1
|
Hashemi F, Tajik F, Saeednejad Zanjani L, Dehghan Manshadi M, Safaei S, Babaheidarian P, Fattahi F, Ghods R, Madjd Z. Clinical Significance of Talin-1 and HER-2 Status in Different Types of Gastric Carcinoma. Biomarkers 2024:1-27. [PMID: 39466840 DOI: 10.1080/1354750x.2024.2423270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 10/25/2024] [Indexed: 10/30/2024]
Abstract
BACKGROUND Talin-1 (TLN1) is crucial in cell migration, metastasis, and cancer development. This study evaluated Talin-1 expression and its clinical significance in gastric cancer (GC), along with human epidermal growth factor receptor-2 (HER-2) expression and its correlation with Talin-1. METHODS Bioinformatics analysis assessed the potential prognostic value of Talin-1 and HER-2 in GC patients. The study included 223 GC patients (Signet Ring Cells and Intestinal subtypes) and 29 non-malignant tissue samples. Immunohistochemistry (IHC) on tissue microarray slides evaluated Talin-1 and HER-2 expression and clinical significance. Receiver operating characteristic (ROC) curves assessed their diagnostic value. RESULTS Bioinformatics identified Talin-1 as a potential prognostic factor and HER-2 as an oncogene in GC. Talin-1 and HER-2 expression increased in SRC-type GC samples compared to non-malignant tissues. High cytoplasmic Talin-1 expression inversely correlated with tumor expansion and invasion in SRC-type GC. Increased HER-2 expression positively correlated with metastasis. ROC curves showed significant diagnostic values for both proteins. CONCLUSIONS Higher cytoplasmic Talin-1 expression is associated with less invasive tumor behavior, while increased membranous HER-2 expression is associated with metastasis in SRC-type GC. These findings suggest potential use in assessing diagnosis and screening high-risk cancer patients, particularly those with SRC-type GC.
Collapse
Affiliation(s)
- Farideh Hashemi
- Oncopathology Research Center, Iran University of Medical Sciences, Tehran, Iran
- Department of Molecular Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Tajik
- Oncopathology Research Center, Iran University of Medical Sciences, Tehran, Iran
| | | | - Masoumeh Dehghan Manshadi
- Oncopathology Research Center, Iran University of Medical Sciences, Tehran, Iran
- Department of Molecular Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Sadegh Safaei
- Oncopathology Research Center, Iran University of Medical Sciences, Tehran, Iran
- Department of Molecular Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | | | - Fahimeh Fattahi
- Clinical Research Development Unit of Ayatollah-Khansari Hospital, Arak University of Medical Sciences, Arak, Iran
| | - Roya Ghods
- Oncopathology Research Center, Iran University of Medical Sciences, Tehran, Iran
- Department of Molecular Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Zahra Madjd
- Oncopathology Research Center, Iran University of Medical Sciences, Tehran, Iran
- Department of Molecular Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
- Department of Pathology, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
2
|
Gralewska P, Gajek A, Marczak A, Rogalska A. Targeted Nanocarrier-Based Drug Delivery Strategies for Improving the Therapeutic Efficacy of PARP Inhibitors against Ovarian Cancer. Int J Mol Sci 2024; 25:8304. [PMID: 39125873 PMCID: PMC11312858 DOI: 10.3390/ijms25158304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 07/20/2024] [Accepted: 07/28/2024] [Indexed: 08/12/2024] Open
Abstract
The current focus of ovarian cancer (OC) research is the improvement of treatment options through maximising drug effectiveness. OC remains the fifth leading cause of cancer-induced mortality in women worldwide. In recent years, nanotechnology has revolutionised drug delivery systems. Nanoparticles may be utilised as carriers in gene therapy or to overcome the problem of drug resistance in tumours by limiting the number of free drugs in circulation and thereby minimising undesired adverse effects. Cell surface receptors, such as human epidermal growth factor 2 (HER2), folic acid (FA) receptors, CD44 (also referred to as homing cell adhesion molecule, HCAM), and vascular endothelial growth factor (VEGF) are highly expressed in ovarian cancer cells. Generation of active targeting nanoparticles involves modification with ligands that recognise cell surface receptors and thereby promote internalisation by cancer cells. Several poly(ADP-ribose) polymerase (PARP) inhibitors (PARPi) are currently used for the treatment of high-grade serous ovarian carcinomas (HGSOC) or platinum-sensitive relapsed OC. However, PARP resistance and poor drug bioavailability are common challenges, highlighting the urgent need to develop novel, effective strategies for ovarian cancer treatment. This review evaluates the utility of nanoparticles in ovarian cancer therapy, with a specific focus on targeted approaches and the use of PARPi nanocarriers to optimise treatment outcomes.
Collapse
Affiliation(s)
| | | | | | - Aneta Rogalska
- Department of Medical Biophysics, Institute of Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90–236 Lodz, Poland; (P.G.); (A.G.); (A.M.)
| |
Collapse
|
3
|
Romaniuk-Drapała A, Totoń E, Taube M, Idzik M, Rubiś B, Lisiak N. Breast Cancer Stem Cells and Tumor Heterogeneity: Characteristics and Therapeutic Strategies. Cancers (Basel) 2024; 16:2481. [PMID: 39001543 PMCID: PMC11240630 DOI: 10.3390/cancers16132481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 06/27/2024] [Accepted: 07/05/2024] [Indexed: 07/16/2024] Open
Abstract
Breast cancer is one of the most frequently detected malignancies worldwide. It is responsible for more than 15% of all death cases caused by cancer in women. Breast cancer is a heterogeneous disease representing various histological types, molecular characteristics, and clinical profiles. However, all breast cancers are organized in a hierarchy of heterogeneous cell populations, with a small proportion of cancer stem cells (breast cancer stem cells (BCSCs)) playing a putative role in cancer progression, and they are responsible for therapeutic failure. In different molecular subtypes of breast cancer, they present different characteristics, with specific marker profiles, prognoses, and treatments. Recent efforts have focused on tackling the Wnt, Notch, Hedgehog, PI3K/Akt/mTOR, and HER2 signaling pathways. Developing diagnostics and therapeutic strategies enables more efficient elimination of the tumor mass together with the stem cell population. Thus, the knowledge about appropriate therapeutic methods targeting both "normal" breast cancer cells and breast cancer stem cell subpopulations is crucial for success in cancer elimination.
Collapse
Affiliation(s)
- Aleksandra Romaniuk-Drapała
- Department of Clinical Chemistry and Molecular Diagnostics, Poznan University of Medical Sciences, Collegium Pharmaceuticum, Rokietnicka Str. 3, 60-806 Poznan, Poland
| | - Ewa Totoń
- Department of Clinical Chemistry and Molecular Diagnostics, Poznan University of Medical Sciences, Collegium Pharmaceuticum, Rokietnicka Str. 3, 60-806 Poznan, Poland
| | - Magdalena Taube
- Department of Clinical Chemistry and Molecular Diagnostics, Poznan University of Medical Sciences, Collegium Pharmaceuticum, Rokietnicka Str. 3, 60-806 Poznan, Poland
| | - Malgorzata Idzik
- Department of Clinical Chemistry and Molecular Diagnostics, Poznan University of Medical Sciences, Collegium Pharmaceuticum, Rokietnicka Str. 3, 60-806 Poznan, Poland
| | - Błażej Rubiś
- Department of Clinical Chemistry and Molecular Diagnostics, Poznan University of Medical Sciences, Collegium Pharmaceuticum, Rokietnicka Str. 3, 60-806 Poznan, Poland
| | - Natalia Lisiak
- Department of Clinical Chemistry and Molecular Diagnostics, Poznan University of Medical Sciences, Collegium Pharmaceuticum, Rokietnicka Str. 3, 60-806 Poznan, Poland
| |
Collapse
|
4
|
Zhao K, Wu C, Li X, Niu M, Wu D, Cui X, Zhao H. From mechanism to therapy: the journey of CD24 in cancer. Front Immunol 2024; 15:1401528. [PMID: 38881902 PMCID: PMC11176514 DOI: 10.3389/fimmu.2024.1401528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 04/25/2024] [Indexed: 06/18/2024] Open
Abstract
CD24 is a glycosylphosphatidylinositol-anchored protein that is expressed in a wide range of tissues and cell types. It is involved in a variety of physiological and pathological processes, including cell adhesion, migration, differentiation, and apoptosis. Additionally, CD24 has been studied extensively in the context of cancer, where it has been found to play a role in tumor growth, invasion, and metastasis. In recent years, there has been growing interest in CD24 as a potential therapeutic target for cancer treatment. This review summarizes the current knowledge of CD24, including its structure, function, and its role in cancer. Finally, we provide insights into potential clinical application of CD24 and discuss possible approaches for the development of targeted cancer therapies.
Collapse
Affiliation(s)
- Kai Zhao
- Department of Neurosurgery, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Caifeng Wu
- Department of Hand and Foot, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Xiangjun Li
- Department of Breast Surgery, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Mengchao Niu
- Department of Operation Room, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Dan Wu
- Department of Neurosurgery, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Xiaofeng Cui
- Department of Neurosurgery, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Hai Zhao
- Department of Neurosurgery, The Affiliated Hospital of Qingdao University, Qingdao, China
| |
Collapse
|
5
|
Ali K, Nabeel M, Mohsin F, Iqtedar M, Islam M, Rasool MF, Hashmi FK, Hussain SA, Saeed H. Recent developments in targeting breast cancer stem cells (BCSCs): a descriptive review of therapeutic strategies and emerging therapies. Med Oncol 2024; 41:112. [PMID: 38592510 DOI: 10.1007/s12032-024-02347-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 02/27/2024] [Indexed: 04/10/2024]
Abstract
Despite recent advancements in the diagnosis and treatment of breast cancer (BC), patient outcomes in terms of survival, recurrence, and disease progression remain suboptimal. A significant factor contributing to these challenges is the cellular heterogeneity within BC, particularly the presence of breast cancer stem cells (BCSCs). These cells are thought to serve as the clonogenic nexus for new tumor growth, owing to their hierarchical organization within the tumor. This descriptive review focuses on the evolving strategies to target BCSCs, which have become a pivotal aspect of therapeutic development. We explore a variety of approaches, including targeting specific tumor surface markers (CD133 and CD44), transporters, heat shock proteins, and critical signaling pathways like Notch, Akt, Hedgehog, KLF4, and Wnt/β-catenin. Additionally, we discuss the modulation of the tumor microenvironment through the CXCR-12/CXCR4 axis, manipulation of pH levels, and targeting hypoxia-inducible factors, vascular endothelial growth factor, and CXCR1/2 receptors. Further, this review focuses on the roles of microRNA expression, strategies to induce apoptosis and differentiation in BCSCs, dietary interventions, dendritic cell vaccination, oncolytic viruses, nanotechnology, immunotherapy, and gene therapy. We particularly focused on studies reporting identification of BCSCs, their unique properties and the efficacy of various therapeutic modalities in targeting these cells. By dissecting these approaches, we aim to provide insights into the complex landscape of BC treatment and the potential pathways for improving patient outcomes through targeted BCSC therapies.
Collapse
Affiliation(s)
- Khubaib Ali
- Department of Clinical Pharmacy, Akhtar Saeed College of Pharmaceutical Sciences, Bahria Town, Lahore, Pakistan
- Department Clinical Oncology Pharmacy, Cancer Care Hospital & Research Centre, Lahore, Pakistan
| | - Muhammad Nabeel
- Department of Clinical Pharmacy, Akhtar Saeed College of Pharmaceutical Sciences, Bahria Town, Lahore, Pakistan
- Department Clinical Oncology Pharmacy, Cancer Care Hospital & Research Centre, Lahore, Pakistan
| | - Fatima Mohsin
- Department of Biological Sciences, KAM School of Life Sciences, Forman Christian College (A Chartered University), Lahore, Pakistan
| | - Mehwish Iqtedar
- Department of Bio-Technology, Lahore College for Women University, Jail Road, Lahore, Pakistan
| | - Muhammad Islam
- Department of Pharmaceutics, College of Pharmacy, University of the Punjab, Allama Iqbal Campus, Lahore, Pakistan
| | | | - Furqan K Hashmi
- Department of Pharmaceutics, College of Pharmacy, University of the Punjab, Allama Iqbal Campus, Lahore, Pakistan
| | | | - Hamid Saeed
- Department of Pharmaceutics, College of Pharmacy, University of the Punjab, Allama Iqbal Campus, Lahore, Pakistan.
| |
Collapse
|
6
|
Fakhrioliaei A, Tanhaei S, Pakmehr S, Noori Shakir M, Qasim MT, Hariri M, Nouhi Kararoudi A, Valilo M. Potential Role of Nrf2, HER2, and ALDH in Cancer Stem Cells: A Narrative Review. J Membr Biol 2024; 257:3-16. [PMID: 38356054 DOI: 10.1007/s00232-024-00307-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 01/16/2024] [Indexed: 02/16/2024]
Abstract
Cancer is one of the main causes of death among humans, second only to cardiovascular diseases. In recent years, numerous studies have been conducted on the pathophysiology of cancer, and it has been established that this disease is developed by a group of stem cells known as cancer stem cells (CSCs). Thus, cancer is considered a stem cell disease; however, there is no comprehensive consensus about the characteristics of these cells. Several different signaling pathways including Notch, Hedgehog, transforming growth factor-β (TGF-β), and WNT/β-catenin pathways cause the self-renewal of CSCs. CSCs change their metabolic pathways in order to access easy energy. Therefore, one of the key objectives of researchers in cancer treatment is to destroy CSCs. Nuclear factor erythroid 2-related factor 2 (Nrf2) plays an essential role in the protection of CSCs from reactive oxygen species (ROS) and chemotherapeutic agents by regulating antioxidants and detoxification enzymes. Human epidermal growth factor receptor 2 (HER2) is a member of the tyrosine kinase receptor family, which contributes to the protection of cancer cells against treatment and implicated in the invasion, epithelial-mesenchymal transition (EMT), and tumorigenesis. Aldehyde dehydrogenases (ALDHs) are highly active in CSCs and protect the cells against damage caused by active aldehydes through the regulation of aldehyde metabolism. On the other hand, ALDHs promote the formation and maintenance of tumor cells and lead to drug resistance in tumors through the activation of various signaling pathways, such as the ALDH1A1/HIF-1α/VEGF axis and Wnt/β-catenin, as well as changing the intracellular pH value. Given the growing body of information in this field, in the present narrative review, we attempted to shed light on the function of Nrf2, HER2, and ALDH in CSCs.
Collapse
Affiliation(s)
| | | | | | - Maha Noori Shakir
- Department of Medical Laboratories Technology, AL-Nisour University College, Baghdad, Iraq
| | - Maytham T Qasim
- Department of Anesthesia, College of Health and Medical Technology, Al-Ayen University, Thi-Qar, Iraq
| | - Maryam Hariri
- Department of Pathobiology, Auburn University, Auburn, AL, 36832, USA
| | - Alireza Nouhi Kararoudi
- Department of Biology, Faculty of Sciences, Rasht Branch, Islamic Azad University, Rasht, Iran
| | - Mohammad Valilo
- Dpartment of Biochemistry, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, Iran.
| |
Collapse
|
7
|
Park M, Jung E, Park JM, Park S, Ko D, Seo J, Kim S, Nam KD, Kang YK, Farrand L, Hoang VH, Nguyen CT, La MT, Nam G, Park HJ, Ann J, Lee J, Kim YJ, Kim JY, Seo JH. The HSP90 inhibitor HVH-2930 exhibits potent efficacy against trastuzumab-resistant HER2-positive breast cancer. Theranostics 2024; 14:2442-2463. [PMID: 38646654 PMCID: PMC11024854 DOI: 10.7150/thno.93236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 03/21/2024] [Indexed: 04/23/2024] Open
Abstract
Rationale: Resistance to targeted therapies like trastuzumab remains a critical challenge for HER2-positive breast cancer patients. Despite the progress of several N-terminal HSP90 inhibitors in clinical trials, none have achieved approval for clinical use, primarily due to issues such as induction of the heat shock response (HSR), off-target effects, and unfavorable toxicity profiles. We sought to examine the effects of HVH-2930, a novel C-terminal HSP90 inhibitor, in overcoming trastuzumab resistance. Methods: The effect of HVH-2930 on trastuzumab-sensitive and -resistant cell lines in vitro was evaluated in terms of cell viability, expression of HSP90 client proteins, and impact on cancer stem cells. An in vivo model with trastuzumab-resistant JIMT-1 cells was used to examine the efficacy and toxicity of HVH-2930. Results: HVH-2930 was rationally designed to fit into the ATP-binding pocket interface cavity of the hHSP90 homodimer in the C-terminal domain of HSP90, stabilizing its open conformation and hindering ATP binding. HVH-2930 induces apoptosis without inducing the HSR but by specifically suppressing the HER2 signaling pathway. This occurs with the downregulation of HER2/p95HER2 and disruption of HER2 family member heterodimerization. Attenuation of cancer stem cell (CSC)-like properties was associated with the downregulation of stemness factors such as ALDH1, CD44, Nanog and Oct4. Furthermore, HVH-2930 administration inhibited angiogenesis and tumor growth in trastuzumab-resistant xenograft mice. A synergistic effect was observed when combining HVH-2930 and paclitaxel in JIMT-1 xenografts. Conclusion: Our findings highlight the potent efficacy of HVH-2930 in overcoming trastuzumab resistance in HER2-positive breast cancer. Further investigation is warranted to fully establish its therapeutic potential.
Collapse
Affiliation(s)
- Minsu Park
- Division of Medical Oncology, Department of Internal Medicine, Korea University College of Medicine, Korea University, Seoul 02841, Republic of Korea
- Brain Korea 21 Program for Biomedical Science, Korea University College of Medicine, Korea University, Seoul 02841, Republic of Korea
| | - Eunsun Jung
- Division of Medical Oncology, Department of Internal Medicine, Korea University College of Medicine, Korea University, Seoul 02841, Republic of Korea
- Department of Biomedical Research Center, Korea University Guro Hospital, Korea University, Seoul 08308, Republic of Korea
| | - Jung Min Park
- Division of Medical Oncology, Department of Internal Medicine, Korea University College of Medicine, Korea University, Seoul 02841, Republic of Korea
- Brain Korea 21 Program for Biomedical Science, Korea University College of Medicine, Korea University, Seoul 02841, Republic of Korea
| | - Soeun Park
- Division of Medical Oncology, Department of Internal Medicine, Korea University College of Medicine, Korea University, Seoul 02841, Republic of Korea
- Brain Korea 21 Program for Biomedical Science, Korea University College of Medicine, Korea University, Seoul 02841, Republic of Korea
| | - Dongmi Ko
- Division of Medical Oncology, Department of Internal Medicine, Korea University College of Medicine, Korea University, Seoul 02841, Republic of Korea
- Brain Korea 21 Program for Biomedical Science, Korea University College of Medicine, Korea University, Seoul 02841, Republic of Korea
| | - Juyeon Seo
- Division of Medical Oncology, Department of Internal Medicine, Korea University College of Medicine, Korea University, Seoul 02841, Republic of Korea
- Brain Korea 21 Program for Biomedical Science, Korea University College of Medicine, Korea University, Seoul 02841, Republic of Korea
| | - Seongjae Kim
- Division of Medical Oncology, Department of Internal Medicine, Korea University College of Medicine, Korea University, Seoul 02841, Republic of Korea
- Brain Korea 21 Program for Biomedical Science, Korea University College of Medicine, Korea University, Seoul 02841, Republic of Korea
| | - Kee Dal Nam
- Division of Medical Oncology, Department of Internal Medicine, Korea University College of Medicine, Korea University, Seoul 02841, Republic of Korea
- Department of Biomedical Research Center, Korea University Guro Hospital, Korea University, Seoul 08308, Republic of Korea
| | - Yong Koo Kang
- Division of Medical Oncology, Department of Internal Medicine, Korea University College of Medicine, Korea University, Seoul 02841, Republic of Korea
- Department of Biomedical Research Center, Korea University Guro Hospital, Korea University, Seoul 08308, Republic of Korea
| | - Lee Farrand
- Adelaide Medical School, Faculty of Health and Medical Sciences, The University of Adelaide, South Australia 5000, Australia
| | - Van-Hai Hoang
- Faculty of Pharmacy, PHENIKAA University, Hanoi 12116, Vietnam
| | - Cong-Truong Nguyen
- Department of Organic Chemistry, Hanoi University of Pharmacy, Hanoi 10000, Vietnam
| | - Minh Thanh La
- Laboratory of Medicinal Chemistry, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Gibeom Nam
- School of Pharmacy, Sungkyunkwan University, Suwon, Gyeonggi-do 16419, Republic of Korea
| | - Hyun-Ju Park
- School of Pharmacy, Sungkyunkwan University, Suwon, Gyeonggi-do 16419, Republic of Korea
| | - Jihyae Ann
- Laboratory of Medicinal Chemistry, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Jeewoo Lee
- Laboratory of Medicinal Chemistry, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Yoon-Jae Kim
- Division of Medical Oncology, Department of Internal Medicine, Korea University College of Medicine, Korea University, Seoul 02841, Republic of Korea
- Brain Korea 21 Program for Biomedical Science, Korea University College of Medicine, Korea University, Seoul 02841, Republic of Korea
- Department of Biomedical Research Center, Korea University Guro Hospital, Korea University, Seoul 08308, Republic of Korea
| | - Ji Young Kim
- Division of Medical Oncology, Department of Internal Medicine, Korea University College of Medicine, Korea University, Seoul 02841, Republic of Korea
- Department of Biomedical Research Center, Korea University Guro Hospital, Korea University, Seoul 08308, Republic of Korea
| | - Jae Hong Seo
- Division of Medical Oncology, Department of Internal Medicine, Korea University College of Medicine, Korea University, Seoul 02841, Republic of Korea
- Brain Korea 21 Program for Biomedical Science, Korea University College of Medicine, Korea University, Seoul 02841, Republic of Korea
- Department of Biomedical Research Center, Korea University Guro Hospital, Korea University, Seoul 08308, Republic of Korea
| |
Collapse
|
8
|
Moradi L, Tajik F, Saeednejad Zanjani L, Panahi M, Gheytanchi E, Biabanaki ZS, Kazemi-Sefat GE, Hashemi F, Dehghan Manshadi M, Madjd Z. Clinical significance of CD166 and HER-2 in different types of gastric cancer. Clin Transl Oncol 2024; 26:664-681. [PMID: 37537510 DOI: 10.1007/s12094-023-03297-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 07/24/2023] [Indexed: 08/05/2023]
Abstract
INTRODUCTION Cluster of differentiation 166 (CD166), a cancer stem cell (CSC) marker, and human epidermal growth factor receptor 2 (HER-2) are expressed in a diversity of malignancies and is associated with tumor progression. Although studies regarding the importance of CSC markers and HER-2 in gastric cancer (GC) have rapidly developed, their clinicopathological, prognosis, and diagnosis value still remain unsatisfying in GC. Therefore, the present study aims to investigate the clinical, prognostic, and diagnostic significance of CD166 and HER-2 in different histological types of GC. MATERIALS AND METHODS Bioinformatic analysis was applied to determine the clinical importance of CD166 and HER-2 expression based on their tissue localization in primary GC tumors and the normal adjacent samples. The expression patterns, clinical significance, prognosis, and diagnosis value of CD166 and HER-2 proteins in tissue microarrays (TMAs) of 206 GC samples, including Signet Ring Cell (SRC) and intestinal types and also 28 adjacent normal tissues were evaluated using immunohistochemistry (IHC). RESULTS The results indicated that the expression of CD166 (membranous and cytoplasmic) and HER-2 were significantly up-regulated in tumor cells compared to adjacent normal tissues (P = 0.010, P < 0.001, and P = 0.011, respectively). A statistically significant association was detected between a high level of membranous expression of CD166 and lymphovascular invasion (P = 0.006); We also observed a statistically significant association between high cytoplasmic expression of CD166 protein and more invasion of the subserosa (P = 0.040) in the SRC type. In contrast, there was no correlation between the expression of HER-2 and clinicopathologic characteristics. Both CD166 and HER-2 showed reasonable accuracy and high specificity as diagnostic markers. CONCLUSION Our results confirmed that increased membranous and cytoplasmic expression of CD166 showed clinical significance in the SRC type and is associated with the progression of the disease and more aggressive tumor behaviors. These findings can be used to assist in designating subgroups of patients that require different follow-up strategies, and also, they might be utilized as the prognostic or diagnostic biomarkers in these types of GC for prospective clinical application.
Collapse
Affiliation(s)
- Leila Moradi
- Department of Pathology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Tajik
- Oncopathology Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Leili Saeednejad Zanjani
- Oncopathology Research Center, Iran University of Medical Sciences, Tehran, Iran
- Department of Pathology and Genomic Medicine, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, USA
| | - Mahshid Panahi
- Department of Pathology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Elmira Gheytanchi
- Oncopathology Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Zahra Sadat Biabanaki
- Faculty of Biological Sciences, Department of Genetics, Tarbiat Modares University, Tehran, Iran
| | - Golnaz Ensieh Kazemi-Sefat
- Faculty of Advanced Technologies in Medicine, Department of Molecular Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Farideh Hashemi
- Oncopathology Research Center, Iran University of Medical Sciences, Tehran, Iran
- Faculty of Advanced Technologies in Medicine, Department of Molecular Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Masoumeh Dehghan Manshadi
- Oncopathology Research Center, Iran University of Medical Sciences, Tehran, Iran
- Faculty of Advanced Technologies in Medicine, Department of Molecular Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Zahra Madjd
- Department of Pathology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
- Oncopathology Research Center, Iran University of Medical Sciences, Tehran, Iran.
- Faculty of Advanced Technologies in Medicine, Department of Molecular Medicine, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
9
|
Kim Y, Bae YJ, Kim JH, Kim H, Shin SJ, Jung DH, Park H. Wnt/β-catenin pathway is a key signaling pathway to trastuzumab resistance in gastric cancer cells. BMC Cancer 2023; 23:922. [PMID: 37773114 PMCID: PMC10542239 DOI: 10.1186/s12885-023-11447-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 09/25/2023] [Indexed: 09/30/2023] Open
Abstract
BACKGROUND Trastuzumab is the only approved target agent for the first-line treatment of human epidermal growth factor receptor-2 (HER-2) positive gastric cancer; however, trastuzumab resistance is a major problem in clinical practice. To comprehend the mechanism of trastuzumab resistance, we focused on the Wnt/β-catenin signaling pathway and its influence on the phenotypes and behavior of trastuzumab-resistant gastric cancer cells. METHODS Trastuzumab-resistant NCI-N87R cells were established in vitro from the human gastric cancer cell line NCI-N87 by dose-escalating repeated trastuzumab treatment. We investigated the phenotypes of NCI-N87R cells, including Wnt signaling pathway activity. Gastric cancer organoid cells were incubated with complete medium and Wnt3a-depletion medium, and their resistance to trastuzumab was compared. RESULTS NCI-N87R exhibited stemness and epithelial-mesenchymal transition (EMT)-like phenotypes, along with decreased levels of the epithelial marker E-cadherin and increased levels of the mesenchymal markers Vimentin and Snail along with an increased Wnt signaling pathway activity. When gastric cancer cells were incubated in Wnt3a-conditioned medium. Wnt signaling pathway activity and resistance to trastuzumab increased. Gastric cancer patient-derived organoids incubated in Wnt3a-depletion medium were more susceptible to dose-dependent inhibition of cell viability by trastuzumab than those incubated in complete medium. CONCLUSIONS Trastuzumab-resistant gastric cancer cells exhibited EMT-like phenotype, and trastuzumab resistance was promoted by the Wnt/β-catenin signaling pathway. The Wnt/β-catenin pathway is a key signaling pathway for trastuzumab resistance in gastric cancer cells.
Collapse
Affiliation(s)
- Yuna Kim
- Department of Internal Medicine, Division of Gastroenterology, Gangnam Severance Hospital, Yonsei University College of Medicine, 20, Eonju-ro 63-gil, Gangnam-gu, Seoul, 06229, Korea
| | - Yoo Jin Bae
- Department of Internal Medicine, Division of Gastroenterology, Gangnam Severance Hospital, Yonsei University College of Medicine, 20, Eonju-ro 63-gil, Gangnam-gu, Seoul, 06229, Korea
| | - Jie-Hyun Kim
- Department of Internal Medicine, Division of Gastroenterology, Gangnam Severance Hospital, Yonsei University College of Medicine, 20, Eonju-ro 63-gil, Gangnam-gu, Seoul, 06229, Korea.
| | - Hyunki Kim
- Department of Pathology, Yonsei University College of Medicine, Seoul, 03722, Korea
| | - Su-Jin Shin
- Department of Pathology, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, 06229, Korea
| | - Da Hyun Jung
- Department of Internal Medicine, Division of Gastroenterology, Yonsei University College of Medicine, Seoul, 03722, Korea
| | - Hyojin Park
- Department of Internal Medicine, Division of Gastroenterology, Gangnam Severance Hospital, Yonsei University College of Medicine, 20, Eonju-ro 63-gil, Gangnam-gu, Seoul, 06229, Korea
| |
Collapse
|
10
|
Swaminathan H, Saravanamurali K, Yadav SA. Extensive review on breast cancer its etiology, progression, prognostic markers, and treatment. Med Oncol 2023; 40:238. [PMID: 37442848 DOI: 10.1007/s12032-023-02111-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 06/30/2023] [Indexed: 07/15/2023]
Abstract
As the most frequent and vulnerable malignancy among women, breast cancer universally manifests a formidable healthcare challenge. From a biological and molecular perspective, it is a heterogenous disease and is stratified based on the etiological factors driving breast carcinogenesis. Notably, genetic predispositions and epigenetic impacts often constitute the heterogeneity of this disease. Typically, breast cancer is classified intrinsically into histological subtypes in clinical landscapes. These stratifications empower physicians to tailor precise treatments among the spectrum of breast cancer therapeutics. In this pursuit, numerous prognostic algorithms are extensively characterized, drastically changing how breast cancer is portrayed. Therefore, it is a basic requisite to comprehend the multidisciplinary rationales of breast cancer to assist the evolution of novel therapeutic strategies. This review aims at highlighting the molecular and genetic grounds of cancer additionally with therapeutic and phytotherapeutic context. Substantially, it also renders researchers with an insight into the breast cancer cell lines as a model paradigm for breast cancer research interventions.
Collapse
Affiliation(s)
- Harshini Swaminathan
- Department of Biotechnology, Karpagam Academy of Higher Education, Coimbatore, 641021, Tamil Nadu, India
| | - K Saravanamurali
- Virus Research and Diagnostics Laboratory, Department of Microbiology, Coimbatore Medical College, Coimbatore, India
| | - Sangilimuthu Alagar Yadav
- Department of Biotechnology, Karpagam Academy of Higher Education, Coimbatore, 641021, Tamil Nadu, India.
| |
Collapse
|
11
|
Gucin Z, Buyukpinarbasili N, Gecer MO, Ersoy YE, Turk HM, Yildiz S, Aksoy DO. Stem cell markers: A guide to neoadjuvant therapy in breast carcinomas. INDIAN J PATHOL MICR 2023; 66:495-501. [PMID: 37530329 DOI: 10.4103/ijpm.ijpm_1274_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/03/2023] Open
Abstract
Aim This study aims to investigate potential associations between the stem cell population and the degree of tumor regression in breast carcinomas treated with neoadjuvant therapy. Settings and Design The study included 92 patients with breast carcinoma who received neoadjuvant therapy. Tumor regression was defined based on Miller and Payne grading system. Patients with grade 1 or 2 regression on a 5-point scale were included in group 1 (n = 37), grade 3 regression in group 2 (n = 32), and grade 4 or 5 regression in group 3 (n = 23). Materials and Methods Immunohistochemical staining was performed on paraffin block sections of every case using CD44, CD24, CD29, CD133, ID4, and ALDH1 antibodies to detect stem cells. Statistical Analysis Used IBM Statistical Package for the Social Sciences (SPSS), version 23.0 (IBM Corp., Armonk, NY, USA) software was used for statistical analyses, and a P value less than 0.05 was considered statistically significant. Results Histologically high-grade tumors are more common in the near-complete/complete response group (P = 0.004). HER2-positive tumors were more common in the complete/near-complete response group (P = 0.054). Tumor cells positive for stem cell markers CD44 and CD24 were more common in the poor response group (P = 0.027 and P = 0.001, respectively). CD29 expression was reduced in the posttreatment residual tumor tissue in the near-complete/complete response group. Conclusion High CD44 and CD24 expression may be a predictor of poor response/nonresponse to neoadjuvant therapy in breast carcinomas. Background In recent years, stem cells have been defined as the main cell population responsible for resistance to anticancer therapies.
Collapse
Affiliation(s)
- Zuhal Gucin
- Department of Pathology, Faculty of Medicine, Bezmialem Vakif University, Istanbul, Turkey
| | - Nur Buyukpinarbasili
- Department of Ministry of Health, Cam Sakura City Hospital, Department of Pathology, Istanbul, Turkey
| | - Melin Ozgun Gecer
- Department of Pathology, Faculty of Medicine, Bezmialem Vakif University, Istanbul, Turkey
| | - Yeliz Emine Ersoy
- Department of General Surgery, Faculty of Medicine, Bezmialem Vakif University, Istanbul, Turkey
| | - Haci Mehmet Turk
- Department of Medical Oncology, Faculty of Medicine, Bezmialem Vakif University, Istanbul, Turkey
| | - Seyma Yildiz
- Department of Radiology, Faculty of Medicine, Bezmialem Vakif University, Istanbul, Turkey
| | - Direnc Ozlem Aksoy
- Department of Ministry of Health, Istanbul Training and Research Hospital, Department of Radiology, Istanbul, Turkey
| |
Collapse
|
12
|
Padmanabhan R, Kheraldine H, Gupta I, Meskin N, Hamad A, Vranic S, Al Moustafa AE. Quantification of the growth suppression of HER2+ breast cancer colonies under the effect of trastuzumab and PD-1/PD-L1 inhibitor. Front Oncol 2022; 12:977664. [PMID: 36568154 PMCID: PMC9769711 DOI: 10.3389/fonc.2022.977664] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 10/26/2022] [Indexed: 12/12/2022] Open
Abstract
Introduction Immune checkpoint blockade (ICB)-based therapy is revolutionizing cancer treatment by fostering successful immune surveillance and effector cell responses against various types of cancers. However, patients with HER2+ cancers are yet to benefit from this therapeutic strategy. Precisely, several questions regarding the right combination of drugs, drug modality, and effective dose recommendations pertaining to the use of ICB-based therapy for HER2+ patients remain unanswered. Methods In this study, we use a mathematical modeling-based approach to quantify the growth inhibition of HER2+ breast cancer (BC) cell colonies (ZR75) when treated with anti-HER2; trastuzumab (TZ) and anti-PD-1/PD-L1 (BMS-202) agents. Results and discussion Our data show that a combination therapy of TZ and BMS-202 can significantly reduce the viability of ZR75 cells and trigger several morphological changes. The combination decreased the cell's invasiveness along with altering several key pathways, such as Akt/mTor and ErbB2 compared to monotherapy. In addition, BMS-202 causes dose-dependent growth inhibition of HER2+ BC cell colonies alone, while this effect is significantly improved when used in combination with TZ. Based on the in-vitro monoculture experiments conducted, we argue that BMS-202 can cause tumor growth suppression not only by mediating immune response but also by interfering with the growth signaling pathways of HER2+BC. Nevertheless, further studies are imperative to substantiate this argument and to uncover the potential crosstalk between PD-1/PD-L1 inhibitors and HER2 growth signaling pathways in breast cancer.
Collapse
Affiliation(s)
| | - Hadeel Kheraldine
- College of Medicine, Qatar University (QU) Health, Qatar University, Doha, Qatar,Biomedical Research Centre, Qatar University, Doha, Qatar
| | - Ishita Gupta
- College of Medicine, Qatar University (QU) Health, Qatar University, Doha, Qatar,Biomedical Research Centre, Qatar University, Doha, Qatar
| | - Nader Meskin
- Department of Electrical Engineering, Qatar University, Doha, Qatar,*Correspondence: Nader Meskin, ; Ala-Eddin Al Moustafa,
| | - Anas Hamad
- Pharmaceutical Department at Hamad Medical Corporation, Hamad Medical Corporation, Doha, Qatar
| | - Semir Vranic
- College of Medicine, Qatar University (QU) Health, Qatar University, Doha, Qatar
| | - Ala-Eddin Al Moustafa
- College of Medicine, Qatar University (QU) Health, Qatar University, Doha, Qatar,Biomedical Research Centre, Qatar University, Doha, Qatar,*Correspondence: Nader Meskin, ; Ala-Eddin Al Moustafa,
| |
Collapse
|
13
|
Park S, Park JM, Park M, Ko D, Kim S, Seo J, Nam KD, Jung E, Farrand L, Kim YJ, Kim JY, Seo JH. β-Escin overcomes trastuzumab resistance in HER2-positive breast cancer by targeting cancer stem-like features. Cancer Cell Int 2022; 22:289. [PMID: 36127671 PMCID: PMC9490928 DOI: 10.1186/s12935-022-02713-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 09/09/2022] [Indexed: 11/15/2022] Open
Abstract
Background The emergence of de novo or intrinsic trastuzumab resistance is exceedingly high in breast cancer that is HER2 positive and correlates with an abundant cancer stem cell (CSC)-like population. We sought to examine the capacity of β-escin, an anti-inflammatory drug, to address trastuzumab resistance in HER2-positive breast cancer cells. Methods The effect of β-escin on trastuzumab-resistant and -sensitive cell lines in vitro was evaluated for apoptosis, expression of HER2 family members, and impact on CSC-like properties. An in vivo model of trastuzumab-resistant JIMT-1 was used to examine the efficacy and toxicity of β-escin. Results β-escin induced mitochondrial-mediated apoptosis accompanied by reactive oxygen species (ROS) production and increased active p18Bax fragmentation, leading to caspase-3/-7 activation. Attenuation of CSC-related features by β-escin challenge was accompanied by marked reductions in CD44high/CD24low stem-like cells and aldehyde dehydrogenase 1 (ALDH1) activity as well as hindrance of mammosphere formation. β-escin administration also significantly retarded tumor growth and angiogenesis in a trastuzumab-resistant JIMT-1 xenograft model via downregulation of CSC-associated markers and intracellular domain HER2. Importantly, β-escin selectively inhibited malignant cells and was less toxic to normal mammary cells, and no toxic effects were found in liver and kidney function in animals. Conclusions Taken together, our findings highlight β-escin as a promising candidate for the treatment of trastuzumab-resistant HER2-positive breast cancers. Supplementary Information The online version contains supplementary material available at 10.1186/s12935-022-02713-9.
Collapse
Affiliation(s)
- Soeun Park
- Division of Medical Oncology, Department of Internal Medicine, Korea University College of Medicine, Korea University, Seoul, 02841, Republic of Korea.,Brain Korea 21 Program for Biomedical Science, Korea University College of Medicine, Korea University, Seoul, 02841, Republic of Korea.,Department of Biomedical Research Center, Korea University Guro Hospital, Korea University, 97 Gurodong-gil, Guro-gu, Seoul, 08308, Republic of Korea
| | - Jung Min Park
- Division of Medical Oncology, Department of Internal Medicine, Korea University College of Medicine, Korea University, Seoul, 02841, Republic of Korea.,Brain Korea 21 Program for Biomedical Science, Korea University College of Medicine, Korea University, Seoul, 02841, Republic of Korea.,Department of Biomedical Research Center, Korea University Guro Hospital, Korea University, 97 Gurodong-gil, Guro-gu, Seoul, 08308, Republic of Korea
| | - Minsu Park
- Division of Medical Oncology, Department of Internal Medicine, Korea University College of Medicine, Korea University, Seoul, 02841, Republic of Korea.,Brain Korea 21 Program for Biomedical Science, Korea University College of Medicine, Korea University, Seoul, 02841, Republic of Korea.,Department of Biomedical Research Center, Korea University Guro Hospital, Korea University, 97 Gurodong-gil, Guro-gu, Seoul, 08308, Republic of Korea
| | - Dongmi Ko
- Division of Medical Oncology, Department of Internal Medicine, Korea University College of Medicine, Korea University, Seoul, 02841, Republic of Korea.,Brain Korea 21 Program for Biomedical Science, Korea University College of Medicine, Korea University, Seoul, 02841, Republic of Korea.,Department of Biomedical Research Center, Korea University Guro Hospital, Korea University, 97 Gurodong-gil, Guro-gu, Seoul, 08308, Republic of Korea
| | - Seongjae Kim
- Division of Medical Oncology, Department of Internal Medicine, Korea University College of Medicine, Korea University, Seoul, 02841, Republic of Korea.,Brain Korea 21 Program for Biomedical Science, Korea University College of Medicine, Korea University, Seoul, 02841, Republic of Korea.,Department of Biomedical Research Center, Korea University Guro Hospital, Korea University, 97 Gurodong-gil, Guro-gu, Seoul, 08308, Republic of Korea
| | - Juyeon Seo
- Division of Medical Oncology, Department of Internal Medicine, Korea University College of Medicine, Korea University, Seoul, 02841, Republic of Korea.,Brain Korea 21 Program for Biomedical Science, Korea University College of Medicine, Korea University, Seoul, 02841, Republic of Korea.,Department of Biomedical Research Center, Korea University Guro Hospital, Korea University, 97 Gurodong-gil, Guro-gu, Seoul, 08308, Republic of Korea
| | - Kee Dal Nam
- Division of Medical Oncology, Department of Internal Medicine, Korea University College of Medicine, Korea University, Seoul, 02841, Republic of Korea.,Department of Biomedical Research Center, Korea University Guro Hospital, Korea University, 97 Gurodong-gil, Guro-gu, Seoul, 08308, Republic of Korea
| | - Eunsun Jung
- Division of Medical Oncology, Department of Internal Medicine, Korea University College of Medicine, Korea University, Seoul, 02841, Republic of Korea.,Department of Biomedical Research Center, Korea University Guro Hospital, Korea University, 97 Gurodong-gil, Guro-gu, Seoul, 08308, Republic of Korea
| | - Lee Farrand
- Adelaide Medical School, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, South Australia, 5000, Australia
| | - Yoon-Jae Kim
- Division of Medical Oncology, Department of Internal Medicine, Korea University College of Medicine, Korea University, Seoul, 02841, Republic of Korea. .,Brain Korea 21 Program for Biomedical Science, Korea University College of Medicine, Korea University, Seoul, 02841, Republic of Korea. .,Department of Biomedical Research Center, Korea University Guro Hospital, Korea University, 97 Gurodong-gil, Guro-gu, Seoul, 08308, Republic of Korea.
| | - Ji Young Kim
- Division of Medical Oncology, Department of Internal Medicine, Korea University College of Medicine, Korea University, Seoul, 02841, Republic of Korea. .,Department of Biomedical Research Center, Korea University Guro Hospital, Korea University, 97 Gurodong-gil, Guro-gu, Seoul, 08308, Republic of Korea.
| | - Jae Hong Seo
- Division of Medical Oncology, Department of Internal Medicine, Korea University College of Medicine, Korea University, Seoul, 02841, Republic of Korea. .,Brain Korea 21 Program for Biomedical Science, Korea University College of Medicine, Korea University, Seoul, 02841, Republic of Korea. .,Department of Biomedical Research Center, Korea University Guro Hospital, Korea University, 97 Gurodong-gil, Guro-gu, Seoul, 08308, Republic of Korea.
| |
Collapse
|
14
|
Singh AK, Batra A, Upadhaya AD, Gupta S, K P H, Dey S. Circulatory Level of Inflammatory Cytoskeleton Signaling Regime Proteins in Cancer Invasion and Metastasis. Front Oncol 2022; 12:851807. [PMID: 35875090 PMCID: PMC9300851 DOI: 10.3389/fonc.2022.851807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 06/07/2022] [Indexed: 11/23/2022] Open
Abstract
Early detection of metastatic breast cancer (MBC) is a serious issue for the healthcare system. It is essential to develop potential non-invasive, low-cost molecular biomarkers. The present study explored specific serum proteins of inflammatory, MAPK, and cytoskeletal signaling pathways involved in the progression of MBC to establish a panel of blood-based diagnostic and prognostic biomarkers. Healthy-control (HC), non-metastatic (NM), and metastatic (M) (pre- and post-therapy) breast cancer (BC) patients were recruited. LOX5, Rac1, Rac1b, p38α, phospho-p38α (Y182), LIMK1, phospho-LIMK1 (T508), cofilin1, and phospho-cofilin1 (S3) were quantified in the serum of the study group by real-time label-free surface plasmon resonance technology and verified by Western blot. Proteins were found to be significantly elevated in the serum of BC patients compared to HC and also higher in M compared to NM, which further downregulated in post-therapy M patients. Elevation of phospho-LIMK1 and phospho-cofilin1, which are critical for M, was also indicated in the serum level and can differentiate from NM. Receiver operating characteristics (ROC) derived area under the curve (AUC) (0.9) is very strong to differentiate between HC and BC. Moreover, the combined ROC of 3 molecules phospho-LIMK, p38α, and phospho-p38α were found to be a potent predictive panel of biomarkers between M and NM with AUC0.95. The panel of inflammatory cytoskeleton signaling regime proteins specified in this study can have significant clinical utility for diagnosis as well as prognosis of MBC at an early stage. The study may have a high translational value in a simple and cost-effective way by avoiding frequent CT/PET scans.
Collapse
Affiliation(s)
- Abhinay Kumar Singh
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi, India
| | - Atul Batra
- Medical Oncology, All India Institute of Medical Sciences, New Delhi, India
| | | | - Subhash Gupta
- Biostatistics, All India Institute of Medical Sciences, New Delhi, India
| | - Haresh K P
- Biostatistics, All India Institute of Medical Sciences, New Delhi, India
| | - Sharmistha Dey
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi, India
| |
Collapse
|
15
|
Poodineh J, Sirati-Sabet M, Rajabibazl M, Ghasemian M, Mohammadi-Yeganeh S. Downregulation of NRARP exerts anti-tumor activities in the breast tumor cells depending on Wnt/ꞵ-catenin mediated signals; the role of miR-130a-3p. Chem Biol Drug Des 2022; 100:334-345. [PMID: 35797350 DOI: 10.1111/cbdd.14113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 06/12/2022] [Accepted: 07/03/2022] [Indexed: 12/01/2022]
Abstract
OBJECTIVES The Notch-regulated ankyrin repeat protein (NRARP) functions as a molecular link between Notch and Wnt signaling pathways. Although it has recently been identified to be overexpressed in breast cancer (BC), the molecular mechanisms that regulate NRARP remain unknown. Since microRNAs (miRNAs) regulate gene expression post-transcriptionally, miRNA dysregulation could explain the abnormal gene expression. Here, we identified miR-130a-3p as an NRARP regulator and evaluated its effects on the behavior of BC cells. METHODS Quantitative real-time PCR (qRT-PCR) was performed to assess the transcriptional levels of miR-130a-3p and NRARP in BC cells. Next, miR-130a-3p was transiently transfected into BC cells to assess its influence on NRARP expression. Owing to the positive regulatory effects of NRARP on the Wnt/β-catenin signaling pathway, we also analyzed the expression levels of five Wnt/β-catenin pathway genes and one downstream target gene in BC cells. We then assessed anti-tumor activities of miR-130a-3p in BC cells using the MTT proliferation assay, the soft agar colony formation assay for anchorage-independent growth (AIG), as well as scratch and transwell assays for cell migration. RESULTS miR-130a-3p was found to be downregulated in BC cells, whereas NRARP was upregulated. Overexpression of miR-130a-3p inhibited the expression of NRARP and some Wnt/β-catenin signaling pathway genes, as well as exerted anti-tumor effects as evidenced by decreased cell proliferation, AIG, and migration of BC cells. CONCLUSION In conclusion, the tumor suppressive function of miR-130a-3p in BC may be mediated by inhibiting NRARP and Wnt/β-catenin signaling pathway. As a result, miR-130a-3p could be introduced as a therapeutic target for miRNA therapy in BC.
Collapse
Affiliation(s)
- Jafar Poodineh
- Department of Clinical Biochemistry, School of Medicine, Zabol University of Medical Sciences, Zabol, Iran
| | - Majid Sirati-Sabet
- Department of Clinical Biochemistry, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Masoumeh Rajabibazl
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Majid Ghasemian
- Department of Clinical Biochemistry, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Samira Mohammadi-Yeganeh
- Medical Nanotechnology and Tissue Engineering Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
16
|
Wang L, Jin Z, Master RP, Maharjan CK, Carelock ME, Reccoppa TBA, Kim MC, Kolb R, Zhang W. Breast Cancer Stem Cells: Signaling Pathways, Cellular Interactions, and Therapeutic Implications. Cancers (Basel) 2022; 14:3287. [PMID: 35805056 PMCID: PMC9265870 DOI: 10.3390/cancers14133287] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 07/02/2022] [Accepted: 07/02/2022] [Indexed: 02/01/2023] Open
Abstract
Breast cancer stem cells (BCSCs) constitute a small population of cells within breast cancer and are characterized by their ability to self-renew, differentiate, and recapitulate the heterogeneity of the tumor. Clinically, BCSCs have been correlated with cancer progression, metastasis, relapse, and drug resistance. The tumorigenic roles of BCSCs have been extensively reviewed and will not be the major focus of the current review. Here, we aim to highlight how the crucial intrinsic signaling pathways regulate the fate of BCSCs, including the Wnt, Notch, Hedgehog, and NF-κB signaling pathways, as well as how different cell populations crosstalk with BCSCs within the TME, including adipocytes, endothelial cells, fibroblasts, and immune cells. Based on the molecular and cellular activities of BCSCs, we will also summarize the targeting strategies for BCSCs and related clinical trials. This review will highlight that BCSC development in breast cancer is impacted by both BCSC endogenous signaling and external factors in the TME, which provides an insight into how to establish a comprehensively therapeutic strategy to target BCSCs for breast cancer treatments.
Collapse
Affiliation(s)
- Lei Wang
- Department of Pathology, Immunology and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, FL 32610, USA; (L.W.); (Z.J.); (R.P.M.); (C.K.M.); (M.E.C.); (T.B.A.R.); (M.-C.K.); (R.K.)
- Immunology Concentration, Biomedical Graduate Program, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Zeng Jin
- Department of Pathology, Immunology and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, FL 32610, USA; (L.W.); (Z.J.); (R.P.M.); (C.K.M.); (M.E.C.); (T.B.A.R.); (M.-C.K.); (R.K.)
- Cancer Biology Concentration, Biomedical Graduate Program, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Rohan P. Master
- Department of Pathology, Immunology and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, FL 32610, USA; (L.W.); (Z.J.); (R.P.M.); (C.K.M.); (M.E.C.); (T.B.A.R.); (M.-C.K.); (R.K.)
| | - Chandra K. Maharjan
- Department of Pathology, Immunology and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, FL 32610, USA; (L.W.); (Z.J.); (R.P.M.); (C.K.M.); (M.E.C.); (T.B.A.R.); (M.-C.K.); (R.K.)
| | - Madison E. Carelock
- Department of Pathology, Immunology and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, FL 32610, USA; (L.W.); (Z.J.); (R.P.M.); (C.K.M.); (M.E.C.); (T.B.A.R.); (M.-C.K.); (R.K.)
- Cancer Biology Concentration, Biomedical Graduate Program, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Tiffany B. A. Reccoppa
- Department of Pathology, Immunology and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, FL 32610, USA; (L.W.); (Z.J.); (R.P.M.); (C.K.M.); (M.E.C.); (T.B.A.R.); (M.-C.K.); (R.K.)
- Department of Biology, College of Liberal Arts & Sciences, University of Florida, Gainesville, FL 32610, USA
| | - Myung-Chul Kim
- Department of Pathology, Immunology and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, FL 32610, USA; (L.W.); (Z.J.); (R.P.M.); (C.K.M.); (M.E.C.); (T.B.A.R.); (M.-C.K.); (R.K.)
| | - Ryan Kolb
- Department of Pathology, Immunology and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, FL 32610, USA; (L.W.); (Z.J.); (R.P.M.); (C.K.M.); (M.E.C.); (T.B.A.R.); (M.-C.K.); (R.K.)
- UF Health Cancer Center, University of Florida, Gainesville, FL 32610, USA
| | - Weizhou Zhang
- Department of Pathology, Immunology and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, FL 32610, USA; (L.W.); (Z.J.); (R.P.M.); (C.K.M.); (M.E.C.); (T.B.A.R.); (M.-C.K.); (R.K.)
- UF Health Cancer Center, University of Florida, Gainesville, FL 32610, USA
| |
Collapse
|
17
|
Chen Z, Feng R, Kahlert UD, Chen Z, Torres-Dela Roche LA, Soliman A, Miao C, De Wilde RL, Shi W. Construction of ceRNA Networks Associated With CD8 T Cells in Breast Cancer. Front Oncol 2022; 12:883197. [PMID: 35756601 PMCID: PMC9219915 DOI: 10.3389/fonc.2022.883197] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 04/12/2022] [Indexed: 12/13/2022] Open
Abstract
Background The infiltration of CD8 T cells is usually linked to a favorable prognosis and may predict the therapeutic response of breast cancer patients to immunotherapy. The purpose of this research is to investigate the competing endogenous RNA (ceRNA) network correlated with the infiltration of CD8 T cells. Methods Based on expression profiles, CD8 T cell abundances for each breast cancer (BC) patient were inferred using the bioinformatic method by immune markers and expression profiles. We were able to extract the differentially expressed RNAs (DEmRNAs, DEmiRNAs, and DElncRNAs) between low and high CD8 T-cell samples. The ceRNA network was constructed using Cytoscape. Machine learning models were built by lncRNAs to predict CD8 T-cell abundances. The lncRNAs were used to develop a prognostic model that could predict the survival rates of BC patients. The expression of selected lncRNA (XIST) was validated by quantitative real-time PCR (qRT-PCR). Results A total of 1,599 DElncRNAs, 89 DEmiRNAs, and 1,794 DEmRNAs between high and low CD8 T-cell groups were obtained. Two ceRNA networks that have positive or negative correlations with CD8 T cells were built. Among the two ceRNA networks, nine lncRNAs (MIR29B2CHG, NEAT1, MALAT1, LINC00943, LINC01146, AC092718.4, AC005332.4, NORAD, and XIST) were selected for model construction. Among six prevalent machine learning models, artificial neural networks performed best, with an area under the curve (AUC) of 0.855. Patients from the high-risk category with BC had a lower survival rate compared to those from the low-risk group. The qRT-PCR results revealed significantly reduced XIST expression in normal breast samples, which was consistent with our integrated analysis. Conclusion These results potentially provide insights into the ceRNA networks linked with T-cell infiltration and provide accurate models for T-cell prediction.
Collapse
Affiliation(s)
- Zhilin Chen
- Department of Breast and Thoracic Oncological Surgery, The First Affiliated Hospital of Hainan Medical University, Haikou, China.,University Hospital for Gynecology, Pius-Hospital, University Medicine Oldenburg, Oldenburg, Germany
| | - Ruifa Feng
- Breast Center of The Second Affiliated Hospital of Guilin Medical University, Guilin, China
| | - Ulf Dietrich Kahlert
- Molecular and Experimental Surgery, University Clinic for General-, Visceral- and Vascular Surgery, University Medicine Magdeburg and Otto-von Guericke University, Magdeburg, Germany
| | - Zhitong Chen
- University Hospital for Gynecology, Pius-Hospital, University Medicine Oldenburg, Oldenburg, Germany
| | | | - Amr Soliman
- University Hospital for Gynecology, Pius-Hospital, University Medicine Oldenburg, Oldenburg, Germany
| | - Chen Miao
- Department of Pathology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Rudy Leon De Wilde
- University Hospital for Gynecology, Pius-Hospital, University Medicine Oldenburg, Oldenburg, Germany
| | - Wenjie Shi
- University Hospital for Gynecology, Pius-Hospital, University Medicine Oldenburg, Oldenburg, Germany.,Molecular and Experimental Surgery, University Clinic for General-, Visceral- and Vascular Surgery, University Medicine Magdeburg and Otto-von Guericke University, Magdeburg, Germany
| |
Collapse
|
18
|
Wei J, Hui AM. The paradigm shift in treatment from Covid-19 to oncology with mRNA vaccines. Cancer Treat Rev 2022; 107:102405. [PMID: 35576777 PMCID: PMC9068246 DOI: 10.1016/j.ctrv.2022.102405] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Revised: 04/25/2022] [Accepted: 04/29/2022] [Indexed: 02/08/2023]
Abstract
mRNA vaccines have gained popularity over the last decade as a versatile tool for developing novel therapeutics. The recent success of coronavirus disease (COVID-19) mRNA vaccine has unlocked the potential of mRNA technology as a powerful therapeutic platform. In this review, we apprise the literature on the various types of cancer vaccines, the novel platforms available for delivery of the vaccines, the recent progress in the RNA-based therapies and the evolving role of mRNA vaccines for various cancer indications, along with a future strategy to treat the patients. Literature reveals that despite multifaceted challenges in the development of mRNA vaccines, the promising and durable efficacy of the RNA in pre-clinical and clinical studies deserves consideration. The introduction of mRNA-transfected DC vaccine is an approach that has gained interest for cancer vaccine development due to its ability to circumvent the necessity of DC isolation, ex vivo cultivation and re-infusion. The selection of appropriate antigen of interest remains one of the major challenges for cancer vaccine development. The rapid development and large-scale production of mRNA platform has enabled for the development of both personalized vaccines (mRNA 4157, mRNA 4650 and RO7198457) and tetravalent vaccines (BNT111 and mRNA-5671). In addition, mRNA vaccines combined with checkpoint modulators and other novel medications that reverse immunosuppression show promise, however further research is needed to discover which combinations are most successful and the best dosing schedule for each component. Each delivery route (intradermal, subcutaneous, intra tumoral, intranodal, intranasal, intravenous) has its own set of challenges to overcome, and these challenges will decide the best delivery method. In other words, while developing a vaccine design, the underlying motivation should be a reasonable combination of delivery route and format. Exploring various administration routes and delivery route systems has boosted the development of mRNA vaccines.
Collapse
Affiliation(s)
- Jiao Wei
- Shanghai Fosun Pharmaceutical Industrial Development, Co., Ltd., 1289 Yishan Road, Shanghai 200233, China; Fosun Pharma USA Inc, 91 Hartwell Avenue, Suite 305, Lexington, MA 02421, USA
| | - Ai-Min Hui
- Shanghai Fosun Pharmaceutical Industrial Development, Co., Ltd., 1289 Yishan Road, Shanghai 200233, China; Fosun Pharma USA Inc, 91 Hartwell Avenue, Suite 305, Lexington, MA 02421, USA.
| |
Collapse
|
19
|
Abreu de Oliveira WA, El Laithy Y, Bruna A, Annibali D, Lluis F. Wnt Signaling in the Breast: From Development to Disease. Front Cell Dev Biol 2022; 10:884467. [PMID: 35663403 PMCID: PMC9157790 DOI: 10.3389/fcell.2022.884467] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Accepted: 04/22/2022] [Indexed: 12/11/2022] Open
Abstract
The Wnt cascade is a primordial developmental signaling pathway that plays a myriad of essential functions throughout development and adult homeostasis in virtually all animal species. Aberrant Wnt activity is implicated in embryonic and tissue morphogenesis defects, and several diseases, most notably cancer. The role of Wnt signaling in mammary gland development and breast cancer initiation, maintenance, and progression is far from being completely understood and is rather shrouded in controversy. In this review, we dissect the fundamental role of Wnt signaling in mammary gland development and adult homeostasis and explore how defects in its tightly regulated and intricated molecular network are interlinked with cancer, with a focus on the breast.
Collapse
Affiliation(s)
- Willy Antoni Abreu de Oliveira
- Department of Development and Regeneration, Stem Cell Institute, Katholieke Universiteit (KU) Leuven, Leuven, Belgium
- *Correspondence: Willy Antoni Abreu de Oliveira, ; Frederic Lluis,
| | - Youssef El Laithy
- Department of Development and Regeneration, Stem Cell Institute, Katholieke Universiteit (KU) Leuven, Leuven, Belgium
| | - Alejandra Bruna
- Centre for Paediatric Oncology Experimental Medicine, Centre for Cancer Evolution, Molecular Pathology Division, London, United Kingdom
| | - Daniela Annibali
- Department of Oncology, Gynecological Oncology Laboratory, Leuven Cancer Institute (LKI), KU Leuven, Leuven, Belgium
- Division of Oncogenomics, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, Netherlands
| | - Frederic Lluis
- Department of Development and Regeneration, Stem Cell Institute, Katholieke Universiteit (KU) Leuven, Leuven, Belgium
- *Correspondence: Willy Antoni Abreu de Oliveira, ; Frederic Lluis,
| |
Collapse
|
20
|
Yin C, Cao Y, Sun P, Zhang H, Li Z, Xu Y, Sun H. Molecular Subtyping of Cancer Based on Robust Graph Neural Network and Multi-Omics Data Integration. Front Genet 2022; 13:884028. [PMID: 35646077 PMCID: PMC9137453 DOI: 10.3389/fgene.2022.884028] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 03/31/2022] [Indexed: 11/13/2022] Open
Abstract
Accurate molecular subtypes prediction of cancer patients is significant for personalized cancer diagnosis and treatments. Large amount of multi-omics data and the advancement of data-driven methods are expected to facilitate molecular subtyping of cancer. Most existing machine learning–based methods usually classify samples according to single omics data, fail to integrate multi-omics data to learn comprehensive representations of the samples, and ignore that information transfer and aggregation among samples can better represent them and ultimately help in classification. We propose a novel framework named multi-omics graph convolutional network (M-GCN) for molecular subtyping based on robust graph convolutional networks integrating multi-omics data. We first apply the Hilbert–Schmidt independence criterion least absolute shrinkage and selection operator (HSIC Lasso) to select the molecular subtype-related transcriptomic features and then construct a sample–sample similarity graph with low noise by using these features. Next, we take the selected gene expression, single nucleotide variants (SNV), and copy number variation (CNV) data as input and learn the multi-view representations of samples. On this basis, a robust variant of graph convolutional network (GCN) model is finally developed to obtain samples’ new representations by aggregating their subgraphs. Experimental results of breast and stomach cancer demonstrate that the classification performance of M-GCN is superior to other existing methods. Moreover, the identified subtype-specific biomarkers are highly consistent with current clinical understanding and promising to assist accurate diagnosis and targeted drug development.
Collapse
Affiliation(s)
- Chaoyi Yin
- School of Artificial Intelligence, Jilin University, Changchun, China
| | - Yangkun Cao
- School of Artificial Intelligence, Jilin University, Changchun, China
| | - Peishuo Sun
- School of Artificial Intelligence, Jilin University, Changchun, China
| | - Hengyuan Zhang
- School of Artificial Intelligence, Jilin University, Changchun, China
| | - Zhi Li
- Department of Medical Oncology, the First Hospital of China Medical University, Shenyang, China
- *Correspondence: Zhi Li, ; Huiyan Sun,
| | - Ying Xu
- Computational Systems Biology Lab, Department of Biochemistry and Molecular Biology and Institute of Bioinformatics, University of Georgia, Athens, GA, United States
| | - Huiyan Sun
- School of Artificial Intelligence, Jilin University, Changchun, China
- *Correspondence: Zhi Li, ; Huiyan Sun,
| |
Collapse
|
21
|
The C-terminal HSP90 inhibitor NCT-58 kills trastuzumab-resistant breast cancer stem-like cells. Cell Death Dis 2021; 7:354. [PMID: 34775489 PMCID: PMC8590693 DOI: 10.1038/s41420-021-00743-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 10/18/2021] [Accepted: 10/21/2021] [Indexed: 12/12/2022]
Abstract
N-terminal HSP90 inhibitors in development have had issues arising from heat shock response (HSR) induction and off-target effects. We sought to investigate the capacity of NCT-58, a rationally-synthesized C-terminal HSP90 inhibitor, to kill trastuzumab-resistant HER2-positive breast cancer stem-like cells. NCT-58 does not induce the HSR due to its targeting of the C-terminal region and elicits anti-tumor activity via the simultaneous downregulation of HER family members as well as inhibition of Akt phosphorylation. NCT-58 kills the rapidly proliferating bulk tumor cells as well as the breast cancer stem-like population, coinciding with significant reductions in stem/progenitor markers and pluripotent transcription factors. NCT-58 treatment suppressed growth and angiogenesis in a trastuzumab-resistant xenograft model, concomitant with downregulation of ICD-HER2 and HSF-1/HSP70/HSP90. These findings warrant further investigation of NCT-58 to address trastuzumab resistance in heterogeneous HER2-positive cancers.
Collapse
|
22
|
Kaboli PJ, Imani S, Jomhori M, Ling KH. Chemoresistance in breast cancer: PI3K/Akt pathway inhibitors vs the current chemotherapy. Am J Cancer Res 2021; 11:5155-5183. [PMID: 34765318 PMCID: PMC8569340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Accepted: 06/12/2021] [Indexed: 06/13/2023] Open
Abstract
Breast cancer is the most prevalent type of cancer among women. Several types of drugs, targeting the specific proteins expressed on the breast cancer cell surface (such as receptor tyrosine kinases and immune checkpoint regulators) and proteins involved in cell cycle and motility (including cyclin-dependent kinases, DNA stabilisers, and cytoskeleton modulators) are approved for different subtypes of breast cancer. However, breast cancer also has a poor response to conventional chemotherapy due to intrinsic and acquired resistance, and an Akt fingerprint is detectable in most drug-resistant cases. Overactivation of Akt and its upstream and downstream regulators in resistant breast cancer cells is considered a major potential target for novel anti-cancer therapies, suggesting that Akt signalling acts as a cellular mechanism against chemotherapy. The present review has shown that sustained activation of Akt results in resistance to different types of chemotherapy. Akt signalling plays a cellular defence role against chemotherapy and (1) enhances multi-drug resistance, (2) increases reactive oxygen species at breast tumor microenvironment, (3) enhances anaerobic metabolism, (4) inhibits the tricarboxylic cycle, (5) promotes PD-L1 upregulation, (6) inhibits apoptosis, (7) increases glucose uptake, and more importantly (8) recruits and interconnects the plasma membrane, nucleus, endoplasmic reticulum, and mitochondria to hijack breast cancer cells and rescue these cells from chemotherapy. Therefore, Akt signalling is considered a cellular defence mechanism employed against chemotherapeutic effects. In addition, interfering roles of PI3K/Akt signalling on the current cytotoxic and molecularly targeted therapy as well as immunotherapy of breast cancer are discussed with a clinical approach. Although, alpelisib, a PIK3CA inhibitor, is the only PI3K/Akt pathway inhibitor approved for breast cancer, we also highlight well-evaluated inhibitors of PI3K/Akt signalling based on different subtypes of breast cancer, which are under clinical trials whether as monotherapy or in combination with other types of chemotherapy.
Collapse
Affiliation(s)
- Parham Jabbarzadeh Kaboli
- Graduate Institute of Biomedical Sciences, Research Center for Cancer Biology, and Center for Molecular Medicine, China Medical UniversityTaichung 404, Taiwan
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra MalaysiaSerdang, Selangor 43400, Malaysia
| | - Saber Imani
- Department of Oncology, The Affiliated Hospital of Southwest Medical UniversityLuzhou, Sichuan 646000, P. R. China
| | - Masume Jomhori
- Department of Biotechnology Research, Razi Vaccine and Serum Research InstituteMashhad, Iran
| | - King-Hwa Ling
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra MalaysiaSerdang, Selangor 43400, Malaysia
- Department of Genetics, Harvard Medical SchoolBoston, MA 02115, USA
| |
Collapse
|
23
|
Pupa SM, Ligorio F, Cancila V, Franceschini A, Tripodo C, Vernieri C, Castagnoli L. HER2 Signaling and Breast Cancer Stem Cells: The Bridge behind HER2-Positive Breast Cancer Aggressiveness and Therapy Refractoriness. Cancers (Basel) 2021; 13:cancers13194778. [PMID: 34638263 PMCID: PMC8507865 DOI: 10.3390/cancers13194778] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 09/15/2021] [Accepted: 09/20/2021] [Indexed: 12/22/2022] Open
Abstract
Simple Summary Breast cancer (BC) is not a single disease, but a group of different tumors, and altered HER2 expression defines a particularly aggressive subtype. Although HER2 pharmacological inhibition has dramatically improved the prognosis of HER2-positive BC patients, there is still an urgent need for improved knowledge of HER2 biology and mechanisms underlying HER2-driven aggressiveness and drug susceptibility. Emerging data suggest that the clinical efficacy of molecularly targeted therapies is related to their ability to target breast cancer stem cells (BCSCs), a population that is not only self-sustaining and able to differentiate into distinct lineages, but also contributes to tumor growth, aggressiveness, metastasis and treatment resistance. The aim of this review is to provide an overview of how the full-length HER2 receptor, the d16HER2 splice variant and the truncated p95HER2 variants are involved in the regulation and maintenance of BCSCs. Abstract HER2 overexpression/amplification occurs in 15–20% of breast cancers (BCs) and identifies a highly aggressive BC subtype. Recent clinical progress has increased the cure rates of limited-stage HER2-positive BC and significantly prolonged overall survival in patients with advanced disease; however, drug resistance and tumor recurrence remain major concerns. Therefore, there is an urgent need to increase knowledge regarding HER2 biology and implement available treatments. Cancer stem cells (CSCs) represent a subset of malignant cells capable of unlimited self-renewal and differentiation and are mainly considered to contribute to tumor onset, aggressiveness, metastasis, and treatment resistance. Seminal studies have highlighted the key role of altered HER2 signaling in the maintenance/enrichment of breast CSCs (BCSCs) and elucidated its bidirectional communication with stemness-related pathways, such as the Notch and Wingless/β-catenin cascades. d16HER2, a splice variant of full-length HER2 mRNA, has been identified as one of the most oncogenic HER2 isoform significantly implicated in tumorigenesis, epithelial-mesenchymal transition (EMT)/stemness and the response to targeted therapy. In addition, expression of a heterogeneous collection of HER2 truncated carboxy-terminal fragments (CTFs), collectively known as p95HER2, identifies a peculiar subgroup of HER2-positive BC with poor prognosis, with the p95HER2 variants being able to regulate CSC features. This review provides a comprehensive overview of the current evidence regarding HER2-/d16HER2-/p95HER2-positive BCSCs in the context of the signaling pathways governing their properties and describes the future prospects for targeting these components to achieve long-lasting tumor control.
Collapse
Affiliation(s)
- Serenella M. Pupa
- Molecular Targeting Unit, Department of Research, Fondazione IRCCS Istituto Nazionale dei Tumori, AmadeoLab, Via Amadeo 42, 20133 Milan, Italy; (A.F.); (L.C.)
- Correspondence: ; Tel.: +39-022-390-2573; Fax: +39-022-390-2692
| | - Francesca Ligorio
- Medical Oncology Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Venezian 1, 20133 Milan, Italy; (F.L.); or (C.V.)
| | - Valeria Cancila
- Tumor Immunology Unit, University of Palermo, Corso Tukory 211, 90134 Palermo, Italy; (V.C.); (C.T.)
| | - Alma Franceschini
- Molecular Targeting Unit, Department of Research, Fondazione IRCCS Istituto Nazionale dei Tumori, AmadeoLab, Via Amadeo 42, 20133 Milan, Italy; (A.F.); (L.C.)
| | - Claudio Tripodo
- Tumor Immunology Unit, University of Palermo, Corso Tukory 211, 90134 Palermo, Italy; (V.C.); (C.T.)
| | - Claudio Vernieri
- Medical Oncology Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Venezian 1, 20133 Milan, Italy; (F.L.); or (C.V.)
- IFOM the FIRC Institute of Molecular Oncology, Via Adamello 16, 20139 Milan, Italy
| | - Lorenzo Castagnoli
- Molecular Targeting Unit, Department of Research, Fondazione IRCCS Istituto Nazionale dei Tumori, AmadeoLab, Via Amadeo 42, 20133 Milan, Italy; (A.F.); (L.C.)
| |
Collapse
|
24
|
Molecular epigenetic dynamics in breast carcinogenesis. Arch Pharm Res 2021; 44:741-763. [PMID: 34392501 DOI: 10.1007/s12272-021-01348-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Accepted: 08/03/2021] [Indexed: 12/12/2022]
Abstract
Breast cancer has become one of the most common dreadful diseases that target women across the globe. The most obvious reasons we associate with it are either genetic mutations or dysregulation of pathways. However, there is yet another domain that has a significant role in influencing the genetic mutations and pathways. Epigenetic mechanisms influence these pathways either independently or in association with genetic mutations, thereby expediting the process of breast carcinogenesis. Breast cancer is governed by various transduction pathways such as PI3K/AKT/mTOR, NOTCH, β Catenin, NF-kB, Hedgehog, etc. There are many proteins as well that serve to be tumor suppressors but somehow lose their ability to function. This may be because of either genetic mutation or a process that represses their function. Apart from these, there are a lot of individual factors like puberty, breastfeeding, abortion, parity, circadian rhythm, alcohol consumption, pollutants, and obesity that drive these mutations and hence alter the pathways. Epigenetic mechanisms like DNA methylation, histone modifications, and lncRNAs directly or indirectly bring alterations in the proteins that are involved in the pathways. They do this by either promoting the transcription of genes or by repressing it at the ground genetic level that advances breast carcinogenesis. Epigenetics precedes genetic mutation in driving carcinogenesis and so, it needs to be explored further to diversify the possibilities of target specific treatments. In this review, the general role of DNA methylation, histone modification, and lncRNAs in breast cancer and their role in influencing the oncogenic signaling pathways along with the various factors governing them have been discussed for a better understanding of the role of epigenetics in breast carcinogenesis.
Collapse
|
25
|
Kirtishanti A, Siswodihardjo S, Sudiana IK, Suprabawati DGA, Dinaryanti A. Inhibition of Ras and STAT3 activity of 4-( tert-butyl)- N-carbamoylbenzamide as antiproliferative agent in HER2-expressing breast cancer cells. J Basic Clin Physiol Pharmacol 2021; 32:363-371. [PMID: 34214366 DOI: 10.1515/jbcpp-2020-0508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 03/24/2021] [Indexed: 11/15/2022]
Abstract
OBJECTIVES Human epidermal growth factor receptor type 2 (HER2)-expressing breast cancer patients indicate poor prognosis in disease progression. HER2 overexpression can increase activities of Ras-mitogen activated protein kinase (Ras-MAPK) pathway and Janus Kinase (JAK)-STAT3, increasing breast cancer cell proliferation as demonstrated by marker Ki67. Therapeutic options for HER2-expressing breast cancer are limited and have major side effects, so anticancer development as an antiproliferative is needed. From previous research, synthetic chemical 4-(tert-butyl)-N-carbamoylbenzamide (4TBCB) compound has cytotoxic activity in vitro on HER2-expressing breast cancer cells. This study wanted to determine the mechanism 4TBCB compound in inhibiting HER2 signaling through Rat Sarcoma (Ras) and signal transducer and activator of transcription 3 (STAT3) pathway in HER2-expressing breast cancer cells. METHODS Breast cancer cells were isolated from the biopsy tissue of breast cancer patients. The isolated cells were cultured and given 4TBCB test compound with three concentrations (0.305, 0.61, and 1.22 mM) and lapatinib 0.05 mM as a comparison compound. Cancer cell cultures were stained with monoclonal antibodies phosphorylated HER2 (pHER2), phosphorylated Ras (pRas), phosphorylated STAT3 (pSTAT3), and Ki67. The expression of pHER2, pRas, pSTAT3, and Ki67 proteins was observed using the immunofluorescence method and the results were compared with control cells, namely cancer cells that were not given 4TBCB and lapatinib but stained with monoclonal antibodies. RESULTS 4TBCB compounds (0.61 and 1.22 mM) and lapatinib can reduce pHER2, pRas, pSTAT3, and Ki67 expressions compared to control cells. CONCLUSIONS 4TBCB compounds (0.61 and 1.22 mM) can reduce pHER2, pRas, pSTAT3, Ki67 expressions and predicted to inhibit HER2 signaling through the Ras and STAT3 pathways in HER2-expressing breast cancer cells.
Collapse
Affiliation(s)
- Aguslina Kirtishanti
- Department of Clinical and Community Pharmacy, Faculty of Pharmacy, University of Surabaya, Surabaya, Indonesia
| | - Siswandono Siswodihardjo
- Department of Medicinal Chemistry, Faculty of Pharmacy, University of Airlangga, Surabaya, Indonesia
| | - I Ketut Sudiana
- Department of Pathology, Faculty of Medicine, University of Airlangga, Surabaya, Indonesia
| | | | - Aristika Dinaryanti
- Stem Cell Research and Development Center, University of Airlangga, Surabaya, Indonesia
| |
Collapse
|
26
|
Vi C, Mandarano G, Shigdar S. Diagnostics and Therapeutics in Targeting HER2 Breast Cancer: A Novel Approach. Int J Mol Sci 2021; 22:6163. [PMID: 34200484 PMCID: PMC8201268 DOI: 10.3390/ijms22116163] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 05/25/2021] [Accepted: 05/30/2021] [Indexed: 01/02/2023] Open
Abstract
Breast cancer is one of the most commonly occurring cancers in women globally and is the primary cause of cancer mortality in females. BC is highly heterogeneous with various phenotypic expressions. The overexpression of HER2 is responsible for 15-30% of all invasive BC and is strongly associated with malignant behaviours, poor prognosis and decline in overall survival. Molecular imaging offers advantages over conventional imaging modalities, as it provides more sensitive and specific detection of tumours, as these techniques measure the biological and physiological processes at the cellular level to visualise the disease. Early detection and diagnosis of BC is crucial to improving clinical outcomes and prognosis. While HER2-specific antibodies and nanobodies may improve the sensitivity and specificity of molecular imaging, the radioisotope conjugation process may interfere with and may compromise their binding functionalities. Aptamers are single-stranded oligonucleotides capable of targeting biomarkers with remarkable binding specificity and affinity. Aptamers can be functionalised with radioisotopes without compromising target specificity. The attachment of different radioisotopes can determine the aptamer's functionality in the treatment of HER2(+) BC. Several HER2 aptamers and investigations of them have been described and evaluated in this paper. We also provide recommendations for future studies with HER2 aptamers to target HER2(+) BC.
Collapse
Affiliation(s)
- Chris Vi
- School of Medicine, Deakin University, Geelong, VIC 3220, Australia; (C.V.); (G.M.)
| | - Giovanni Mandarano
- School of Medicine, Deakin University, Geelong, VIC 3220, Australia; (C.V.); (G.M.)
- Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Deakin University, Geelong, VIC 3220, Australia
| | - Sarah Shigdar
- School of Medicine, Deakin University, Geelong, VIC 3220, Australia; (C.V.); (G.M.)
- Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Deakin University, Geelong, VIC 3220, Australia
| |
Collapse
|
27
|
Kedashiro S, Kameyama T, Mizutani K, Takai Y. Nectin-4 and p95-ErbB2 cooperatively regulate Hippo signaling-dependent SOX2 gene expression, enhancing anchorage-independent T47D cell proliferation. Sci Rep 2021; 11:7344. [PMID: 33795719 PMCID: PMC8016986 DOI: 10.1038/s41598-021-86437-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 03/10/2021] [Indexed: 12/17/2022] Open
Abstract
Nectin-4, upregulated in various cancer cells, cis-interacts with ErbB2 and its trastuzumab-resistant splice variants, p95-ErbB2 and ErbB2∆Ex16, enhancing DNA synthesis through the PI3K-AKT signaling in human breast cancer T47D cells in an adherent culture. We found here that nectin-4 and p95-ErbB2, but not nectin-4 and either ErbB2 or ErbB2∆Ex16, cooperatively enhanced SOX2 gene expression and cell proliferation in a suspension culture. This enhancement of T47D cell proliferation in a suspension culture by nectin-4 and p95-ErbB2 was dependent on the SOX2 gene expression. In T47D cells, nectin-4 and any one of p95-ErbB2, ErbB2, or ErbB2∆Ex16 cooperatively activated the PI3K-AKT signaling, known to induce the SOX2 gene expression, to similar extents. However, only a combination of nectin-4 and p95-ErbB2, but not that of nectin-4 and either ErbB2 or ErbB2∆Ex16, cooperatively enhanced the SOX2 gene expression. Detailed studies revealed that only nectin-4 and p95-ErbB2 cooperatively activated the Hippo signaling. YAP inhibited the SOX2 gene expression in this cell line and thus the MST1/2-LATS1/2 signaling-mediated YAP inactivation increased the SOX2 gene expression. These results indicate that only the combination of nectin-4 and p95-ErbB2, but not that of nectin-4 and either ErbB2 or ErbB2∆Ex16, cooperatively regulates the Hippo signaling-dependent SOX2 gene expression, enhancing anchorage-independent T47D cell proliferation.
Collapse
Affiliation(s)
- Shin Kedashiro
- Division of Pathogenetic Signaling, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, 1-5-6 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo, 650-0047, Japan
| | - Takeshi Kameyama
- Division of Pathogenetic Signaling, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, 1-5-6 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo, 650-0047, Japan
| | - Kiyohito Mizutani
- Division of Pathogenetic Signaling, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, 1-5-6 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo, 650-0047, Japan.
| | - Yoshimi Takai
- Division of Pathogenetic Signaling, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, 1-5-6 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo, 650-0047, Japan.
| |
Collapse
|
28
|
Ahmed S, Mohamed HT, El-Husseiny N, El Mahdy MM, Safwat G, Diab AA, El-Sherif AA, El-Shinawi M, Mohamed MM. IL-8 secreted by tumor associated macrophages contribute to lapatinib resistance in HER2-positive locally advanced breast cancer via activation of Src/STAT3/ERK1/2-mediated EGFR signaling. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2021; 1868:118995. [PMID: 33667527 DOI: 10.1016/j.bbamcr.2021.118995] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Revised: 02/20/2021] [Accepted: 02/25/2021] [Indexed: 12/11/2022]
Abstract
Locally advanced breast cancer (LABC) is an aggressive disease characterized by late clinical presentation, large tumor size, treatment resistance and low survival rate. Expression of EGFR/HER2 and activation of intracellular tyrosine kinase domains in LABC are associated with poor prognosis. Thus, target therapies such as the anti-receptor tyrosine kinases lapatinib drug have been more developed in the past decade. The response to lapatinib involves the inhibition of RTKs and subsequently signaling molecules such as Src/STAT3/Erk1/2 known also to be activated by the cytokines in the tumor microenvironment (TME). The aim of the present study is to identify the major cytokine that might contribute to lapatinib resistance in EGFR+/HER2+ LABC patients. Indeed, tumor associated macrophages (TAMs) are the main source of cytokines in the TME. Herein, we isolated TAMs from LABC during modified radical mastectomy (MRM). Cytokine profile of TAMs revealed that IL-8 is the most prominent highly secreted cytokine by TAMs of LABC patients. Using in-vitro cell culture model we showed that recombinant IL-8 (50 and 100 ng/mL) at different time intervals interfere with lapatinib action via activation of Src/EGFR and signaling molecules known to be inhibited during treatment. We proposed that to improve LABC patients' response to lapatinib treatment it is preferred to use combined therapy that neutralize or block the action of IL-8.
Collapse
Affiliation(s)
- Shaza Ahmed
- Zoology Department, Faculty of Science, Cairo University, Giza 12613, Egypt; Faculty of Biotechnology, October University for Modern Sciences and Arts, Giza 12451, Egypt
| | - Hossam Taha Mohamed
- Zoology Department, Faculty of Science, Cairo University, Giza 12613, Egypt; Faculty of Biotechnology, October University for Modern Sciences and Arts, Giza 12451, Egypt
| | - Noura El-Husseiny
- Zoology Department, Faculty of Science, Cairo University, Giza 12613, Egypt
| | - Manal M El Mahdy
- Department of Pathology, Faculty of Medicine, Ain Shams University, Cairo 11566, Egypt
| | - Gehan Safwat
- Faculty of Biotechnology, October University for Modern Sciences and Arts, Giza 12451, Egypt
| | - Ayman A Diab
- Faculty of Biotechnology, October University for Modern Sciences and Arts, Giza 12451, Egypt
| | - Ahmed A El-Sherif
- Chemistry department, Faculty of Science, Cairo University, Giza 12613, Egypt
| | - Mohamed El-Shinawi
- Department of General Surgery, Faculty of Medicine, Ain Shams University, Cairo 11566, Egypt; Vice President for International Affairs, Galala University, Suez 43511, Egypt
| | - Mona Mostafa Mohamed
- Zoology Department, Faculty of Science, Cairo University, Giza 12613, Egypt; Director of Biotechnology program, Faculty of Science, Galala University, 43511 Suez, Egypt.
| |
Collapse
|
29
|
The relationship between NFKB, HER2, ER expression and anthracycline -based neoadjuvan chemotherapy response in local advanced stadium breast cancer: A cohort study in Eastern Indonesia. Ann Med Surg (Lond) 2021; 63:102164. [PMID: 33664949 PMCID: PMC7900636 DOI: 10.1016/j.amsu.2021.02.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 01/29/2021] [Accepted: 02/02/2021] [Indexed: 12/21/2022] Open
Abstract
Introduction Neoadjuvant chemotherapy has become the standard form of treatment for locally advanced breast cancer. Chemoresistence is a problem that limits the effectiveness of chemotherapy. Therefore, predictive biomarkers are needed to choose the appropriate chemotherapy to the right patient. The role of NF-кb expression as a predictive biomarker of neoadjuvant chemotherapy response needs to be investigated in patients with locally advanced breast cancer who are treated with a regimen of cyclophosphamide-doxorubicin-5FU (CAF). Methods This observational study used the prospective cohort method to examine 62 samples. CAF was administered at 3-week intervals for 3 cycles of chemotherapy. The data utilized in this study include the positive and negative expression of NF-κB, ER, and HER2 overexpression. The cases were divided into groups that were responsive and non-responsive to the neoadjuvant chemotherapy. Results The average age in the youngest group was 26 years, and that in the oldest was 66 years. The highest age group was subjects in their 50s, which had 26 cases (41.9%). The majority of the cases were moderate grade with 38 cases (61.3%). The percentage of responsive subjects was higher in the groups with negative NF-κB expression (82.5%), positive HER2 status (85.7%), and negative ER status (71.9%). It was found that 37 cases (59.7%) were responsive to CAF, while 25 cases (40.3%) were non-responsive. There was a significant relationship between NF-κB expression and chemotherapy response (p < 0.05), and the percentage of responsive subjects was higher among those with negative NF-κB expression (82.5%) than positive NF-κB expression (18.2%). Conclusion NF-κB expression, ER status, and HER2 have a significant relationship with the response to anthracycline-based neoadjuvant chemotherapy for local advanced breast cancer, and NF-κB expression has the most significant relationship with the chemotherapy response. Therefore, NF-κB expression should be considered as a predictive biomarker for the response to CAF regimens.
Collapse
|
30
|
Kaukonen D, Kaukonen R, Polit L, Hennessy BT, Lund R, Madden SF. Analysis of H3K4me3 and H3K27me3 bivalent promotors in HER2+ breast cancer cell lines reveals variations depending on estrogen receptor status and significantly correlates with gene expression. BMC Med Genomics 2020; 13:92. [PMID: 32620123 PMCID: PMC7333309 DOI: 10.1186/s12920-020-00749-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 06/25/2020] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND The role of histone modifications is poorly characterized in breast cancer, especially within the major subtypes. While epigenetic modifications may enhance the adaptability of a cell to both therapy and the surrounding environment, the mechanisms by which this is accomplished remains unclear. In this study we focus on the HER2 subtype and investigate two histone trimethylations that occur on the histone 3; the trimethylation located at lysine 4 (H3K4me3) found in active promoters and the trimethylation located at lysine 27 (H3K27me3) that correlates with gene repression. A bivalency state is the result of the co-presence of these two marks at the same promoter. METHODS In this study we investigated the relationship between these histone modifications in promoter regions and their proximal gene expression in HER2+ breast cancer cell lines. In addition, we assessed these patterns with respect to the presence or absence of the estrogen receptor (ER). To do this, we utilized ChIP-seq and matching RNA-seq from publicly available data for the AU565, SKBR3, MB361 and UACC812 cell lines. In order to visualize these relationships, we used KEGG pathway enrichment analysis, and Kaplan-Meyer plots. RESULTS We found that the correlation between the three types of promoter trimethylation statuses (H3K4me3, H3K27me3 or both) and the expression of the proximal genes was highly significant overall, while roughly a third of all genes are regulated by this phenomenon. We also show that there are several pathways related to cancer progression and invasion that are associated with the bivalent status of the gene promoters, and that there are specific differences between ER+ and ER- HER2+ breast cancer cell lines. These specific differences that are differentially trimethylated are also shown to be differentially expressed in patient samples. One of these genes, HIF1AN, significantly correlates with patient outcome. CONCLUSIONS This study highlights the importance of looking at epigenetic markings at a subtype specific level by characterizing the relationship between the bivalent promoters and gene expression. This provides a deeper insight into a mechanism that could lead to future targets for treatment and prognosis, along with oncogenesis and response to therapy of HER2+ breast cancer patients.
Collapse
Affiliation(s)
- Damien Kaukonen
- Data Science Centre, Royal College of Surgeons in Ireland, Dublin, Ireland.
| | - Riina Kaukonen
- Turku Bioscience, University of Turku and Åbo Akademi University, Turku, Finland
| | - Lélia Polit
- Institute Cochin, University Paris Descartes, Paris, France
| | - Bryan T Hennessy
- Medical Oncology Group, Department of Molecular Medicine, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Riikka Lund
- Turku Bioscience, University of Turku and Åbo Akademi University, Turku, Finland
| | - Stephen F Madden
- Data Science Centre, Royal College of Surgeons in Ireland, Dublin, Ireland
| |
Collapse
|
31
|
Bouhniz OE, Zaied S, Naija L, Bettaieb I, Rahal K, Driss M, Kenani A. Association between HER2 and IL-6 genes polymorphisms and clinicopathological characteristics of breast cancer: significant role of genetic variability in specific breast cancer subtype. Clin Exp Med 2020; 20:427-436. [PMID: 32372374 DOI: 10.1007/s10238-020-00632-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Accepted: 04/24/2020] [Indexed: 12/12/2022]
Abstract
Clinical implications of single nucleotide polymorphisms (SNPs) in breast cancer have been explored to determine the impact of SNP in modulating the pathogenesis of breast cancer. This study aimed to evaluate the association between HER2 (rs2517956) and (IL-6) (rs1800795 and rs2069837) and clinicopathological characteristics in HER2-positive and HER2-negative breast cancer in Tunisian women. A retrospective cohort study included 273 patients. Genomic DNA was extracted from peripheral blood samples, and genotyping of selected SNP was performed by PCR-RFLP assays. Statistical analysis was then carried out to assess genotypic frequencies and genetic association in relation to breast cancer subtypes. SHEsis software was applied to IL-6 haplotypic structure analysis. The distribution of genotype frequencies of rs2517956, rs1800795 and rs2069837 showed no statistically difference between HER2-positive and HER2-negative breast cancer. HER2 (rs2517956) was associated with tumor size (p = 0.01) and age at diagnosis (p = 0.02) in HER2-negative breast cancers, but no significant association was observed in HER2-positive breast cancer. For IL-6 gene, none of the clinicopathological parameters were associated with rs1800795 and rs2069837 in both breast cancer subtypes (p > 0.05). SHEsis analysis revealed a high linkage disequilibrium between rs1800795 and rs2069837; differences in the distribution of IL-6 two loci haplotypes were statistically negative between HER2-positive and HER2-negative breast cancer (p = 0.20) which confirmed no association with HER2 overexpression. This study demonstrates that rs2517956 is associated with clinicopathological characteristics in HER2-negative breast cancer, which could have a differential prognostic role compared to HER2-positive breast cancer.
Collapse
Affiliation(s)
- Om Elez Bouhniz
- Research Laboratory "Environment, Inflammation, Signaling and Pathologies" (LR18ES40), Faculty of Medicine of Monastir, University of Monastir, Monastir, Tunisia.
| | - Sonia Zaied
- Research Laboratory "Environment, Inflammation, Signaling and Pathologies" (LR18ES40), Faculty of Medicine of Monastir, University of Monastir, Monastir, Tunisia.,Department of Clinical Oncology, CHU Fattouma Bourguiba, Monastir, Tunisia
| | - Lamia Naija
- Department of Surgical Oncology, Salah Azaiez Institute, Tunis, Tunisia
| | - Ilhem Bettaieb
- Department of Immuno-Histo-Cytology, Salah Azaiez Institute, Tunis, Tunisia
| | - Khaled Rahal
- Department of Surgical Oncology, Salah Azaiez Institute, Tunis, Tunisia
| | - Maha Driss
- Department of Immuno-Histo-Cytology, Salah Azaiez Institute, Tunis, Tunisia
| | - Abderraouf Kenani
- Research Laboratory "Environment, Inflammation, Signaling and Pathologies" (LR18ES40), Faculty of Medicine of Monastir, University of Monastir, Monastir, Tunisia
| |
Collapse
|
32
|
Mawaribuchi S, Haramoto Y, Tateno H, Onuma Y, Aiki Y, Ito Y. rBC2LCN lectin as a potential probe of early-stage HER2-positive breast carcinoma. FEBS Open Bio 2020; 10:1056-1064. [PMID: 32237061 PMCID: PMC7262912 DOI: 10.1002/2211-5463.12852] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 03/10/2020] [Accepted: 03/26/2020] [Indexed: 12/22/2022] Open
Abstract
The recombinant N‐terminal domain of BC2L‐C lectin (rBC2LCN) is useful for detecting not only human pluripotent stem cells but also some cancers. However, the cancer types and stages that can be detected by rBC2LCN remain unclear. In this study, we identified the human breast carcinoma subtypes and stages that can be detected by rBC2LCN. Compared with rBC2LCN‐negative breast carcinoma cell lines, the rBC2LCN‐positive cells expressed higher levels of human epidermal growth factor receptor 2 (HER2) and epithelial marker genes. Importantly, rBC2LCN histochemical staining of human breast carcinoma tissues demonstrated the utility of rBC2LCN in detecting breast carcinoma types that express HER2 and have not spread much in the early phase of growth. We conclude that rBC2LCN may have potential as a detection probe and a drug delivery vehicle to identify and treat early‐stage HER2‐positive breast carcinoma.
Collapse
Affiliation(s)
- Shuuji Mawaribuchi
- Biotechnology Research Institute for Drug Discovery, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan
| | - Yoshikazu Haramoto
- Biotechnology Research Institute for Drug Discovery, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan
| | - Hiroaki Tateno
- Biotechnology Research Institute for Drug Discovery, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan
| | - Yasuko Onuma
- Biotechnology Research Institute for Drug Discovery, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan
| | - Yasuhiko Aiki
- Biotechnology Research Institute for Drug Discovery, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan
| | - Yuzuru Ito
- Biotechnology Research Institute for Drug Discovery, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan
| |
Collapse
|
33
|
Xun Y, Yang H, Li J, Wu F, Liu F. CXC Chemokine Receptors in the Tumor Microenvironment and an Update of Antagonist Development. Rev Physiol Biochem Pharmacol 2020; 178:1-40. [PMID: 32816229 DOI: 10.1007/112_2020_35] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Chemokine receptors, a diverse group within the seven-transmembrane G protein-coupled receptor superfamily, are frequently overexpressed in malignant tumors. Ligand binding activates multiple downstream signal transduction cascades that drive tumor growth and metastasis, resulting in poor clinical outcome. These receptors are thus considered promising targets for anti-tumor therapy. This article reviews recent studies on the expression and function of CXC chemokine receptors in various tumor microenvironments and recent developments in cancer therapy using CXC chemokine receptor antagonists.
Collapse
Affiliation(s)
- Yang Xun
- Department of Basic Medicine and Biomedical Engineering, School of Stomatology and Medicine, Foshan University, Foshan, Guangdong Province, China
| | - Hua Yang
- Department of Basic Medicine and Biomedical Engineering, School of Stomatology and Medicine, Foshan University, Foshan, Guangdong Province, China
| | - Jiekai Li
- Department of Basic Medicine and Biomedical Engineering, School of Stomatology and Medicine, Foshan University, Foshan, Guangdong Province, China
| | - Fuling Wu
- Department of Pharmacy, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Fang Liu
- Department of Basic Medicine and Biomedical Engineering, School of Stomatology and Medicine, Foshan University, Foshan, Guangdong Province, China.
| |
Collapse
|
34
|
Kedashiro S, Sugiura A, Mizutani K, Takai Y. Nectin-4 cis-interacts with ErbB2 and its trastuzumab-resistant splice variants, enhancing their activation and DNA synthesis. Sci Rep 2019; 9:18997. [PMID: 31831814 PMCID: PMC6908695 DOI: 10.1038/s41598-019-55460-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Accepted: 11/26/2019] [Indexed: 12/31/2022] Open
Abstract
Nectin-4 cell adhesion molecule and ErbB2 tyrosine kinase receptor are upregulated in many cancers, including breast cancer, and promote cancer cell proliferation and metastasis. Using human breast cancer cell lines T47D and SUM190-PT, in which both nectin-4 and ErbB2 were upregulated, we showed here that nectin-4 cis-interacted with ErB2 and enhanced its dimerization and activation, followed by the activation of the phosphoinositide 3-kinase-AKT signalling pathway for DNA synthesis. The third immunoglobulin-like domain of nectin-4 cis-interacted with domain IV of ErbB2. This region differs from the trastuzumab-interacting region but is included in the trastuzumab-resistant splice variants of ErbB2, p95-ErbB2 and ErbB2ΔEx16. Nectin-4 also cis-interacted with these trastuzumab-resistant splice variants and enhanced the activation of the phosphoinositide 3-kinase-AKT signalling pathway for DNA synthesis. In addition, nectin-4 enhanced the activation of the p95-ErbB2-induced JAK-STAT3 signalling pathway, but not the ErbB2- or ErbB2ΔEx16-induced JAK-STAT3 signalling pathway. These results indicate that nectin-4 cis-interacts with ErbB2 and its trastuzumab-resistant splice variants and enhances the activation of these receptors and downstream signalling pathways in a novel mechanism.
Collapse
Affiliation(s)
- Shin Kedashiro
- From the Division of Pathogenetic Signaling, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, 1-5-6 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo, 650-0047, Japan
| | - Ayumu Sugiura
- From the Division of Pathogenetic Signaling, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, 1-5-6 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo, 650-0047, Japan
| | - Kiyohito Mizutani
- From the Division of Pathogenetic Signaling, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, 1-5-6 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo, 650-0047, Japan.
| | - Yoshimi Takai
- From the Division of Pathogenetic Signaling, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, 1-5-6 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo, 650-0047, Japan.
| |
Collapse
|
35
|
Anti-cell growth and anti-cancer stem cell activity of the CDK4/6 inhibitor palbociclib in breast cancer cells. Breast Cancer 2019; 27:415-425. [PMID: 31823286 DOI: 10.1007/s12282-019-01035-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2019] [Accepted: 12/04/2019] [Indexed: 11/27/2022]
Abstract
BACKGROUND A cyclin-dependent kinase (CDK) 4/6 inhibitor, palbociclib, has been used to treat patients with estrogen receptor (ER)-positive (+) and human epidermal growth factor receptor (HER) 2-negative (-) advanced breast cancer. To investigate the mechanisms underlying the antitumor activity of palbociclib, we conducted a preclinical study on the anti-cell growth and anti-cancer stem cell (CSC) activity of palbociclib in breast cancer cells. METHODS The effects of palbociclib on Rb phosphorylation, cell growth, cell cycle progression, apoptosis, cell senescence and the proportion of CSCs were investigated in five human breast cancer cell lines of different subtypes. To investigate the mechanisms of the anti-CSC activity of palbociclib, small-interfering RNAs for CDK4 and/or CDK6 were used. Palbociclib dose-dependently reduced Rb phosphorylation and cell growth in association with G1-S cell cycle blockade and the induction of cell senescence, but without increased apoptosis, in all breast cancer cell lines. RESULTS The anti-cell growth activity of palbociclib widely differed among the cell lines. Palbociclib also dose-dependently reduced the CSC proportion measured by three different assays in four of five cell lines. The inhibition of CDK4 expression, but not CDK6 expression, reduced the increased proportion of putative CSCs induced by estradiol in ER (+)/HER2 (-) cell lines. CONCLUSIONS These results suggest that palbociclib exhibits significant anti-cell growth and anti-CSC activity in not only ER (+) breast cancer cell lines but also ER (-) cell lines. CDK4 inhibition induced by palbociclib may be responsible for its anti-CSC activity.
Collapse
|
36
|
Keshavarz M, Asadi MH, Riahi-Madvar A. Upregulation of pluripotent long noncoding RNA ES3 in HER2-positive breast cancer. J Cell Biochem 2019; 120:18398-18405. [PMID: 31211468 DOI: 10.1002/jcb.29152] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 05/16/2019] [Accepted: 05/22/2019] [Indexed: 01/16/2023]
Abstract
Breast cancer is the second most common cancer and estimates to be responsible for 20% of all cancer patients. Breast cancer has several subtypes including luminal A, luminal B, normal breast-like, basal-like, and human epidermal growth factor receptor 2 (HER2)-enriched. HER2-positive breast cancer cells have higher HER2 expression than other breast cancer subtypes. This subtype is the most aggressive breast cancer subtype and has more ability to metastasis than other breast cancer subtypes. HER2 is a growth-promoting protein that is overexpressed in approximately 20 to 30% of breast cancers and its overexpression is strongly related to poor prognosis. New studies suggested that HER2 expression is correlated with cancer stem cell (CSC) markers in breast cancer. ES3 transcript as a pluripotency long noncoding RNA (lncRNA) is linked to pluripotency transcriptional networks in human embryonic stem cells, but its function in breast cancer is not clarified. In the current research, we found ES3 upregulation in breast cancer and its diagnostic value in breast cancer diagnosis. Furthermore, our findings revealed that ES3 transcript has a high expression in high-grade and high-stage breast tumors. In addition, our data demonstrated that ES3 expression downregulated during neural differentiation. Therefore, its expression may be correlated to breast tumor differentiation status. Notably, a high expression level of ES3 in HER2-positive breast tumor tissues motivated us to investigate the effect of HER2 on ES3 expression by blocking HER2 activity with lapatinib. The results showed that ES3 expression suppressed when HER2 activity was blocked. In summary, for the first time, we found that lncRNA ES3 was significantly upregulated in HER2-positive breast tumors and may contribute to breast cancer proliferation as a downstream target of HER2.
Collapse
Affiliation(s)
- Mostafa Keshavarz
- Department of Biotechnology, Institute of Science and High Technology and Environmental Sciences, Graduate University of Advanced Technology, Kerman, Iran
| | - Malek Hossein Asadi
- Department of Biotechnology, Institute of Science and High Technology and Environmental Sciences, Graduate University of Advanced Technology, Kerman, Iran
| | - Ali Riahi-Madvar
- Department of Biotechnology, Institute of Science and High Technology and Environmental Sciences, Graduate University of Advanced Technology, Kerman, Iran
| |
Collapse
|
37
|
Yousefi H, Momeny M, Ghaffari SH, Parsanejad N, Poursheikhani A, Javadikooshesh S, Zarrinrad G, Esmaeili F, Alishahi Z, Sabourinejad Z, Sankanian G, Shamsaiegahkani S, Bashash D, Shahsavani N, Tavakkoly-Bazzaz J, Alimoghaddam K, Ghavamzadeh A. IL-6/IL-6R pathway is a therapeutic target in chemoresistant ovarian cancer. TUMORI JOURNAL 2018; 105:84-91. [DOI: 10.1177/0300891618784790] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Introduction: Epithelial ovarian cancer (EOC) is the most lethal gynecologic malignancy worldwide and despite an initial response to therapeutic agents, the majority of patients have chemoresistant disease. There is no treatment strategy with proven efficacy against chemoresistant EOC and in this setting, overcoming therapy resistance is the key to successful treatment. Methods: This study aimed to investigate expression of interleukin-6 (IL-6) (IL-6) and IL-6 receptor (IL-6R) in a panel of the EOC cell lines. To achieve this, the expression of IL-6 and its receptor were compared in the EOC cells using quantitative reverse transcription polymerase chain reaction. MTT assay was performed to obtain chemosensitivity of the EOC cells. Results: In this report, we show that expressions of IL6 and IL6R are higher in therapy-resistant EOC cells compared to sensitive ones. Higher expression of IL6 and its receptor correlated with resistance to certain chemotherapeutic agents. Moreover, our findings showed that combination of tocilizumab (Actemra; Roche), an anti-IL-6R monoclonal antibody, with carboplatin synergistically inhibited growth and proliferation of the EOC cells and the most direct axis for IL-6 gene expression was NF-κB pathway. Conclusion: Collectively, our findings suggest that blockade of the IL-6 signaling pathway with anti-IL-6 receptor antibody tocilizumab might resensitize the chemoresistant cells to the current chemotherapeutics.
Collapse
Affiliation(s)
- Hassan Yousefi
- Hematology/Oncology and Stem Cell Transplantation Research Center, Shariati Hospital, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Majid Momeny
- Hematology/Oncology and Stem Cell Transplantation Research Center, Shariati Hospital, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Seyed H. Ghaffari
- Hematology/Oncology and Stem Cell Transplantation Research Center, Shariati Hospital, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Arash Poursheikhani
- Department of Medical Genetics, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Sepehr Javadikooshesh
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Iran
| | - Ghazaleh Zarrinrad
- Hematology/Oncology and Stem Cell Transplantation Research Center, Shariati Hospital, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Esmaeili
- Hematology/Oncology and Stem Cell Transplantation Research Center, Shariati Hospital, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Zivar Alishahi
- Hematology/Oncology and Stem Cell Transplantation Research Center, Shariati Hospital, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Zahra Sabourinejad
- Hematology/Oncology and Stem Cell Transplantation Research Center, Shariati Hospital, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Ghazaleh Sankanian
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Sahar Shamsaiegahkani
- Hematology/Oncology and Stem Cell Transplantation Research Center, Shariati Hospital, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Davood Bashash
- Department of Hematology and Blood Banking, Faculty of Allied Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Narjes Shahsavani
- Department of Physiology and Pathophysiology, Spinal Cord Research Center, University of Manitoba, Winnipeg, Canada
| | - Javad Tavakkoly-Bazzaz
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Kamran Alimoghaddam
- Hematology/Oncology and Stem Cell Transplantation Research Center, Shariati Hospital, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Ardeshir Ghavamzadeh
- Hematology/Oncology and Stem Cell Transplantation Research Center, Shariati Hospital, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
38
|
Ozer U. Breast Cancer Stem Cells and Iron Dependency. DICLE MEDICAL JOURNAL 2018. [DOI: 10.5798/dicletip.419307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
39
|
Shah D, Wyatt D, Baker AT, Simms P, Peiffer DS, Fernandez M, Rakha E, Green A, Filipovic A, Miele L, Osipo C. Inhibition of HER2 Increases JAGGED1-dependent Breast Cancer Stem Cells: Role for Membrane JAGGED1. Clin Cancer Res 2018; 24:4566-4578. [PMID: 29895705 DOI: 10.1158/1078-0432.ccr-17-1952] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Revised: 04/19/2018] [Accepted: 06/04/2018] [Indexed: 12/21/2022]
Abstract
Purpose: HER2-positive breast cancer is driven by cells possessing stem-like properties of self-renewal and differentiation, referred to as cancer stem cells (CSC). CSCs are implicated in radiotherapy, chemotherapy resistance, and tumor recurrence. NOTCH promotes breast CSC survival and self-renewal, and overexpression of NOTCH1 and the NOTCH ligand JAGGED1 predict poor outcome. Resistance to anti-HER2 therapy in HER2+ breast cancer requires NOTCH1, and that combination of trastuzumab and a gamma secretase inhibitor (GSI) prevents tumor relapse in xenograft models.Experimental Design: The current study investigates mechanisms by which HER2 tyrosine kinase activity regulates NOTCH-dependent CSC survival and tumor initiation.Results: Lapatinib-mediated HER2 inhibition shifts the population of HER2+ breast cancer cells from low membrane JAGGED1 expression to higher levels, independent of sensitivity to anti-HER2 treatment within the bulk cell population. This increase in membrane JAGGED1 is associated with higher NOTCH receptor expression, activation, and enrichment of CSCs in vitro and in vivo Importantly, lapatinib treatment results in growth arrest and cell death of JAGGED1 low-expressing cells while the JAGGED1 high-expressing cells continue to cycle. High membrane JAGGED1 protein expression predicts poor overall cumulative survival in women with HER2+ breast cancer.Conclusions: These results indicate that higher membrane JAGGED1 expression may be used to either predict response to anti-HER2 therapy or for detection of NOTCH-sensitive CSCs posttherapy. Sequential blockade of HER2 followed by JAGGED1 or NOTCH could be more effective than simultaneous blockade to prevent drug resistance and tumor progression. Clin Cancer Res; 24(18); 4566-78. ©2018 AACR.
Collapse
Affiliation(s)
- Deep Shah
- Molecular Pharmacology and Therapeutics Program, Loyola University Chicago: Health Sciences Division, Maywood, Illinois
| | - Debra Wyatt
- Oncology Research Institute, Loyola University Chicago: Health Sciences Division, Maywood, Illinois
| | - Andrew T Baker
- Integrated Cell Biology Program, Loyola University Chicago: Health Sciences Division, Maywood, Illinois
| | - Patricia Simms
- FACS Core Facility, Office of Research Services, Loyola University Chicago: Health Sciences Division, Maywood, Illinois
| | - Daniel S Peiffer
- Integrated Cell Biology Program, Loyola University Chicago: Health Sciences Division, Maywood, Illinois.,MD/PhD Program, Loyola University Chicago: Health Sciences Division, Maywood, Illinois
| | - Michelle Fernandez
- Department of Microbiology and Immunology, Loyola University Chicago: Health Sciences Division, Maywood, Illinois
| | - Emad Rakha
- Departments of Histopathology and Medicine, University of Nottingham and University Hospital NHS Trust, Nottingham, United Kingdom
| | - Andrew Green
- Departments of Histopathology and Medicine, University of Nottingham and University Hospital NHS Trust, Nottingham, United Kingdom
| | | | - Lucio Miele
- Department of Genetics, Louisiana State University Health Sciences Center, New Orleans, Los Angeles
| | - Clodia Osipo
- Oncology Research Institute, Loyola University Chicago: Health Sciences Division, Maywood, Illinois. .,Department of Microbiology and Immunology, Loyola University Chicago: Health Sciences Division, Maywood, Illinois
| |
Collapse
|
40
|
Kar A, Gutierrez-Hartmann A. ESE-1/ELF3 mRNA expression associates with poor survival outcomes in HER2 + breast cancer patients and is critical for tumorigenesis in HER2 + breast cancer cells. Oncotarget 2017; 8:69622-69640. [PMID: 29050229 PMCID: PMC5642504 DOI: 10.18632/oncotarget.18710] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Accepted: 05/23/2017] [Indexed: 12/25/2022] Open
Abstract
ESE-1/Elf3 and HER2 appear to establish a positive feedback regulatory loop, but the precise role of ESE-1 in HER2+ breast tumorigenesis remains unknown. Analyzing public repositories, we found that luminal B and HER2 subtype patients with high ESE-1 mRNA levels displayed worse relapse free survival. We stably knocked down ESE-1 in HER2+ luminal B BT474 cells and HER2 subtype SKBR3 cells, which resulted in decreased cell proliferation, colony formation, and anchorage-independent growth in vitro. Stable ESE-1 knockdown inhibited HER2-dependent signaling in BT474 cells and inhibited mTOR activation in SKBR3 cells, but reduced Akt signaling in both cell types. Expression of a constitutively-active Myr-Akt partially rescued the anti-proliferative effect of ESE-1 knockdown in both cell lines. Furthermore, ESE-1 knockdown inhibited cyclin D1, resulting in a G1 delay in both cell lines. Finally, ESE-1 knockdown completely inhibited BT474 cell xenograft tumors in NOD/SCID female mice, which correlated with reduced in vitro tumorsphere formation. Taken together, these results reveal the ESE-1 controls transformation via distinct upstream signaling mechanisms in SKBR3 and BT474 cells, which ultimately impinge on Akt and cyclin D1 in both cell types to regulate cell proliferation. Particularly significant is that ESE-1 controls tumorigenesis and is associated with worse clinical outcomes in HER2 breast cancer.
Collapse
Affiliation(s)
- Adwitiya Kar
- Cancer Biology Training Program, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Arthur Gutierrez-Hartmann
- Cancer Biology Training Program, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA.,Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA.,Department of Biochemistry & Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA.,Program in Molecular Biology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| |
Collapse
|