|
Yadav A, Boruah JLH, Geed SR, Sharma RK, Saikia R. Occurrence, identification and characterization of diazotrophic bacteria from aerial roots of Rhynchostylis retusa (L.) Blume for plant growth-promoting activity. Arch Microbiol 2023; 205:131. [PMID: 36947279 DOI: 10.1007/s00203-023-03458-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/12/2022] [Revised: 02/17/2023] [Accepted: 03/01/2023] [Indexed: 03/23/2023]
Abstract
In this study, the diversity of diazotrophic bacteria of orchid Rhynchostylis retusa (L.) Blume and its potential application in plant growth promotion were evaluated. About 183 nitrogen-fixing bacteria were isolated to screen various plant growth-promoting traits viz. phosphate solubilization,IAA, siderophore, HCN, biofilm and ammonia production. Based on 16S rRNA gene sequencing analysis Achromobacter, Arthrobacter, Acinetobacter, Bacillus, Brevibacterium, Curtobacterium, Erwinia, Kosakonia, Lysinibacillus, Klebseilla, Microbacterium, Mixta, Pantoea, Pseudomonas and Stenotrophomonas isolates were selected and showed positive results for PGP traits. Overall, genus Pantoea, Brevibacterium, Achromobacter, Arthrobacter, Klebsiella, Mixta, Bacillus, and Pseudomonas had the most pronounced PGP characteristics and acetylene reduction among the screened isolates. BOX PCR fingerprinting analysis showed variation in polymorphic banding patterns among diazotrophic strains. PCR amplification of nifH gene and the presence of 37 kDa nitrogenase reductase enzyme band in western blot indicated presence of nitrogenase activity. Our study showed that orchid R. retusa diazotroph interaction helps orchid plant to fix nitrogen, essential nutrients, and control pathogen entry. To the best of our knowledge, this is the first report on characterization of diazotrophic bacterial community from aerial roots of R. retusa.
Collapse
Affiliation(s)
- Archana Yadav
- Microbial Biotechnology Laboratory, Biological Sciences and Technology Division, CSIR-North East Institute of Science and Technology, Jorhat, Assam, India.
- Department of Applied Biology, University of Science and Technology, Baridua, Meghalaya, India.
| | - Jyoti Lakshmi Hati Boruah
- Microbial Biotechnology Laboratory, Biological Sciences and Technology Division, CSIR-North East Institute of Science and Technology, Jorhat, Assam, India
| | - Sachin Rameshrao Geed
- Microbial Biotechnology Laboratory, Biological Sciences and Technology Division, CSIR-North East Institute of Science and Technology, Jorhat, Assam, India
| | - Rabin K Sharma
- Department of Applied Biology, University of Science and Technology, Baridua, Meghalaya, India
| | - Ratul Saikia
- Microbial Biotechnology Laboratory, Biological Sciences and Technology Division, CSIR-North East Institute of Science and Technology, Jorhat, Assam, India
| |
Collapse
|
3
|
Yadav A, Mudoi KD, Kumar N, Geed SR, Gogoi P, Sharma RK, Saikia R. Auxin biosynthesis by Microbacterium testaceum Y411 associated with orchid aerial roots and their efficacy in micropropagation. FRONTIERS IN PLANT SCIENCE 2022; 13:1037109. [PMID: 36518501 PMCID: PMC9742431 DOI: 10.3389/fpls.2022.1037109] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 09/05/2022] [Accepted: 11/02/2022] [Indexed: 06/16/2023]
Abstract
Root-associated bacteria strongly affect plant growth and development by synthesizing growth regulators and stress-relieving metabolites. The present study is mainly focused on assessing aerial root-associated bacteria of Rhynchostylis retusa (L.) Blume is an endemic epiphytic orchid responsible for auxin production and influencing plant growth. A bacterial isolate, Microbacterium testaceum Y411, was found to be the most active producer of indole-3-acetic acid (IAA). The maximum IAA production (170µg/mL) was recorded with the bacterium at optimum process parameters such as pH 7, temperature 30°C, and tryptophan 1000 µg/mL in a culture medium for 48 h. The extracted auxin was purified and analyzed by FT-IR, HPLC, and HR-MS, indicating bacterial auxin has a similar mass value to 4-chloroindole-3-acetic acid auxin. Furthermore, the bacterial auxin was tested on in vitro propagation of orchid, Cymbidium aloifolium, and 90% seed germination was recorded in Murashige and Skoog's medium supplemented with bacterial auxin. The novel results obtained in this study are used for agricultural applications and the Microbacterium testaceum Y411 is a valuable biotechnological resource for a natural auxin.
Collapse
Affiliation(s)
- Archana Yadav
- Microbial Biotechnology Laboratory, Biological Sciences and Technology Division, Council of Scientific & Industrial Research (CSIR)-North East Institute of Science and Technology, Jorhat, Assam, India
- Department of Applied Biology, University of Science and Technology, Meghalaya, India
| | - Kalpataru Dutta Mudoi
- Microbial Biotechnology Laboratory, Biological Sciences and Technology Division, Council of Scientific & Industrial Research (CSIR)-North East Institute of Science and Technology, Jorhat, Assam, India
| | - Niraj Kumar
- Microbial Biotechnology Laboratory, Biological Sciences and Technology Division, Council of Scientific & Industrial Research (CSIR)-North East Institute of Science and Technology, Jorhat, Assam, India
| | - Sachin Rameshrao Geed
- Microbial Biotechnology Laboratory, Biological Sciences and Technology Division, Council of Scientific & Industrial Research (CSIR)-North East Institute of Science and Technology, Jorhat, Assam, India
| | - Parishmita Gogoi
- Microbial Biotechnology Laboratory, Biological Sciences and Technology Division, Council of Scientific & Industrial Research (CSIR)-North East Institute of Science and Technology, Jorhat, Assam, India
| | - Rabin K. Sharma
- Department of Applied Biology, University of Science and Technology, Meghalaya, India
| | - Ratul Saikia
- Microbial Biotechnology Laboratory, Biological Sciences and Technology Division, Council of Scientific & Industrial Research (CSIR)-North East Institute of Science and Technology, Jorhat, Assam, India
| |
Collapse
|
4
|
Tian J, Jiang W, Si J, Han Z, Li C, Chen D. Developmental Characteristics and Auxin Response of Epiphytic Root in Dendrobium catenatum. FRONTIERS IN PLANT SCIENCE 2022; 13:935540. [PMID: 35812932 PMCID: PMC9260429 DOI: 10.3389/fpls.2022.935540] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Academic Contribution Register] [Received: 05/04/2022] [Accepted: 05/30/2022] [Indexed: 06/15/2023]
Abstract
Dendrobium catenatum, a traditional precious Chinese herbal medicine, belongs to epiphytic orchids. Its special life mode leads to the specialization of roots, but there is a lack of systematic research. The aerial root in D. catenatum displays diverse unique biological characteristics, and it initially originates from the opposite pole of the shoot meristem within the protocorm. The root development of D. catenatum is not only regulated by internal cues but also adjusts accordingly with the change in growth environments. D. catenatum root is highly tolerant to auxin, which may be closely related to its epiphytic life. Exogenous auxin treatment has dual effects on D. catenatum roots: relatively low concentration promotes root elongation, which is related to the induced expression of cell wall synthesis genes; excessive concentration inhibits the differentiation of velamen and exodermis and promotes the overproliferation of cortical cells, which is related to the significant upregulation of WOX11-WOX5 regeneration pathway genes and cell division regulatory genes. Overexpression of D. catenatum WOX12 (DcWOX12) in Arabidopsis inhibits cell and organ differentiation, but induces cell dedifferentiation and callus production. Therefore, DcWOX12 not only retains the characteristics of ancestors as stem cell regulators, but also obtains stronger cell fate transformation ability than homologous genes of other species. These findings suggest that the aerial root of D. catenatum evolves special structure and developmental characteristics to adapt to epiphytic life, providing insight into ideal root structure breeding of simulated natural cultivation in D. catenatum and a novel target gene for improving the efficiency of monocot plant transformation.
Collapse
|
5
|
Tsavkelova EA, Glukhareva ID, Volynchikova EA, Egorova MA, Leontieva MR, Malakhova DV, Kolomeitseva GL, Netrusov AI. Cyanobacterial Root Associations of Leafless Epiphytic Orchids. Microorganisms 2022; 10:microorganisms10051006. [PMID: 35630449 PMCID: PMC9144888 DOI: 10.3390/microorganisms10051006] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/22/2022] [Revised: 05/08/2022] [Accepted: 05/09/2022] [Indexed: 12/07/2022] Open
Abstract
The leafless orchids are rare epiphytic plants with extremely reduced leaves, and their aerial roots adopted for photosynthesis. The beneficial plant–microbial interactions contribute significantly to host nutrition, fitness, and growth. However, there are no data available on the bacterial associations, inhabiting leafless orchids. Here, we describe the diversity of cyanobacteria, which colonize the roots of greenhouse Microcoelia moreauae and Chiloschista parishii. The biodiversity and structure of the cyanobacterial community were analyzed using a complex approach, comprising traditional cultivable techniques, denaturing gradient gel electrophoresis (DGGE), and phylogenetic analysis, as well as the light and scanning electron microscopy (SEM). A wide diversity of associated bacteria colonize the root surface, forming massive biofilms on the aerial roots. The dominant populations of filamentous nitrogen-fixing cyanobacteria belonged to the orders Oscillatoriales, Synechococcales, and Nostocales. The composition of the cyanobacterial community varied, depending on the nitrogen supply. Two major groups prevailed under nitrogen-limiting conditions, belonging to Leptolyngbya sp. and Komarekiella sp. The latter was characterized by DGGE profiling and sequencing, as well as by its distinctive features of morphological plasticity. The leading role of these phototrophophic and diazotrophic cyanobacteria is discussed in terms of the epiphytic lifestyle of the leafless orchids.
Collapse
Affiliation(s)
- Elena A. Tsavkelova
- Department of Microbiology, Faculty of Biology, M.V. Lomonosov Moscow State University, 1-12 Lenin’s Hills, 119234 Moscow, Russia; (I.D.G.); (E.A.V.); (M.A.E.); (M.R.L.); (D.V.M.); (A.I.N.)
- Correspondence: ; Tel.: +7-(495)-939-4545
| | - Irina D. Glukhareva
- Department of Microbiology, Faculty of Biology, M.V. Lomonosov Moscow State University, 1-12 Lenin’s Hills, 119234 Moscow, Russia; (I.D.G.); (E.A.V.); (M.A.E.); (M.R.L.); (D.V.M.); (A.I.N.)
| | - Elena A. Volynchikova
- Department of Microbiology, Faculty of Biology, M.V. Lomonosov Moscow State University, 1-12 Lenin’s Hills, 119234 Moscow, Russia; (I.D.G.); (E.A.V.); (M.A.E.); (M.R.L.); (D.V.M.); (A.I.N.)
| | - Maria A. Egorova
- Department of Microbiology, Faculty of Biology, M.V. Lomonosov Moscow State University, 1-12 Lenin’s Hills, 119234 Moscow, Russia; (I.D.G.); (E.A.V.); (M.A.E.); (M.R.L.); (D.V.M.); (A.I.N.)
| | - Maria R. Leontieva
- Department of Microbiology, Faculty of Biology, M.V. Lomonosov Moscow State University, 1-12 Lenin’s Hills, 119234 Moscow, Russia; (I.D.G.); (E.A.V.); (M.A.E.); (M.R.L.); (D.V.M.); (A.I.N.)
| | - Dina V. Malakhova
- Department of Microbiology, Faculty of Biology, M.V. Lomonosov Moscow State University, 1-12 Lenin’s Hills, 119234 Moscow, Russia; (I.D.G.); (E.A.V.); (M.A.E.); (M.R.L.); (D.V.M.); (A.I.N.)
| | - Galina L. Kolomeitseva
- The Stock Greenhouse, N.V. Tsitsin Main Botanical Garden RAS, Botanicheskaya Street 4, 127276 Moscow, Russia;
| | - Alexander I. Netrusov
- Department of Microbiology, Faculty of Biology, M.V. Lomonosov Moscow State University, 1-12 Lenin’s Hills, 119234 Moscow, Russia; (I.D.G.); (E.A.V.); (M.A.E.); (M.R.L.); (D.V.M.); (A.I.N.)
| |
Collapse
|
6
|
Li T, Wu S, Yang W, Selosse MA, Gao J. How Mycorrhizal Associations Influence Orchid Distribution and Population Dynamics. FRONTIERS IN PLANT SCIENCE 2021; 12:647114. [PMID: 34025695 PMCID: PMC8138319 DOI: 10.3389/fpls.2021.647114] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 12/29/2020] [Accepted: 04/13/2021] [Indexed: 05/04/2023]
Abstract
Orchid distribution and population dynamics are influenced by a variety of ecological factors and the formation of holobionts, which play key roles in colonization and ecological community construction. Seed germination, seedling establishment, reproduction, and survival of orchid species are strongly dependent on orchid mycorrhizal fungi (OMF), with mycorrhizal cheating increasingly observed in photosynthetic orchids. Therefore, changes in the composition and abundance of OMF can have profound effects on orchid distribution and fitness. Network analysis is an important tool for the study of interactions between plants, microbes, and the environment, because of the insights that it can provide into the interactions and coexistence patterns among species. Here, we provide a comprehensive overview, systematically describing the current research status of the effects of OMF on orchid distribution and dynamics, phylogenetic signals in orchid-OMF interactions, and OMF networks. We argue that orchid-OMF associations exhibit complementary and specific effects that are highly adapted to their environment. Such specificity of associations may affect the niche breadth of orchid species and act as a stabilizing force in plant-microbe coevolution. We postulate that network analysis is required to elucidate the functions of fungal partners beyond their effects on germination and growth. Such studies may lend insight into the microbial ecology of orchids and provide a scientific basis for the protection of orchids under natural conditions in an efficient and cost-effective manner.
Collapse
Affiliation(s)
- Taiqiang Li
- Yunnan Key Laboratory of Plant Reproductive Adaptation and Evolutionary Ecology, Yunnan University, Kunming, China
- Laboratory of Ecology and Evolutionary Biology, Yunnan University, Kunming, China
| | - Shimao Wu
- Yunnan Key Laboratory of Plant Reproductive Adaptation and Evolutionary Ecology, Yunnan University, Kunming, China
- Laboratory of Ecology and Evolutionary Biology, Yunnan University, Kunming, China
| | - Wenke Yang
- Yunnan Key Laboratory of Plant Reproductive Adaptation and Evolutionary Ecology, Yunnan University, Kunming, China
- Laboratory of Ecology and Evolutionary Biology, Yunnan University, Kunming, China
| | - Marc-André Selosse
- Yunnan Key Laboratory of Plant Reproductive Adaptation and Evolutionary Ecology, Yunnan University, Kunming, China
- Laboratory of Ecology and Evolutionary Biology, Yunnan University, Kunming, China
- Institut de Systématique, Évolution, Biodiversité, UMR 7205, CNRS, MNHN, UPMC, EPHE, Muséum National d’Histoire Naturelle, Sorbonne Universités, Paris, France
- Department of Plant Taxonomy and Nature Conservation, Faculty of Biology, University of Gdańsk, Gdańsk, Poland
| | - Jiangyun Gao
- Yunnan Key Laboratory of Plant Reproductive Adaptation and Evolutionary Ecology, Yunnan University, Kunming, China
- Laboratory of Ecology and Evolutionary Biology, Yunnan University, Kunming, China
| |
Collapse
|