1
|
Cui J, Batley KC, Silver LW, McLennan EA, Hogg CJ, Belov K. Spatial variation in toll-like receptor diversity in koala populations across their geographic distribution. Immunogenetics 2024; 77:5. [PMID: 39614880 PMCID: PMC11608166 DOI: 10.1007/s00251-024-01365-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Accepted: 11/25/2024] [Indexed: 01/29/2025]
Abstract
The koala (Phascolarctos cinereus) is an iconic Australian species that is listed as endangered in the northern parts of its range due to loss of habitat, disease, and road deaths. Diseases contribute significantly to the decline of koala populations, primarily Chlamydia and koala retrovirus. The distribution of these diseases across the species' range, however, is not even. Toll-like receptors (TLRs) play a crucial role in innate immunity by recognising and responding to various pathogens. Variations in TLR genes can influence an individual's susceptibility or resistance to infectious diseases. The aim of this study was to identify koala TLR diversity across the east coast of Australia using 413 re-sequenced genomes at 30 × coverage. We identified 45 single-nucleotide polymorphisms (SNP) leading to 51 alleles within ten TLR genes. Our results show that the diversity of TLR genes in the koala forms four distinct genetic groups, which are consistent with the diversity of the koala major histocompatibility complex (MHC), another key immune gene family. The bioinformatics approach presented here has broad applicability to other threatened species with existing genomic resources.
Collapse
Affiliation(s)
- Jian Cui
- School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Kimberley C Batley
- School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Luke W Silver
- School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW, 2006, Australia
- ARC Centre of Excellence for Innovations in Peptide and Protein Science, The University of Sydney, Sydney, NSW, Australia
| | - Elspeth A McLennan
- School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Carolyn J Hogg
- School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW, 2006, Australia.
- ARC Centre of Excellence for Innovations in Peptide and Protein Science, The University of Sydney, Sydney, NSW, Australia.
| | - Katherine Belov
- School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW, 2006, Australia
- ARC Centre of Excellence for Innovations in Peptide and Protein Science, The University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
2
|
Nistelberger HM, Roycroft E, Macdonald AJ, McArthur S, White LC, Grady PGS, Pierson J, Sims C, Cowen S, Moseby K, Tuft K, Moritz C, Eldridge MDB, Byrne M, Ottewell K. Genetic mixing in conservation translocations increases diversity of a keystone threatened species, Bettongia lesueur. Mol Ecol 2023. [PMID: 37715549 DOI: 10.1111/mec.17119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 07/11/2023] [Accepted: 08/17/2023] [Indexed: 09/17/2023]
Abstract
Translocation programmes are increasingly being informed by genetic data to monitor and enhance conservation outcomes for both natural and established populations. These data provide a window into contemporary patterns of genetic diversity, structure and relatedness that can guide managers in how to best source animals for their translocation programmes. The inclusion of historical samples, where possible, strengthens monitoring by allowing assessment of changes in genetic diversity over time and by providing a benchmark for future improvements in diversity via management practices. Here, we used reduced representation sequencing (ddRADseq) data to report on the current genetic health of three remnant and seven translocated boodie (Bettongia lesueur) populations, now extinct on the Australian mainland. In addition, we used exon capture data from seven historical mainland specimens and a subset of contemporary samples to compare pre-decline and current diversity. Both data sets showed the significant impact of population founder source (whether multiple or single) on the genetic diversity of translocated populations. Populations founded by animals from multiple sources showed significantly higher genetic diversity than the natural remnant and single-source translocation populations, and we show that by mixing the most divergent populations, exon capture heterozygosity was restored to levels close to that observed in pre-decline mainland samples. Relatedness estimates were surprisingly low across all contemporary populations and there was limited evidence of inbreeding. Our results show that a strategy of genetic mixing has led to successful conservation outcomes for the species in terms of increasing genetic diversity and provides strong rationale for mixing as a management strategy.
Collapse
Affiliation(s)
- Heidi M Nistelberger
- Biodiversity and Conservation Science, Department of Biodiversity, Conservation and Attractions, Kensington, Western Australia, Australia
| | - Emily Roycroft
- Division of Ecology & Evolution, Research School of Biology, ANU College of Science, The Australian National University, Canberra, Australian Capital Territory, Australia
| | - Anna J Macdonald
- Division of Ecology & Evolution, Research School of Biology, ANU College of Science, The Australian National University, Canberra, Australian Capital Territory, Australia
| | - Shelley McArthur
- Biodiversity and Conservation Science, Department of Biodiversity, Conservation and Attractions, Kensington, Western Australia, Australia
| | - Lauren C White
- Department of Environment, Land, Water and Planning, Arthur Rylah Institute for Environmental Research, Heidelberg, Victoria, Australia
| | - Patrick G S Grady
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, Connecticut, USA
| | - Jennifer Pierson
- Australian Wildlife Conservancy, Subiaco, Western Australia, Australia
| | - Colleen Sims
- Biodiversity and Conservation Science, Department of Biodiversity, Conservation and Attractions, Kensington, Western Australia, Australia
| | - Saul Cowen
- Biodiversity and Conservation Science, Department of Biodiversity, Conservation and Attractions, Kensington, Western Australia, Australia
| | - Katherine Moseby
- Centre for Ecosystem Science, School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, New South Wales, Australia
| | | | - Craig Moritz
- Division of Ecology & Evolution, Research School of Biology, ANU College of Science, The Australian National University, Canberra, Australian Capital Territory, Australia
| | - Mark D B Eldridge
- Terrestrial Vertebrates, Australian Museum Research Institute, Sydney, New South Wales, Australia
| | - Margaret Byrne
- Biodiversity and Conservation Science, Department of Biodiversity, Conservation and Attractions, Kensington, Western Australia, Australia
| | - Kym Ottewell
- Biodiversity and Conservation Science, Department of Biodiversity, Conservation and Attractions, Kensington, Western Australia, Australia
| |
Collapse
|
3
|
White SL, Rash JM, Kazyak DC. Is now the time? Review of genetic rescue as a conservation tool for brook trout. Ecol Evol 2023; 13:e10142. [PMID: 37250443 PMCID: PMC10213484 DOI: 10.1002/ece3.10142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 05/04/2023] [Accepted: 05/11/2023] [Indexed: 05/31/2023] Open
Abstract
Brook trout populations have been declining throughout their native range in the east coast of the United States. Many populations are now distributed in small, isolated habitat patches where low genetic diversity and high rates of inbreeding reduce contemporary viability and long-term adaptive potential. Although human-assisted gene flow could theoretically improve conservation outcomes through genetic rescue, there is widespread hesitancy to use this tool to support brook trout conservation. Here, we review the major uncertainties that have limited genetic rescue from being considered as a viable conservation tool for isolated brook trout populations and compare the risks of genetic rescue with other management alternatives. Drawing on theoretical and empirical studies, we discuss methods for implementing genetic rescue in brook trout that could yield long-term evolutionary benefits while avoiding negative fitness effects associated with outbreeding depression and the spread of maladapted alleles. We also highlight the potential for future collaborative efforts to accelerate our understanding of genetic rescue as a viable tool for conservation. Ultimately, while we acknowledge that genetic rescue is not without risk, we emphasize the merits that this tool offers for protecting and propagating adaptive potential and improving species' resilience to rapid environmental change.
Collapse
Affiliation(s)
- Shannon L. White
- U.S. Geological Survey Eastern Ecological Science CenterKearneysvilleWest VirginiaUSA
| | - Jacob M. Rash
- North Carolina Wildlife Resources CommissionMarionNorth CarolinaUSA
| | - David C. Kazyak
- U.S. Geological Survey Eastern Ecological Science CenterKearneysvilleWest VirginiaUSA
| |
Collapse
|
4
|
Hogg CJ, Silver L, McLennan EA, Belov K. Koala Genome Survey: An Open Data Resource to Improve Conservation Planning. Genes (Basel) 2023; 14:genes14030546. [PMID: 36980819 PMCID: PMC10048327 DOI: 10.3390/genes14030546] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 02/15/2023] [Accepted: 02/20/2023] [Indexed: 02/24/2023] Open
Abstract
Genome sequencing is a powerful tool that can inform the management of threatened species. Koalas (Phascolarctos cinereus) are a globally recognized species that captured the hearts and minds of the world during the 2019/2020 Australian megafires. In 2022, koalas were listed as ‘Endangered’ in Queensland, New South Wales, and the Australian Capital Territory. Populations have declined because of various threats such as land clearing, habitat fragmentation, and disease, all of which are exacerbated by climate change. Here, we present the Koala Genome Survey, an open data resource that was developed after the Australian megafires. A systematic review conducted in 2020 demonstrated that our understanding of genomic diversity within koala populations was scant, with only a handful of SNP studies conducted. Interrogating data showed that only 6 of 49 New South Wales areas of regional koala significance had meaningful genome-wide data, with only 7 locations in Queensland with SNP data and 4 locations in Victoria. In 2021, we launched the Koala Genome Survey to generate resequenced genomes across the Australian east coast. We have publicly released 430 koala genomes (average coverage: 32.25X, range: 11.3–66.8X) on the Amazon Web Services Open Data platform to accelerate research that can inform current and future conservation planning.
Collapse
|
5
|
Adamski P. Catch Effectiveness Revealed by Site-Related Differences in Capture-Mark-Recapture Methods: A Butterfly Metapopulation Study. ENVIRONMENTAL ENTOMOLOGY 2022; 51:1234-1240. [PMID: 36254469 DOI: 10.1093/ee/nvac077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Indexed: 06/16/2023]
Abstract
Understanding metapopulation structures is very important in the context of ecological studies and conservation. Crucial in this respect are the abundances of both the whole metapopulation and its constituent subpopulations. In recent decades, capture-mark-recapture studies have been considered the most reliable means of calculating such abundances. In butterfly studies, individual insects are usually caught with an entomological net. But the effectiveness of this method can vary for a number of reasons: differences between fieldworkers, in time, between sites etc. This article analyses catch effectiveness data with respect to two subpopulations of the Apollo butterfly (Parnassius apollo) metapopulation in the Pieniny National Park (Polish Carpathians). The results show that this parameter varied significantly between sites, probably because of differences in microrelief and plant cover. In addition, a method is proposed that will include information on catch effectiveness for estimating the sizes of particular subpopulations and will help to elucidate the structure of the entire metapopulation.
Collapse
Affiliation(s)
- Paweł Adamski
- Institute of Nature Conservation Polish Academy of Sciences, al Mickiewicza 33, 31-120 Kraków, Poland
| |
Collapse
|
6
|
Gustafson KD, Gagne RB, Buchalski MR, Vickers TW, Riley SPD, Sikich JA, Rudd JL, Dellinger JA, LaCava MEF, Ernest HB. Multi-population puma connectivity could restore genomic diversity to at-risk coastal populations in California. Evol Appl 2022; 15:286-299. [PMID: 35233248 PMCID: PMC8867711 DOI: 10.1111/eva.13341] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 12/25/2021] [Indexed: 12/01/2022] Open
Abstract
Urbanization is decreasing wildlife habitat and connectivity worldwide, including for apex predators, such as the puma (Puma concolor). Puma populations along California's central and southern coastal habitats have experienced rapid fragmentation from development, leading to calls for demographic and genetic management. To address urgent conservation genomic concerns, we used double-digest restriction-site associated DNA (ddRAD) sequencing to analyze 16,285 genome-wide single-nucleotide polymorphisms (SNPs) from 401 pumas sampled broadly across the state. Our analyses indicated support for 4-10 geographically nested, broad- to fine-scale genetic clusters. At the broadest scale, the four genetic clusters had high genetic diversity and exhibited low linkage disequilibrium, indicating that pumas have retained genomic diversity statewide. However, multiple lines of evidence indicated substructure, including 10 finer-scale genetic clusters, some of which exhibited fixed alleles and linkage disequilibrium. Fragmented populations along the Southern Coast and Central Coast had particularly low genetic diversity and strong linkage disequilibrium, indicating genetic drift and close inbreeding. Our results demonstrate that genetically at risk populations are typically nested within a broader-scale group of interconnected populations that collectively retain high genetic diversity and heterogenous fixations. Thus, extant variation at the broader scale has potential to restore diversity to local populations if management actions can enhance vital gene flow and recombine locally sequestered genetic diversity. These state- and genome-wide results are critically important for science-based conservation and management practices. Our nested population genomic analysis highlights the information that can be gained from population genomic studies aiming to provide guidance for the conservation of fragmented populations.
Collapse
Affiliation(s)
- Kyle D. Gustafson
- Department of Biological SciencesArkansas State UniversityJonesboroArkansasUSA
| | - Roderick B. Gagne
- Department of PathobiologyWildlife Futures ProgramUniversity of Pennsylvania School of Veterinary MedicineKennett SquarePennsylvaniaUSA
| | | | - T. Winston Vickers
- Karen C. Drayer Wildlife Health CenterSchool of Veterinary MedicineUniversity of California ‐ DavisDavisCaliforniaUSA
| | - Seth P. D. Riley
- Santa Monica Mountains National Recreation AreaNational Park ServiceThousand OaksCaliforniaUSA
| | - Jeff A. Sikich
- Santa Monica Mountains National Recreation AreaNational Park ServiceThousand OaksCaliforniaUSA
| | - Jaime L. Rudd
- California Department of Fish and WildlifeRancho CordovaCaliforniaUSA
| | | | - Melanie E. F. LaCava
- Wildlife Genomics and Disease Ecology LaboratoryDepartment of Veterinary SciencesUniversity of WyomingLaramieWyomingUSA
| | - Holly B. Ernest
- Wildlife Genomics and Disease Ecology LaboratoryDepartment of Veterinary SciencesUniversity of WyomingLaramieWyomingUSA
| |
Collapse
|
7
|
Hogg CJ, Ottewell K, Latch P, Rossetto M, Biggs J, Gilbert A, Richmond S, Belov K. Threatened Species Initiative: Empowering conservation action using genomic resources. Proc Natl Acad Sci U S A 2022; 119:e2115643118. [PMID: 35042806 PMCID: PMC8795520 DOI: 10.1073/pnas.2115643118] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Globally, 15,521 animal species are listed as threatened by the International Union for the Conservation of Nature, and of these less than 3% have genomic resources that can inform conservation management. To combat this, global genome initiatives are developing genomic resources, yet production of a reference genome alone does not conserve a species. The reference genome allows us to develop a suite of tools to understand both genome-wide and functional diversity within and between species. Conservation practitioners can use these tools to inform their decision-making. But, at present there is an implementation gap between the release of genome information and the use of genomic data in applied conservation by conservation practitioners. In May 2020, we launched the Threatened Species Initiative and brought a consortium of genome biologists, population biologists, bioinformaticians, population geneticists, and ecologists together with conservation agencies across Australia, including government, zoos, and nongovernment organizations. Our objective is to create a foundation of genomic data to advance our understanding of key Australian threatened species, and ultimately empower conservation practitioners to access and apply genomic data to their decision-making processes through a web-based portal. Currently, we are developing genomic resources for 61 threatened species from a range of taxa, across Australia, with more than 130 collaborators from government, academia, and conservation organizations. Developed in direct consultation with government threatened-species managers and other conservation practitioners, herein we present our framework for meeting their needs and our systematic approach to integrating genomics into threatened species recovery.
Collapse
Affiliation(s)
- Carolyn J Hogg
- School of Life & Environmental Science, University of Sydney, Sydney, NSW 2006, Australia;
| | - Kym Ottewell
- Conservation Science Centre, Department of Biodiversity, Conservation, & Attractions, Kensington, WA 6151, Australia
| | - Peter Latch
- Australian Government Department of Agriculture, Water & Environment, Canberra, ACT 2600, Australia
| | - Maurizio Rossetto
- Research Centre for Ecosystem Resilience, Australian Institute of Botanical Science, The Royal Botanic Garden Sydney, Sydney, NSW 2000, Australia
| | - James Biggs
- Zoo and Aquarium Association Australasia, Mosman, NSW 2088, Australia
| | | | | | - Katherine Belov
- School of Life & Environmental Science, University of Sydney, Sydney, NSW 2006, Australia
| |
Collapse
|