1
|
Getz MP, Best LR, Melathopoulos AP, Warren TL. The establishment and potential spread of Osmia cornuta (Hymenoptera: Megachilidae) in North America. ENVIRONMENTAL ENTOMOLOGY 2024:nvae100. [PMID: 39428106 DOI: 10.1093/ee/nvae100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 09/18/2024] [Accepted: 09/25/2024] [Indexed: 10/22/2024]
Abstract
Mason bees, subgenus Osmia Panzer (Hymenoptera: Megachilidae), are economically and ecologically significant pollinators. In eastern North America, the rapid spread of 2 non-native species from Asia, Osmia cornifrons Radoszkowski and Osmia taurus Smith, has coincided with declines in native Osmia populations, raising concern about the effects of further exotic arrivals. Here we investigate the recent establishment in British Columbia, Canada of the European orchard bee, Osmia cornuta Latreille, previously thought to be limited to Europe and its periphery. We document O. cornuta records ranging more than 170 km, including sightings of live adults and the discovery of a multigenerational nest with hundreds of cocoons. We tested whether these cocoons could be discriminated from other Osmia species by training a machine learning classifier on features extracted from images. The best performing model could not reliably discriminate cocoons by species, raising the possibility O. cornuta could be inadvertently intermingled in future commercial shipments. Recent occurrence records of O. cornifrons and O. taurus were spatially isolated, suggesting ongoing anthropogenic dispersal of these species. We predicted the suitability of North American habitats for O. cornuta by estimating its native climate niche. This analysis indicated broad regions of the Pacific Northwest and eastern North America contain potentially suitable habitat. Our findings document the establishment of O. cornuta in North America and the potential for its expansion. Our study demonstrates the utility of accessible biodiversity data archives and public observation programs in tracking non-native species spread and highlights the need for future monitoring of exotic Osmia.
Collapse
Affiliation(s)
- Michael P Getz
- Department of Horticulture, Oregon State University, Corvallis, OR, USA
| | - Lincoln R Best
- Department of Horticulture, Oregon State University, Corvallis, OR, USA
| | | | - Timothy L Warren
- Department of Horticulture, Oregon State University, Corvallis, OR, USA
| |
Collapse
|
2
|
Neupane N, Larsen EA, Ries L. Ecological forecasts of insect range dynamics: a broad range of taxa includes winners and losers under future climate. CURRENT OPINION IN INSECT SCIENCE 2024; 62:101159. [PMID: 38199562 DOI: 10.1016/j.cois.2024.101159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 12/12/2023] [Accepted: 01/04/2024] [Indexed: 01/12/2024]
Abstract
Species distribution models are the primary tools to project future species' distributions, but this complex task is influenced by data limitations and evolving best practices. The majority of the 53 studies we examined utilized correlative models and did not follow current best practices for validating retrospective or future environmental data layers. Despite this, a summary of results is largely unsurprising: shifts toward cooler regions, but otherwise mixed dynamics emphasizing winners and losers. Harmful insects were more likely to show positive outcomes compared with beneficial species. Our restricted ability to consider mechanisms complicates interpretation of any single study. To improve this area of modeling, more classic field and lab studies to uncover basic ecology and physiology are crucial.
Collapse
Affiliation(s)
- Naresh Neupane
- Georgetown University, Department of Biology, Washington, DC 20057, USA.
| | - Elise A Larsen
- Georgetown University, Department of Biology, Washington, DC 20057, USA
| | - Leslie Ries
- Georgetown University, Department of Biology, Washington, DC 20057, USA
| |
Collapse
|
3
|
Bogo G, Fisogni A, Iannone A, Grillenzoni FV, Corvucci F, Bortolotti L. Nesting biology and nest structure of the exotic bee Megachile sculpturalis. BULLETIN OF ENTOMOLOGICAL RESEARCH 2024; 114:67-76. [PMID: 38179982 DOI: 10.1017/s0007485323000627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2024]
Abstract
From the 1990s, the Southeast Asia native giant resin bee Megachile sculpturalis (Smith, 1853) was introduced first to North America, and then to many countries in Europe. Despite increasing studies on its invasive potential and geographical expansion, information on nesting behaviour of this species is still extremely scarce. To increase knowledge on the nesting biology of M. sculpturalis, we studied multiple aspects of nesting and pollen provisioning in three consecutive years in artificial nests in Bologna, Italy. We observed 166 bees visiting nests, and followed individual nesting behaviour and success of 41 adult females. We measured cavity diameter in 552 nests and characterised the structure in 100 of them. More than 95% of nest diameters ranged between 0.6 and 1.2 cm, overlapping with several sympatric species of cavity-nesting hymenopterans in the study area. Most nests had a first chamber from the entrance of variable length without brood, followed by an average of about two brood cells with a mean length of 2.85 ± 0.13 cm each. The pollen stored in brood cells was almost monofloral, belonging to the ornamental plant Styphnolobium japonicum (L.) Schott. We estimated that a single female should visit ≈180 flowers to collect enough pollen for a single brood cell. These results fill knowledge gaps on the nesting biology and nest structure of the exotic M. sculpturalis, and they are discussed in relation to possible competition with native bees for nesting sites and foraging resources.
Collapse
Affiliation(s)
- Gherardo Bogo
- CREA Research Centre for Agriculture and Environment, 40128, Bologna, Italy
| | - Alessandro Fisogni
- Department of Evolution, Ecology, and Organismal Biology, University of California, Riverside, CA 92521, USA
- Univ. Lille, CNRS, F-59000 Lille, France
| | - Antonio Iannone
- CREA Research Centre for Agriculture and Environment, 40128, Bologna, Italy
| | | | - Francesca Corvucci
- CREA Research Centre for Agriculture and Environment, 40128, Bologna, Italy
| | - Laura Bortolotti
- CREA Research Centre for Agriculture and Environment, 40128, Bologna, Italy
| |
Collapse
|
4
|
Cancellario T, Laini A, Wood PJ, Guareschi S. Among demons and killers: current and future potential distribution of two hyper successful invasive gammarids. Biol Invasions 2023. [DOI: 10.1007/s10530-023-03000-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
AbstractBiological invasions represent one of the main contemporary pressures facing freshwater ecosystems, and a better understanding of invasive species potential distributions is essential to prepare for future stressors. Crustacean invaders contribute significantly to global invasions with the Ponto-Caspian region being one of the primary donor areas for the Palearctic. The amphipods Dikerogammarus villosus and Dikerogammarus haemobaphes, popularly known as “killer” and “demon” shrimps, are emblematic of successful Ponto-Caspian invaders of European freshwaters. However, the geographical areas in which the abiotic environment is potentially suitable for them have not been investigated. To address this gap, current and future potential distributions were studied for the European Western Palearctic considering two scenarios and time periods (2050 and 2070) as well as the association between anthropogenic activities and individual species habitat suitability. Results show large areas of central-western Europe are currently suitable for both species and indicate some potential for range expansion within colder European areas. In particular, D. haemobaphes has the potential to expand its range further west and within southern parts of Europe. Scenarios of future climate change don’t provide evidence for further range expansion compared to the current conditions and suggest a reduction of range overlap within the most suitable areas. Results reveal lowland areas are at greatest risk of colonisation as well as a significant association with anthropogenic activities for both amphipods. The outcomes of the research could be used by resource managers for preparing and managing future changes of both species distributions and facilitate decision-making for monitoring and control.
Collapse
|
5
|
Solís-Montero L, Vega-Polanco M, Vázquez-Sánchez M, Suárez-Mota ME. Ecological niche modeling of interactions in a buzz-pollinated invasive weed. Glob Ecol Conserv 2022. [DOI: 10.1016/j.gecco.2022.e02279] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
6
|
Lanner J, Dubos N, Geslin B, Leroy B, Hernández-Castellano C, Dubaić JB, Bortolotti L, Calafat JD, Ćetković A, Flaminio S, Le Féon V, Margalef-Marrase J, Orr M, Pachinger B, Ruzzier E, Smagghe G, Tuerlings T, Vereecken NJ, Meimberg H. On the road: Anthropogenic factors drive the invasion risk of a wild solitary bee species. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 827:154246. [PMID: 35245544 DOI: 10.1016/j.scitotenv.2022.154246] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 02/20/2022] [Accepted: 02/26/2022] [Indexed: 06/14/2023]
Abstract
Complex biotic networks of invaders and their new environments pose immense challenges for researchers aiming to predict current and future occupancy of introduced species. This might be especially true for invasive bees, as they enter novel trophic interactions. Little attention has been paid to solitary, invasive wild bees, despite their increasing recognition as a potential global threat to biodiversity. Here, we present the first comprehensive species distribution modelling approach targeting the invasive bee Megachile sculpturalis, which is currently undergoing parallel range expansion in North America and Europe. While the species has largely colonised the most highly suitable areas of North America over the past decades, its invasion of Europe seems to be in its early stages. We showed that its current distribution is largely explained by anthropogenic factors, suggesting that its spread is facilitated by road and maritime traffic, largely beyond its intrinsic dispersal ability. Our results suggest that M. sculpturalis is likely to be negatively affected by future climate change in North America, while in Europe the potential suitable areas at-risk of invasion remain equally large. Based on our study, we emphasise the role of expert knowledge for evaluation of ecologically meaningful variables implemented and interpreted for species distribution modelling. We strongly recommend that the monitoring of this and other invasive pollinator species should be prioritised in areas identified as at-risk, alongside development of effective management strategies.
Collapse
Affiliation(s)
- Julia Lanner
- University of Natural Resources and Life Sciences, Department of Integrative Biology and Biodiversity Research; Institute of Integrative Conservation Research, Gregor Mendel Str., 33, 1080 Vienna, Austria.
| | - Nicolas Dubos
- Territoire Environnement Teledetection Information Spatiale (TETIS), University of Montpellier, INRAE, Montpellier, France
| | - Benoît Geslin
- IMBE, Aix Marseille Université, Avignon Université, CNRS, IRD, Marseille, France
| | - Boris Leroy
- Muséum National d'Histoire Naturelle, Lab. Biologie des Organismes et des Ecosystèmes Aquatiques, Dept. Adaptation du Vivant, France
| | | | - Jovana Bila Dubaić
- Faculty of Biology, University of Belgrade, Studentski trg 16, 11000 Belgrade, Serbia
| | - Laura Bortolotti
- CREA - Research Centre for Agriculture and Environment, Via di Saliceto 80, Bologna, Italy
| | - Joan Diaz Calafat
- Southern Swedish Forest Research Centre, Swedish University of Agricultural Sciences, 230 53 Alnarp, Sweden
| | - Aleksandar Ćetković
- Faculty of Biology, University of Belgrade, Studentski trg 16, 11000 Belgrade, Serbia
| | - Simone Flaminio
- CREA - Research Centre for Agriculture and Environment, Via di Saliceto 80, Bologna, Italy
| | - Violette Le Féon
- Observatoire des Abeilles, 68 rue du Onze Novembre, 59148 Flines-lez-Raches, France
| | - Jordi Margalef-Marrase
- Centre de Recerca Ecològica i Aplicacions Forestals (CREAF), Cerdanyola del Vallès 08193, Spain
| | - Michael Orr
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Bärbel Pachinger
- University of Natural Resources and Life Sciences, Department of Integrative Biology and Biodiversity Research; Institute of Integrative Conservation Research, Gregor Mendel Str., 33, 1080 Vienna, Austria
| | - Enrico Ruzzier
- World Biodiversity Association Onlus c/o Museo Civico di Storia Naturale, Lungadige Porta Vittoria 9, Verona, Italy; Department of Agronomy, Food, Natural Resources, Animals and Environment, University of Padova, viale dell' Università 16, 35020 Legnaro, Italy
| | - Guy Smagghe
- Laboratory of Agrozoology, Department of Plant and Crops, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, Ghent, Belgium
| | - Tina Tuerlings
- Laboratory of Agrozoology, Department of Plant and Crops, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, Ghent, Belgium
| | - Nicolas J Vereecken
- Agroecology Lab, Université libre de Bruxelles (ULB), Boulevard du Triomphe CP 264/02, B-1050 Brussels, Belgium
| | - Harald Meimberg
- University of Natural Resources and Life Sciences, Department of Integrative Biology and Biodiversity Research; Institute of Integrative Conservation Research, Gregor Mendel Str., 33, 1080 Vienna, Austria
| |
Collapse
|
7
|
Gómez SR, Gil‐Tapetado D, García‐Gila J, Blasco‐Aróstegui J, Polidori C. The leaf beetle Labidostomis lusitanica (Coleoptera: Chrysomelidae) as an Iberian pistachio pest: projecting risky areas. PEST MANAGEMENT SCIENCE 2022; 78:217-229. [PMID: 34472706 PMCID: PMC9293163 DOI: 10.1002/ps.6624] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 08/22/2021] [Accepted: 09/02/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Pistachio (Pistacia vera L.) is a commercially important tree in the Mediterranean basin, where there is a considerable increase in cultivation, especially in Spain. Because of its recent introduction as a crop in the country (1980s), studies on the pests of pistachio in Spain are still rare. Here, we studied the leaf beetle Labidostomis lusitanica (Coleoptera: Chrysomelidae), which was observed on pistachio and might become a serious pest under the expanding Spanish pistachio fields. Because early detection of pests is extremely important to properly plan control strategies, we (i) updated the information on the distribution of the species through samplings and surveys, and (ii) modelled its potential distribution. RESULTS Currently, L. lusitanica occurs across the whole Iberian Peninsula, especially in its southern and eastern parts, with adults on flight roughly from late April to early June. Analysis of climatic niches showed that L. lusitanica prefers dry and hot areas, which are conditions found especially in the central-southern parts of the Iberian Peninsula. Such highly suitable areas for this pest overlap considerably with the suitable areas for pistachio cultivation. Surveys of pistachio growers weakly suggested a higher pest attack probability, but, unexpectedly, a lower perceived impact in very suitable areas for L. lusitanica, suggesting that other factors may shape its pest potential in a complex way. CONCLUSION In line with what has been observed for other Labidostomis species on pistachio in other Mediterranean countries, L. lusitanica has a good potential to harm pistachio production in Spain, claiming for further investigations and prevention strategies. © 2021 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
Affiliation(s)
- Sara Rodrigo Gómez
- Instituto de Ciencias Ambientales (ICAM)Universidad de Castilla‐La ManchaToledoSpain
- Instituto Regional de Investigación y Desarrollo Agroalimentario y Forestal (IRIAF)‐Centro de Investigación Agroambiental “El Chaparrillo”Ciudad RealSpain
| | - Diego Gil‐Tapetado
- Departamento de Biodiversidad, Ecología y EvoluciónUniversidad Complutense de MadridMadridSpain
| | | | - Javier Blasco‐Aróstegui
- CIBIO‐InBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos da Universidade do PortoVairãoPortugal
| | - Carlo Polidori
- Dipartimento di Scienze e Politiche AmbientaliUniversità degli Studi di MilanoMilanItaly
| |
Collapse
|
8
|
Díaz SS, Carisio L, Manino A, Biella P, Porporato M. Nesting, Sex Ratio and Natural Enemies of the Giant Resin Bee in Relation to Native Species in Europe. INSECTS 2021; 12:545. [PMID: 34208066 PMCID: PMC8230627 DOI: 10.3390/insects12060545] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Revised: 05/31/2021] [Accepted: 06/01/2021] [Indexed: 11/16/2022]
Abstract
Megachile sculpturalis (Smith, 1853) is the first exotic bee species in Europe. Its remarkably fast expansion across this continent is leading to a growing concern on the extent of negative impacts to the native fauna. To evaluate the interactions of exotic bees with local wild bees, we set up trap nests for above-ground nesting bees on a semi-urban area of north-western Italy. We aimed to investigate the interaction in artificial traps between the exotic and native wild bees and to assess offspring traits accounting for exotic bee fitness: progeny sex ratio and incidence of natural enemies. We found that the tunnels occupied by exotic bees were already cohabited by O. cornuta, and thus the cells of later nesting alien bees may block the native bee emergence for the next year. The progeny sex ratio of M. sculpturalis was strongly unbalanced toward males, indicating a temporary adverse population trend in the local invaded area. In addition, we documented the presence of three native natural enemies affecting the brood of the exotic bee. Our results bring out new insights on how the M. sculpturalis indirectly competes with native species and on its performance in new locations.
Collapse
Affiliation(s)
- Sara Straffon Díaz
- Department of Agricultural Forest and Food Sciences, University of Turin, Largo Paolo Braccini 2, 10095 Grugliasco (Turin), Italy; (L.C.); (A.M.); (M.P.)
| | - Luca Carisio
- Department of Agricultural Forest and Food Sciences, University of Turin, Largo Paolo Braccini 2, 10095 Grugliasco (Turin), Italy; (L.C.); (A.M.); (M.P.)
| | - Aulo Manino
- Department of Agricultural Forest and Food Sciences, University of Turin, Largo Paolo Braccini 2, 10095 Grugliasco (Turin), Italy; (L.C.); (A.M.); (M.P.)
| | - Paolo Biella
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126 Milano, Italy;
| | - Marco Porporato
- Department of Agricultural Forest and Food Sciences, University of Turin, Largo Paolo Braccini 2, 10095 Grugliasco (Turin), Italy; (L.C.); (A.M.); (M.P.)
| |
Collapse
|