1
|
Karimi O, Chethana KWT, de Farias ARG, Asghari R, Kaewchai S, Hyde KD, Li Q. Morphology and multigene phylogeny reveal three new species of Distoseptispora (Distoseptisporales, Distoseptisporaceae) on palms (Arecaceae) from peatswamp areas in southern Thailand. MycoKeys 2024; 102:55-81. [PMID: 38370856 PMCID: PMC10873808 DOI: 10.3897/mycokeys.102.112815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Accepted: 11/15/2023] [Indexed: 02/20/2024] Open
Abstract
Peatswamp forest is a unique habitat that supports high biodiversity, particularly fungal diversity. The current study collected submerged and dead plant parts from Eleiodoxaconferta, Eugeissonatristis and Licualapaludosa from a peatswamp forest in Narathiwat Province, Thailand. Morphological features coupled with multigene phylogenetic analyses of ITS, LSU, rpb2 and tef1-α sequence data identified our isolates as new Distoseptispora species (viz. D.arecacearumsp. nov., D.eleiodoxaesp. nov. and D.narathiwatensissp. nov.). Morphological descriptions, illustrations and notes are provided.
Collapse
Affiliation(s)
- Omid Karimi
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550004, China
- School of Science, Mae Fah Luang University, Chiang Rai 57100, Thailand
| | | | | | - Raheleh Asghari
- School of Science, Mae Fah Luang University, Chiang Rai 57100, Thailand
| | - Saithong Kaewchai
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai 57100, Thailand
| | - Kevin D. Hyde
- School of Science, Mae Fah Luang University, Chiang Rai 57100, Thailand
- Princess of Naradhiwas University, 99 Moo 8, Kok Kian, Muang District, Narathiwat Province, 9600 Thailand
- Mushroom Research Foundation, 128 M.3 Ban Pa Deng T. Pa Pae, A. Mae Taeng, Chiang Mai 50150, Thailand
| | - Qirui Li
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550004, China
| |
Collapse
|
2
|
Zhu Z, Liu X, Hsiang T, Ji R, Liu S. Forest Type and Climate Outweigh Soil Bank in Shaping Dynamic Changes in Macrofungal Diversity in the Ancient Tree Park of Northeast China. J Fungi (Basel) 2023; 9:856. [PMID: 37623627 PMCID: PMC10455530 DOI: 10.3390/jof9080856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 08/01/2023] [Accepted: 08/10/2023] [Indexed: 08/26/2023] Open
Abstract
The community structure of macrofungi is influenced by multiple complex factors, including climate, soil, vegetation, and human activities, making it challenging to discern their individual contributions. To investigate the dynamic changes in macrofungal diversity in an Ancient Tree Park located in Northeast China and explore the factors influencing this change, we collected 1007 macrofungi specimens from different habitats within the park and identified 210 distinct fungal species using morphological characteristics and ITS sequencing. The species were classified into 2 phyla, 6 classes, 18 orders, 55 families, and 94 genera. We found macrofungal compositions among different forest types, with the mixed forest displaying the highest richness and diversity. Climatic factors, particularly rainfall and temperature, positively influenced macrofungal species richness and abundance. Additionally, by analyzing the soil fungal community structure and comparing aboveground macrofungi with soil fungi in this small-scale survey, we found that the soil fungal bank is not the main factor leading to changes in the macrofungal community structure, as compared to the influence of climate factors and forest types. Our findings provide valuable insights into the dynamic nature of macrofungal diversity in the Ancient Tree Park, highlighting the influence of climate and forest type.
Collapse
Affiliation(s)
- Zhaoxiang Zhu
- Engineering Research Center of Edible and Medicinal Fungi, Ministry of Education, Jilin Agricultural University, Changchun 130118, China; (Z.Z.); (X.L.)
| | - Xin Liu
- Engineering Research Center of Edible and Medicinal Fungi, Ministry of Education, Jilin Agricultural University, Changchun 130118, China; (Z.Z.); (X.L.)
| | - Tom Hsiang
- Department of Environmental Sciences, University of Guelph, Guelph, ON N1G 2W1, Canada;
| | - Ruiqing Ji
- Engineering Research Center of Edible and Medicinal Fungi, Ministry of Education, Jilin Agricultural University, Changchun 130118, China; (Z.Z.); (X.L.)
| | - Shuyan Liu
- Engineering Research Center of Edible and Medicinal Fungi, Ministry of Education, Jilin Agricultural University, Changchun 130118, China; (Z.Z.); (X.L.)
| |
Collapse
|
3
|
Wong YB, Gibbins C, Azhar B, Phan SS, Scholefield P, Azmi R, Lechner AM. Smallholder oil palm plantation sustainability assessment using multi-criteria analysis and unmanned aerial vehicles. ENVIRONMENTAL MONITORING AND ASSESSMENT 2023; 195:577. [PMID: 37062786 PMCID: PMC10106354 DOI: 10.1007/s10661-023-11113-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 03/09/2023] [Indexed: 05/11/2023]
Abstract
Oil palm agriculture has caused extensive land cover and land use changes that have adversely affected tropical landscapes and ecosystems. However, monitoring and assessment of oil palm plantation areas to support sustainable management is costly and labour-intensive. This study used an unmanned aerial vehicles (UAV) to map smallholder farms and applied multi-criteria analysis to data generated from orthomosaics, to provide a set of sustainability indicators for the farms. Images were acquired from a UAV, with structure from motion (SfM) photogrammetry then used to produce orthomosaics and digital elevation models of the farm areas. Some of the inherent problems using high spatial resolution imagery for land cover classification were overcome by using texture analysis and geographic object-based image analysis (OBIA). Six spatially explicit environmental metrics were developed using multi-criteria analysis and used to generate sustainability indicator layers from the UAV data. The SfM and OBIA approach provided an accurate, high-resolution (~5 cm) image-based reconstruction of smallholder farm landscapes, with an overall classification accuracy of 89%. The multi-criteria analysis highlighted areas with lower sustainability values, which should be considered targets for adoption of sustainable management practices. The results of this work suggest that UAVs are a cost-effective tool for sustainability assessments of oil palm plantations, but there remains the need to plan surveys and image processing workflows carefully. Future work can build on our proposed approach, including the use of additional and/or alternative indicators developed through consultation with the oil palm industry stakeholders, to support certification schemes such as the Roundtable on Sustainable Palm Oil (RSPO).
Collapse
Affiliation(s)
- Yong Bin Wong
- School of Environmental and Geographical Sciences, University of Nottingham Malaysia, 43500, Semenyih, Selangor, Malaysia
| | - Chris Gibbins
- School of Environmental and Geographical Sciences, University of Nottingham Malaysia, 43500, Semenyih, Selangor, Malaysia
| | - Badrul Azhar
- Faculty of Forestry and Environment, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| | - Su Shen Phan
- Wild Asia, No 2, Jalan Raja Abdullah, 56000, Kuala Lumpur, Malaysia
| | - Paul Scholefield
- Centre for Ecology and Hydrology, Lancaster Environment Centre, Bailrigg, UK
| | - Reza Azmi
- Wild Asia, No 2, Jalan Raja Abdullah, 56000, Kuala Lumpur, Malaysia
| | - Alex M Lechner
- School of Environmental and Geographical Sciences, University of Nottingham Malaysia, 43500, Semenyih, Selangor, Malaysia.
- Monash University Indonesia, South Tangerang, 15345, Indonesia.
| |
Collapse
|
4
|
Rakić M, Marković M, Galić Z, Galović V, Karaman M. Diversity and Distribution of Macrofungi in Protected Mountain Forest Habitats in Serbia and Its Relation to Abiotic Factors. J Fungi (Basel) 2022; 8:jof8101074. [PMID: 36294640 PMCID: PMC9605310 DOI: 10.3390/jof8101074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 09/15/2022] [Accepted: 09/27/2022] [Indexed: 11/25/2022] Open
Abstract
Fungal diversity is one of the most important indicators of overall forest biodiversity and its health. However, scarce information exists on the state of macrofungal communities of mountain forests in Serbia, making it one of the countries with the least-published mycological data in the Mediterranean and Balkan region of Europe. This paper presents the results of the first comprehensive, long-term study of macrofungal communities in some of the most important mountain forest ecosystems in Serbia (Tara, Kopaonik and Vidlič). In the course of three consecutive years, the sampling of five permanent experimental plots resulted in 245 species of macrofungi, classified into three functional groups (terricolous saprothrophs, lignicolous, and mycorrhizal fungi). Special attention was given to protected and indicator species, which point out the great value of studied forest habitats and the importance of their conservation. It was found that precipitation, habitat humidity, and temperature significantly influence the occurrence and distribution, primarily of mycorrhizal and lignicolous group of fungi. Thus, the continuation of long-term monitoring is crucial in order to more precisely determine which groups/species of macrofungi would, and to what extent they would, adapt to a rapidly changing climate.
Collapse
Affiliation(s)
- Milana Rakić
- Department of Biology and Ecology, Faculty of Sciences, University of Novi Sad, Trg Dositeja Obradovića 2, 21000 Novi Sad, Serbia
- Correspondence:
| | - Miroslav Marković
- Institute of Lowland Forestry and Environment, University of Novi Sad, Antona Čehova 13, 21000 Novi Sad, Serbia
| | - Zoran Galić
- Institute of Lowland Forestry and Environment, University of Novi Sad, Antona Čehova 13, 21000 Novi Sad, Serbia
| | - Vladislava Galović
- Institute of Lowland Forestry and Environment, University of Novi Sad, Antona Čehova 13, 21000 Novi Sad, Serbia
| | - Maja Karaman
- Department of Biology and Ecology, Faculty of Sciences, University of Novi Sad, Trg Dositeja Obradovića 2, 21000 Novi Sad, Serbia
| |
Collapse
|
5
|
Tuo Y, Rong N, Hu J, Zhao G, Wang Y, Zhang Z, Qi Z, Li Y, Zhang B. Exploring the Relationships between Macrofungi Diversity and Major Environmental Factors in Wunvfeng National Forest Park in Northeast China. J Fungi (Basel) 2022; 8:jof8020098. [PMID: 35205853 PMCID: PMC8880546 DOI: 10.3390/jof8020098] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 01/14/2022] [Accepted: 01/17/2022] [Indexed: 01/27/2023] Open
Abstract
In this paper, we analyze the macrofungi communities of five forest types in Wunvfeng National Forest Park (Jilin, China) by collecting fruiting bodies from 2019–2021. Each forest type had three repeats and covered the main habitats of macrofungi. In addition, we evaluate selected environmental variables and macrofungi communities to relate species composition to potential environmental factors. We collected 1235 specimens belonging to 283 species, 116 genera, and 62 families. We found that Amanitaceae, Boletaceae, Russulaceae, and Tricholomataceae were the most diverse family; further, Amanita, Cortinarius, Lactarius, Russula, and Tricholoma were the dominant genera in the area. The macrofungi diversity showed increasing trends from Pinus koraiensis Siebold et Zuccarini forests to Quercus mongolica Fischer ex Ledebour forests. The cumulative species richness was as follows: Q. mongolica forest A > broadleaf mixed forest B > Q. mongolica, P. koraiensis mix forest D (Q. mongolica was the dominant species) > Q. mongolica and P. koraiensis mix forest C (P. koraiensis was the dominant species) > P. koraiensis forest (E). Ectomycorrhizal fungi were the dominant functional group; they were mainly in forest type A and were influenced by soil moisture content and Q. mongolica content (p < 0.05). The wood-rotting fungus showed richer species diversity than other forest types in broadleaf forests A and B. Overall, we concluded that most fungal communities preferred forest types with a relatively high Q. mongolica content. Therefore, the deliberate protection of Q. mongolica forests proves to be a better strategy for maintaining fungal diversity in Wunvfeng National Forest Park.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Yu Li
- Correspondence: (Y.L.); (B.Z.)
| | | |
Collapse
|
6
|
Abstract
With 15–20% of Indonesian oil palms located, without a legal basis and permits, within the forest zone (‘Kawasan hutan’), international concerns regarding deforestation affect the totality of Indonesian palm oil export. ‘Forest zone oil palm’ (FZ-OP) is a substantive issue that requires analysis and policy change. While spatial details of FZ-OP remain contested, we review literature on (1) the legal basis of the forest zone and its conversion, (2) social stratification in oil palm production (large-scale, plasma and independent growers), and (3) environmental consequences of forest conversion to FZ-OP, before discussing policy options in a range of social and ecological contexts. Policy options range from full regularization (as FZ-OP stands could meet international forest definitions), to conditional acceptance of diversified smallholder plantings in ‘agroforestry concessions’, to gradually phasing out FZ-OP and eviction/destruction. A nuanced and differentiated approach to FZ-OP is needed, as certification of legality along supply chains is vulnerable to illegal levies and corruption. Corporate actors trading internationally can avoid use of uncertified raw materials, effectively shifting blame and depressing farmgate prices for domestic-market palm oil, but this will not return forest conditions or stop further forest conversion. We discuss an agenda for follow-up policy research.
Collapse
|