1
|
Blanchet G, Bellinger MR, Kearns AM, Cortes-Rodriguez N, Masuda B, Campana MG, Rutz C, Fleischer RC, Sutton JT. Reduction of genetic diversity in 'Alalā (Hawaiian crow; Corvus hawaiiensis) between the late 1800s and the late 1900s. J Hered 2024; 115:32-44. [PMID: 37846510 DOI: 10.1093/jhered/esad063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 09/26/2023] [Accepted: 10/12/2023] [Indexed: 10/18/2023] Open
Abstract
Genetic and genomic data are increasingly used to aid conservation management of endangered species by providing insights into evolutionary histories, factors associated with extinction risks, and potential for future adaptation. For the 'Alalā, or Hawaiian crow (Corvus hawaiiensis), genetic concerns include negative correlations between inbreeding and hatching success. However, it is unclear if low genetic diversity and inbreeding depression are consequences of a historical population bottleneck, or if 'Alalā had historically low genetic diversity that predated human influence, perhaps as a result of earlier declines or founding events. In this study, we applied a hybridization-based sequence capture to generate a genome-wide single nucleotide polymorphism (SNP) dataset for comparing historical specimens collected in the 1890s, when 'Alalā were more numerous, to samples taken between 1973 and 1998, when 'Alalā population densities were near the lowest documented levels in the wild, prior to all individuals being collected for captive rearing. We found low genome-wide diversity in both sample groups, however, the modern sample group (1973 to 1998 cohort) exhibited relatively fewer polymorphic alleles, a lower proportion of polymorphic loci, and lower observed heterozygosity, consistent with a population decline and potential bottleneck effects. These results combined with a current low population size highlight the importance of continued efforts by conservation managers to mitigate inbreeding and maintain founder representation to preserve what genetic diversity remains.
Collapse
Affiliation(s)
- Geneviève Blanchet
- Department of Biology, University of Hawai'i at Hilo, 200 W Kāwili St, Hilo, Hawai'i 96720, United States
| | - M Renee Bellinger
- Department of Biology, University of Hawai'i at Hilo, 200 W Kāwili St, Hilo, Hawai'i 96720, United States
- U.S. Geological Survey, Pacific Island Ecosystems Research Center, PO Box 44, Hawai'i National Park, Hawai'i 96718, United States
| | - Anna M Kearns
- Center for Conservation Genomics, National Zoo and Conservation Biology Institute, Smithsonian Institution, Washington DC 20008, United States
| | - Nandadevi Cortes-Rodriguez
- Center for Conservation Genomics, National Zoo and Conservation Biology Institute, Smithsonian Institution, Washington DC 20008, United States
| | - Bryce Masuda
- San Diego Zoo Wildlife Alliance, P.O. Box 39, Volcano, HI 96785, United States
| | - Michael G Campana
- Center for Conservation Genomics, National Zoo and Conservation Biology Institute, Smithsonian Institution, Washington DC 20008, United States
| | - Christian Rutz
- Centre for Biological Diversity, School of Biology, University of St Andrews, St Andrews KY16 9TH, United Kingdom
| | - Robert C Fleischer
- Center for Conservation Genomics, National Zoo and Conservation Biology Institute, Smithsonian Institution, Washington DC 20008, United States
| | - Jolene T Sutton
- Department of Biology, University of Hawai'i at Hilo, 200 W Kāwili St, Hilo, Hawai'i 96720, United States
| |
Collapse
|
2
|
Züst Z, Mukhin A, Taylor PD, Schmaljohann H. Pre-migratory flights in migrant songbirds: the ecological and evolutionary importance of understudied exploratory movements. MOVEMENT ECOLOGY 2023; 11:78. [PMID: 38115134 PMCID: PMC10731812 DOI: 10.1186/s40462-023-00440-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 12/09/2023] [Indexed: 12/21/2023]
Abstract
Across the animal kingdom, from honeybees to cranes to beavers, exploratory movements to exploit resources, scout prospective territories, or otherwise gain valuable experiences and information that promote fitness have been documented. For example, exploratory movements to investigate potential dispersal targets have been observed in roe deer, Northern cardinals, and tigers alike. However, despite how widespread these movements are, a cohesive definition of exploratory movements has been lacking. We first provide a clear definition of exploratory movements, and use one particular group-migratory songbirds-to catalogue exploratory movements across the annual cycle. The exceptional mobility of migratory songbirds results in exploratory movements not only at a local scale, but also on a regional scale, both in and out of the breeding season. We review the extent to which these movements are made within this group, paying particular attention to how such movements confer fitness benefits, as by securing high-quality territories, prospecting for extra-pair paternity, or even exploiting ephemeral resources. We then zoom in one step further to a particular exploratory movement that has been, to date, almost completely overlooked within this group: that of pre-migratory flights. These flights, which occur during the transitional period between the stationary breeding period and the onset of migration, occur at night and may not be made by all individuals in a population-reasons why these flights have been heretofore critically understudied. We provide the first definition for this behaviour, summarise the current knowledge of this cryptic movement, and hypothesise what evolutionary/ecological advantages conducting it may confer to the individuals that undertake it. As these flights provide experience to the individuals that undertake them, we expect that birds that make pre-migratory flights are better equipped to survive migration (direct fitness benefits) and, due to orientation/navigation abilities, may also reach preferred territories on breeding and wintering grounds faster (indirect fitness benefits). We hope to encourage ecologists to consider such hidden movements in their research concepts and to enhance the framework of movement ecology by this behaviour due to its presumed high biological importance to the annual cycle of birds.
Collapse
Affiliation(s)
- Zephyr Züst
- Institute for Biology and Environmental Sciences (IBU), Carl von Ossietzky Universität Oldenburg, Oldenburg, Germany.
| | - Andrey Mukhin
- Zoological Institute Russian Academy of Science, Biological Station Rybachy, Kaliningrad Oblast, Russia
| | - Philip D Taylor
- Department of Biology, Acadia University, Wolfville, NS, Canada
| | - Heiko Schmaljohann
- Institute for Biology and Environmental Sciences (IBU), Carl von Ossietzky Universität Oldenburg, Oldenburg, Germany
| |
Collapse
|
3
|
Personality assessment of headstart Texas horned lizards (Phrynosoma cornutum) in human care prior to release. Appl Anim Behav Sci 2022. [DOI: 10.1016/j.applanim.2022.105690] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
4
|
Goldenberg SZ, Hahn N, Stacy-Dawes J, Chege SM, Daballen D, Douglas-Hamilton I, Lendira RR, Lengees MJ, Loidialo LS, Omengo F, Pope F, Thouless C, Wittemyer G, Owen MA. Movement of Rehabilitated African Elephant Calves Following Soft Release Into a Wildlife Sanctuary. FRONTIERS IN CONSERVATION SCIENCE 2021. [DOI: 10.3389/fcosc.2021.720202] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The ability to locate essential resources is a critical step for wildlife translocated into novel environments. Understanding this process of exploration is highly desirable for management that seeks to resettle wildlife, particularly as translocation projects tend to be expensive and have a high potential for failure. African savannah elephants (Loxodonta africana) are very mobile and rely on large areas especially in arid environments, and are translocated for differing management and conservation objectives. Thus, research into how translocated elephants use the landscape when released may both guide elephant managers and be useful for translocations of other species that adjust their movement to social and ecological conditions. In this study, we investigated the movement of eight GPS tracked calves (translocated in three cohorts) following their soft release into a 107 km2 fenced wildlife sanctuary in northern Kenya and compared their movement with that of five tracked wild elephants in the sanctuary. We describe their exploration of the sanctuary, discovery of water points, and activity budgets during the first seven, 14, and 20 months after release. We explored how patterns are affected by time since release, ecological conditions, and social factors. We found that calves visited new areas of the sanctuary and water points during greener periods and earlier post-release. Social context was associated with exploration, with later release and association with wild elephants predictive of visits to new areas. Wild elephants tended to use a greater number of sites per 14-day period than the released calves. Activity budgets determined from hidden Markov models (including the states directed walk, encamped, and meandering) suggested that released calves differed from wild elephants. The first two cohorts of calves spent a significantly greater proportion of time in the directed walk state and a significantly lower proportion of time in the encamped state relative to the wild elephants. Our results represent a step forward in describing the movements of elephant orphan calves released to the wild following a period of profound social disruption when they lost their natal family and were rehabilitated with other orphan calves under human care. We discuss the implications of the elephant behavior we observed for improving release procedures and for defining success benchmarks for translocation projects.
Collapse
|
5
|
Lee HN, Greggor AL, Masuda B, Swaisgood RR. Anti-Predator Vigilance as an Indicator of the Costs and Benefits of Supplemental Feeding in Newly Released ‘Alalā (Corvus hawaiiensis). FRONTIERS IN CONSERVATION SCIENCE 2021. [DOI: 10.3389/fcosc.2021.701490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Although supplemental feeding is commonly used as a conservation strategy during animal translocations, it comes with a number of pros and cons which can be hard to quantify. Providing additional food resources may lead to improved physical health, survivorship, and reproduction. However, offering predictable food sources could make individuals more conspicuous to predators and less aware of their surroundings, disrupting their natural predator-prey dynamic. Decisions such as release cohort size and supplemental feeder design could influence the balance of these costs and benefits, depending on how animals behave in the face of predation risk and static food sources. Additionally, animals released to the wild from long term human care must balance foraging and predation risk while adjusting to a novel environment. To help conservation managers make informed decisions in light of these potential costs, we studied the behavior of a cohort of 11 conservation-bred ‘alalā (Corvus hawaiiensis) at supplemental feeding stations after release into the wild. Vigilance, foraging behavior and social group size was quantified via 1,320 trail camera videos of ‘alalā over the span of 12 months. We found that vigilance increased over time since release, suggesting that ‘alalā learn and adjust to their novel surroundings. Both vigilance and eating decreased with group size, indicating that although conspecifics may share the burden of scanning for threats, they also increase competition for food. We also found that the design of the feeder may have limited birds' abilities to express anti-predator behavior since less vigilance was observed in individuals that manipulated the feeder. Yet, birds may have been able to offset these costs since they increasingly scrounged for food scraps next to the feeder as time progressed. We discuss how changes to behavior over time, social interactions, and feeder design should all be considered when planning supplemental feeding as part of wildlife translocations.
Collapse
|
6
|
Hunter-Ayad J, Jarvie S, Greaves G, Digby A, Ohlemüller R, Recio MR, Seddon PJ. Novel Conditions in Conservation Translocations: A Conservative-Extrapolative Strategic Framework. FRONTIERS IN CONSERVATION SCIENCE 2021. [DOI: 10.3389/fcosc.2021.691714] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
In response to anthropogenic threats, conservation translocations are increasingly used to combat species' population and range declines. However, moving animals outside of their current distribution can mean introducing them to novel conditions, even in the case of reintroductions to formerly inhabited areas due to ecosystem changes following extirpation. This exposure to novel conditions introduces uncertainty that can undermine decision making for species conservation. Here we propose two strategies, which we define as conservative and extrapolative, for approaching and managing novelty and the resulting uncertainty in conservation translocations. Conservative strategies are characterised by the avoidance and removal of novel conditions as much as possible, whereas extrapolative strategies are more experimental, allowing exposure to novel conditions and monitoring outcomes to increase understanding of a species' ecology. As each strategy carries specific risks and opportunities, they will be applicable in different scenarios. Extrapolative strategies suit species in recovery which can afford some experimental management, or species facing novel and emerging threats which require less traditional translocations, such as assisted colonisations. We provide examples, applying our framework to two endemic New Zealand species with long histories of translocation management: tuatara (Sphenodon punctatus), a reptile and takahē (Porphyrio hochstetteri), a flightless bird.
Collapse
|