1
|
Wynn CS, Tang SC. Anti-HER2 therapy in metastatic breast cancer: many choices and future directions. Cancer Metastasis Rev 2022; 41:193-209. [PMID: 35142964 PMCID: PMC8924093 DOI: 10.1007/s10555-022-10021-x] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 01/19/2022] [Indexed: 12/30/2022]
Abstract
Metastatic HER2 + breast cancer is an expanding area of drug development and research, with three new drugs approved in 2020 alone. While first-line therapy is well-established for metastatic HER2 + breast cancer, the standard of care for second-line therapy will likely be changing soon based on the results of the DESTINY-Breast03 trial. In the third-line setting, many options are available. Considerations in choosing between regimens in the third-line include resistance to trastuzumab, the presence of brain metastases, and tolerability. High rates of resistance exist in this setting particularly due to expression of p95, a truncated form of HER2 that constitutively activates downstream signaling pathways. We suggest a tyrosine kinase inhibitor (TKI)-based regimen because of the activity of TKIs in brain metastases and in p95-expressing tumors. Attempts to overcome resistance to anti-HER2 therapies with PI3K inhibitors, mTOR inhibitors, and CDK 4/6 inhibitors are an active area of research. In the future, biomarkers are needed to help predict which therapies patients may benefit from the most. We review the many new drugs in development, including those with novel mechanisms of action.
Collapse
Affiliation(s)
- Carrie S Wynn
- Cancer Center and Research Institute, University of Mississippi Medical Center, Guyton Research Building, G-651-07, 2500 North State Street, Jackson, MS, 39216, USA
| | - Shou-Ching Tang
- Cancer Center and Research Institute, University of Mississippi Medical Center, Guyton Research Building, G-651-07, 2500 North State Street, Jackson, MS, 39216, USA.
| |
Collapse
|
2
|
Olorundare OE, Adeneye AA, Akinsola AO, Ajayi AM, Agede OA, Soyemi SS, Mgbehoma AI, Okoye II, Albrecht RM, Ntambi JM, Crooks PA. Therapeutic Potentials of Selected Antihypertensive Agents and Their Fixed-Dose Combinations Against Trastuzumab-Mediated Cardiotoxicity. Front Pharmacol 2021; 11:610331. [PMID: 33897413 PMCID: PMC8058606 DOI: 10.3389/fphar.2020.610331] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 11/23/2020] [Indexed: 01/20/2023] Open
Abstract
Trastuzumab (TZM) is useful in the clinical management of HER2-positive metastatic breast, gastric, and colorectal carcinoma but has been limited by its off-target cardiotoxicity. This study investigates the therapeutic potentials of 0.25 mg/kg/day amlodipine, 0.035 mg/kg/day lisinopril, 5 mg/kg/day valsartan, and their fixed-dose combinations in TZM-intoxicated Wistar rats that were randomly allotted into 10 groups of 6 rats for each group. Group I rats were treated with 10 ml/kg/day sterile water orally and 1 ml/kg/day sterile water intraperitoneally; Groups II, III, and IV rats were orally gavaged with 5 mg/kg/day valsartan and 1 ml/kg/day sterile water intraperitoneally, 0.25 mg/kg/day amlodipine and 1 ml/kg/day sterile water via the intraperitoneal route, 0.035 mg/kg/day lisinopril and 1 ml/kg/day sterile water administered intraperitoneally, respectively. Group V rats were orally treated with 10 ml/kg/day of sterile water prior to intraperitoneal administration of 2.25 mg/kg/day of TZM. Groups VI–VIII rats were equally pretreated with 5 mg/kg/day valsartan, 0.25 mg/kg/day amlodipine, and 0.035 mg/kg/day lisinopril before intraperitoneal 2.25 mg/kg/day TZM treatment, respectively; Groups IX and X rats were orally pretreated with the fixed-dose combinations of 0.25 mg/kg/day amlodipine +0.035 mg/kg/day lisinopril and 5 mg/kg/day valsartan +0.035 mg/kg/day lisinopril, respectively, before TZM treatment. Cardiac injury and tissue oxidative stress markers, complete lipids profile, histopathological, and immunohistochemical assays were the evaluating endpoints. Results showed that repeated TZM treatments caused profound increases in the serum TG and VLDL-c levels, serum cTnI and LDH levels, and cardiac tissue caspase-3 and -9 levels but decreased BCL-2 expression. TZM also profoundly attenuated CAT, SOD, GST and GPx activities, and increased MDA levels in the treated tissues. In addition, TZM cardiotoxicity was characterized by marked vascular and cardiomyocyte congestion and coronary artery microthrombi formation. However, the altered biochemical, histopathological, and immunohistochemical changes were reversed with amlodipine, lisinopril, valsartan, and fixed-dose combinations, although fixed-dose valsartan/lisinopril combination was further associated with hyperlipidemia and increased AI and CRI values and coronary artery cartilaginous metaplasia. Thus, the promising therapeutic potentials of amlodipine, lisinopril, valsartan and their fixed-dose combinations in the management of TZM cardiotoxicity, majorly mediated via antiapoptotic and oxidative stress inhibition mechanisms were unveiled through this study.
Collapse
Affiliation(s)
- Olufunke Esan Olorundare
- Department of Pharmacology and Therapeutics, Faculty of Basic Clinical Sciences, College of Health Sciences, University of Ilorin, Ilorin, Nigeria
| | - Adejuwon Adewale Adeneye
- Department of Pharmacology, Therapeutics and Toxicology, Faculty of Basic Clinical Sciences, Lagos State University College of Medicine, Ikeja, Nigeria
| | - Akinyele Olubiyi Akinsola
- Department of Pharmacology and Therapeutics, Faculty of Basic Clinical Sciences, College of Health Sciences, University of Ilorin, Ilorin, Nigeria
| | - Abayomi Mayowa Ajayi
- Department of Pharmacology and Therapeutics, Faculty of Basic Medical Sciences, University of Ibadan, Ibadan, Nigeria
| | - Olalekan Ayodele Agede
- Department of Pharmacology and Therapeutics, Faculty of Basic Clinical Sciences, College of Health Sciences, University of Ilorin, Ilorin, Nigeria
| | - Sunday Sokunle Soyemi
- Department of Pathology and Forensic Medicine, Faculty of Basic Clinical Sciences, Lagos State University College of Medicine, Ikeja, Nigeria
| | - Alban Ikenna Mgbehoma
- Department of Pathology and Forensic Medicine, Lagos State University Teaching Hospital, Ikeja, Nigeria
| | - Ikechukwu Innocent Okoye
- Department of Oral Pathology and Medicine, Faculty of Dentistry, Lagos State University College of Medicine, Ikeja, Nigeria
| | - Ralph M Albrecht
- Department of Animal Sciences, University of Wisconsin, Madison, WI, United States
| | - James Mukasa Ntambi
- Department of Nutritional Sciences, College of Agricultural and Life Sciences, University of Wisconsin, Madison, Madison, WI, United States
| | - Peter Anthony Crooks
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| |
Collapse
|
3
|
Zhang X, Zhu Y, Dong S, Zhang A, Lu Y, Li Y, Lv S, Zhang J. Role of oxidative stress in cardiotoxicity of antineoplastic drugs. Life Sci 2019; 232:116526. [PMID: 31170418 DOI: 10.1016/j.lfs.2019.06.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 05/27/2019] [Accepted: 06/01/2019] [Indexed: 12/24/2022]
Abstract
Tumors and heart disease are two of the leading causes of human death. With the development of anti-cancer therapy, the survival rate of cancer patients has been significantly improved. But at the same time, the incidence of cardiovascular adverse events caused by cancer treatment has also been considerably increased, such as arrhythmia, left ventricular (LV) systolic and diastolic dysfunction, and even heart failure (HF), etc., which seriously affects the quality of life of cancer patients. More importantly, the occurrence of adverse events may lead to the adjustment or the cessation of anti-cancer treatment, which affects the survival rate of patients. Understanding the mechanism of cardiotoxicity (CTX) induced by antineoplastic drugs is the basis of adequate protection of the heart without impairing the efficacy of antineoplastic therapy. Based on current research, a large amount of evidence has shown that oxidative stress (OS) plays an essential role in CTX induced by antineoplastic drugs and participates in its toxic reaction directly and indirectly. Here, we will review the mechanism of action of OS in cardiac toxicity of antineoplastic drugs, to provide new ideas for researchers, and provide further guidance for clinical prevention and treatment of cardiac toxicity of anti-tumor drugs in the future.
Collapse
Affiliation(s)
- Xiaonan Zhang
- Department of Cardiovascular Medicine, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Nankai, Tianjin, China
| | - Yaping Zhu
- Department of Cardiovascular Medicine, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Nankai, Tianjin, China
| | - Shaoyang Dong
- Department of Orthopedics of Integrated Traditional Chinese and Western Medicine, Affiliated Hospital of Hebei Province of Traditional Chinese Medicine, Hebei Institute of Traditional Chinese Medicine, Shijiazhuang, Hebei, China
| | - Ao Zhang
- Epidemiology, College of Global Public Health, New York University, 726 broad way, NY, New York, USA
| | - Yanmin Lu
- Institute of Acute Abdominal Diseases, Tianjin Nankai Hospital, Nankai, Tianjin, China
| | - Yanyang Li
- Department of Integrated Traditional Chinese and Western Medicine, Tianjin Medical University Cancer Institute and Hospital, Hexi, Tianjin, China
| | - Shichao Lv
- Department of Cardiovascular Medicine, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Nankai, Tianjin, China.
| | - Junping Zhang
- Department of Cardiovascular Medicine, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Nankai, Tianjin, China.
| |
Collapse
|