1
|
Fatima H, Singh D, Muhammad H, Acharya S, Aziz MA. Improving the use of CRISPR/Cas9 gene editing machinery as a cancer therapeutic tool with the help of nanomedicine. 3 Biotech 2025; 15:17. [PMID: 39711922 PMCID: PMC11656010 DOI: 10.1007/s13205-024-04186-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 11/22/2024] [Indexed: 12/24/2024] Open
Abstract
CRISPR-Cas9 (clustered regularly interspaced short palindromic repeats-associated protein 9) has revolutionized gene editing tools and paved the way for innovations in medical research for disease diagnosis and treatment. However, better specificity and efficient delivery of this gene machinery make it challenging to successfully edit genes for treating various diseases. This is mainly due to cellular barriers, instability in biological environments, and various off-target effects that prohibit safe and efficient delivery under in vivo conditions. This review examines several delivery modes [plasmid, mRNA, RNP (ribonucleoprotein)] and methods for the CRISPR-Cas9 system delivery, focusing on its potential applications in cancer therapy. Biocompatibility and cytotoxicity are crucial factors determining their safe and effective use. Various nanomaterials have been reviewed for their biocompatibility, limitations, and challenges in treating cancer. Among the reviewed nanoparticles, lipid nanoparticles (LNPs) stand out for their biocompatibility due to their biomimetic lipid bilayer that effectively delivers CRISPR/Cas9 cargoes while reducing toxicity. We discuss challenges in in vivo delivery and associated findings such as encapsulation, target delivery, controlled release, and endosomal escape. Future directions involve addressing limitations and adapting CRISPR-Cas9 for clinical trials, ensuring its safe and effective use.
Collapse
Affiliation(s)
- Hina Fatima
- Polymer and Process Engineering Department, Indian Institute of Technology Roorkee, Uttarakhand, 247001 India
- College of Medicine, Alfaisal University, 11533 Riyadh, Saudi Arabia
| | - Dimple Singh
- Department of Paper Technology, Indian Institute of Technology, Roorkee, Uttarakhand 247001 India
| | - Huzaifa Muhammad
- College of Medicine, Alfaisal University, 11533 Riyadh, Saudi Arabia
| | - Swati Acharya
- Cancer Nanomedicine Lab, Interdisciplinary Nanotechnology Center, Aligarh Muslim University, Aligarh, UP 202002 India
| | - Mohammad Azhar Aziz
- Cancer Nanomedicine Lab, Interdisciplinary Nanotechnology Center, Aligarh Muslim University, Aligarh, UP 202002 India
- Cancer Nanomedicine Consortium, Aligarh Muslim University, Aligarh, UP 202002 India
| |
Collapse
|
2
|
Dinh L, Blackard JT, Robertson J, Atreya A, Horner S, Brown JL, Gomez LA, Beegle S, Mahon L, Eades W, Abdolmohammadpourbonab S, Liu W, Meeds HL, Fedders K, Twitty TD, Welge JA, Yan B. An updated overview on long-acting therapeutics for the prevention and treatment of human immunodeficiency virus (HIV) from a perspective of pharmaceutics. Int J Pharm 2024:125157. [PMID: 39746588 DOI: 10.1016/j.ijpharm.2024.125157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 12/10/2024] [Accepted: 12/30/2024] [Indexed: 01/04/2025]
Abstract
Conventional drug formulations release active pharmaceutical ingredients (APIs) immediately after administration, while long-acting (LA) drug products are designed for prolonged therapeutic effects, thereby reducing administration frequency and improving patient compliance. The development of LA therapeutics for chronic disease treatment has significantly helped patients adhere to their regimens, reducing the need for daily doses and easing the burden on healthcare systems. Advances in treatment have transformed Human Immunodeficiency Virus (HIV) into a manageable chronic disease, and efforts are underway to eliminate HIV in the future. Nowadays, antiretroviral therapies (ARTs) are widely available and accessible, daily oral pre-exposure prophylaxis (PrEP) has been highly effective and the new LA ARTs and LA PrEP are being actively pursued. The development of LA antiretrovirals for HIV has revolutionized the landscape of global implementation of HIV prevention and treatment. This article provides an overview of LA medicines (pills, injections, solid implants, and in situ forming depots) for the prevention and treatment of HIV from a pharmaceutics perspective, describing approved medicines, recognizing promising technologies, and discussing the pros and cons of poly (lactic-co-glycolic acid) (PLGA) particles, liposomes, hydrogels, and organogel formulations.
Collapse
Affiliation(s)
- Linh Dinh
- Division of Pharmaceutical Sciences, James L. Winkle College of Pharmacy, University of Cincinnati, Cincinnati, OH 45229, USA.
| | - Jason T Blackard
- Division of Digestive Diseases, Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, OH 45229 USA; Center for Addiction Research, University of Cincinnati College of Medicine, Cincinnati, OH 45219, USA
| | - Jaime Robertson
- Division of Infectious Diseases, Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Abby Atreya
- Division of Pharmaceutical Sciences, James L. Winkle College of Pharmacy, University of Cincinnati, Cincinnati, OH 45229, USA
| | - Shaina Horner
- Division of Pharmaceutical Sciences, James L. Winkle College of Pharmacy, University of Cincinnati, Cincinnati, OH 45229, USA
| | - Jennifer L Brown
- Department of Psychological Sciences, Purdue University, West Lafayette, IN 47907, USA
| | - Luis A Gomez
- Department of Psychological Sciences, Purdue University, West Lafayette, IN 47907, USA
| | - Stephen Beegle
- Department of Psychological Sciences, Purdue University, West Lafayette, IN 47907, USA
| | - Lanesa Mahon
- Division of Pharmaceutical Sciences, James L. Winkle College of Pharmacy, University of Cincinnati, Cincinnati, OH 45229, USA
| | - William Eades
- Division of Pharmaceutical Sciences, James L. Winkle College of Pharmacy, University of Cincinnati, Cincinnati, OH 45229, USA
| | - Shayan Abdolmohammadpourbonab
- Division of Pharmaceutical Sciences, James L. Winkle College of Pharmacy, University of Cincinnati, Cincinnati, OH 45229, USA
| | - William Liu
- Division of Pharmaceutical Sciences, James L. Winkle College of Pharmacy, University of Cincinnati, Cincinnati, OH 45229, USA
| | - Heidi L Meeds
- Division of Digestive Diseases, Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, OH 45229 USA
| | - Kevin Fedders
- Division of Digestive Diseases, Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, OH 45229 USA
| | - T Dylanne Twitty
- Department of Psychology, University of Cincinnati, Cincinnati, OH 45221, USA
| | - Jeffrey A Welge
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
| | - Bingfang Yan
- Division of Pharmaceutical Sciences, James L. Winkle College of Pharmacy, University of Cincinnati, Cincinnati, OH 45229, USA.
| |
Collapse
|
3
|
Chen X, Zheng M, Lin S, Huang M, Chen S, Chen S. The application of CRISPR/Cas9-based genome-wide screening to disease research. Mol Cell Probes 2024; 79:102004. [PMID: 39709065 DOI: 10.1016/j.mcp.2024.102004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 12/16/2024] [Accepted: 12/17/2024] [Indexed: 12/23/2024]
Abstract
High-throughput genetic screening serves as an indispensable approach for deciphering gene functions and the intricate relationships between phenotypes and genotypes. The CRISPR/Cas9 system, with its ability to precisely edit genomes on a large scale, has revolutionized the field by enabling the construction of comprehensive genomic libraries. This technology has become a cornerstone for genome-wide screenings in disease research. This review offers a comprehensive examination of how CRISPR/Cas9-based genetic screening has been leveraged to uncover genes that play a role in disease mechanisms, focusing on areas such as cancer development and viral replication processes. The insights presented in this review hold promise for the development of novel therapeutic strategies and precision medicine approaches.
Collapse
Affiliation(s)
- Xiuqin Chen
- Institute of Animal Husbandry and Veterinary Medicine, Fujian Academy of Agricultural Science, Fuzhou, Fujian, 350013, China; Fujian Animal Diseases Control Technology Development Center, Fuzhou, Fujian, 350013, China
| | - Min Zheng
- Institute of Animal Husbandry and Veterinary Medicine, Fujian Academy of Agricultural Science, Fuzhou, Fujian, 350013, China; Fujian Animal Diseases Control Technology Development Center, Fuzhou, Fujian, 350013, China
| | - Su Lin
- Institute of Animal Husbandry and Veterinary Medicine, Fujian Academy of Agricultural Science, Fuzhou, Fujian, 350013, China; Fujian Animal Diseases Control Technology Development Center, Fuzhou, Fujian, 350013, China
| | - Meiqing Huang
- Institute of Animal Husbandry and Veterinary Medicine, Fujian Academy of Agricultural Science, Fuzhou, Fujian, 350013, China; Fujian Animal Diseases Control Technology Development Center, Fuzhou, Fujian, 350013, China
| | - Shaoying Chen
- Institute of Animal Husbandry and Veterinary Medicine, Fujian Academy of Agricultural Science, Fuzhou, Fujian, 350013, China; Fujian Animal Diseases Control Technology Development Center, Fuzhou, Fujian, 350013, China
| | - Shilong Chen
- Institute of Animal Husbandry and Veterinary Medicine, Fujian Academy of Agricultural Science, Fuzhou, Fujian, 350013, China; Fujian Animal Diseases Control Technology Development Center, Fuzhou, Fujian, 350013, China.
| |
Collapse
|
4
|
Van R, Pan X, Rostami S, Liu J, Agarwal PK, Brooks B, Rajan R, Shao Y. Exploring CRISPR-Cas9 HNH-Domain-Catalyzed DNA Cleavage Using Accelerated Quantum Mechanical Molecular Mechanical Free Energy Simulation. Biochemistry 2024. [PMID: 39680038 DOI: 10.1021/acs.biochem.4c00651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
The target DNA (tDNA) cleavage catalyzed by the CRISPR Cas9 enzyme is a critical step in the Cas9-based genome editing technologies. Previously, the tDNA cleavage from an active SpyCas9 enzyme conformation was modeled by Palermo and co-workers (Nierzwicki et al., Nat. Catal. 2022 5, 912) using ab initio quantum mechanical molecular mechanical (ai-QM/MM) free energy simulations, where the free energy barrier was found to be more favorable than that from a pseudoactive enzyme conformation. In this work, we performed ai-QM/MM simulations based on another catalytically active conformation (PDB 7Z4J) of the Cas9 HNH domain from cryo-electron microscopy experiments. For the wildtype enzyme, we acquired a free energy profile for the tDNA cleavage that is largely consistent with the previous report. Furthermore, we explored the role of the active-site K866 residue on the catalytic efficiency by modeling the K866A mutant and found that the K866A mutation increased the reaction free energy barrier, which is consistent with the experimentally observed reduction in the enzyme activity.
Collapse
Affiliation(s)
- Richard Van
- Department of Chemistry and Biochemistry, University of Oklahoma, 101 Stephenson Pkwy, Norman, Oklahoma 73019, United States
- Laboratory of Computational Biology, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Xiaoliang Pan
- Department of Chemistry and Biochemistry, University of Oklahoma, 101 Stephenson Pkwy, Norman, Oklahoma 73019, United States
| | - Saadi Rostami
- Department of Chemistry and Biochemistry, University of Oklahoma, 101 Stephenson Pkwy, Norman, Oklahoma 73019, United States
| | - Jin Liu
- Department of Pharmaceutical Sciences, University of North Texas System College of Pharmacy, University of North Texas Health Science Center, Fort Worth, Texas 76107, United States
| | - Pratul K Agarwal
- Department of Physiological Sciences and High Performance Computing Center, Oklahoma State University, 106 Math Sciences, Stillwater, Oklahoma 74078, United States
| | - Bernard Brooks
- Laboratory of Computational Biology, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Rakhi Rajan
- Department of Chemistry and Biochemistry, University of Oklahoma, 101 Stephenson Pkwy, Norman, Oklahoma 73019, United States
| | - Yihan Shao
- Department of Chemistry and Biochemistry, University of Oklahoma, 101 Stephenson Pkwy, Norman, Oklahoma 73019, United States
| |
Collapse
|
5
|
Aoki Y. Allele-specific CRISPR-Cas9 editing inactivates a single-nucleotide variant associated with collagen VI muscular dystrophy. MOLECULAR THERAPY. NUCLEIC ACIDS 2024; 35:102330. [PMID: 39380711 PMCID: PMC11460449 DOI: 10.1016/j.omtn.2024.102330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/10/2024]
Affiliation(s)
- Yoshitsugu Aoki
- Department of Molecular Therapy, National Institute of Neuroscience, National Center of Neurology and Psychiatry (NCNP), Tokyo, Japan
| |
Collapse
|
6
|
Song B, Wu X, Zeng Y. Methyltransferase-like 3 represents a prospective target for the diagnosis and treatment of kidney diseases. Hum Genomics 2024; 18:125. [PMID: 39538346 PMCID: PMC11562609 DOI: 10.1186/s40246-024-00692-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Accepted: 11/01/2024] [Indexed: 11/16/2024] Open
Abstract
Kidney disease is marked by complex pathological mechanisms and significant therapeutic hurdles, resulting in high morbidity and mortality rates globally. A deeper understanding of the fundamental processes involved can aid in identifying novel therapeutic targets and improving treatment efficacy. Current comprehensive data analyses indicate the involvement of methyltransferase-like 3 (METTL3) and its role in RNA N6-methyladenosine methylation in various renal pathologies, including acute kidney injury, renal fibrosis, and chronic kidney disease. However, there is a paucity of thorough reviews that clarify the functional mechanisms of METTL3 and evaluate its importance in enhancing therapeutic outcomes. This review seeks to systematically examine the roles, mechanisms, and potential clinical applications of METTL3 in renal diseases. The findings presented suggest that METTL3 is implicated in the etiology and exacerbation of kidney disorders, affecting their onset, progression, malignancy, and responsiveness to chemotherapeutic agents through the regulation of specific genetic pathways. In conclusion, this review underscores a detrimental correlation between METTL3 and kidney diseases, highlighting the therapeutic promise of targeting METTL3. Additionally, it offers critical insights for researchers concerning the diagnosis, prognosis, and treatment strategies for renal conditions.
Collapse
Affiliation(s)
- Bin Song
- Department of Nephrology, People's Hospital of Deyang City, Deyang, 618000, China
| | - Xiaolong Wu
- Department of Nephrology, People's Hospital of Deyang City, Deyang, 618000, China
| | - Yan Zeng
- Department of Pediatrics, People's Hospital of Deyang City, No. 173, Section 1, Taishan North Road, Deyang, Sichuan Province, 618000, China.
| |
Collapse
|
7
|
Masarwy R, Stotsky-Oterin L, Elisha A, Hazan-Halevy I, Peer D. Delivery of nucleic acid based genome editing platforms via lipid nanoparticles: Clinical applications. Adv Drug Deliv Rev 2024; 211:115359. [PMID: 38857763 DOI: 10.1016/j.addr.2024.115359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 05/17/2024] [Accepted: 06/07/2024] [Indexed: 06/12/2024]
Abstract
CRISPR/Cas technology presents a promising approach for treating a wide range of diseases, including cancer and genetic disorders. Despite its potential, the translation of CRISPR/Cas into effective in-vivo gene therapy encounters challenges, primarily due to the need for safe and efficient delivery mechanisms. Lipid nanoparticles (LNPs), FDA-approved for RNA delivery, show potential for delivering also CRISPR/Cas, offering the capability to efficiently encapsulate large mRNA molecules with single guide RNAs. However, achieving precise targeting in-vivo remains a significant obstacle, necessitating further research into optimizing LNP formulations. Strategies to enhance specificity, such as modifying LNP structures and incorporating targeting ligands, are explored to improve organ and cell type targeting. Furthermore, the development of base and prime editing technology presents a potential breakthrough, offering precise modifications without generating double-strand breaks (DSBs). Prime editing, particularly when delivered via targeted LNPs, holds promise for treating diverse diseases safely and precisely. This review assesses both the progress made and the persistent challenges faced in using LNP-encapsulated CRISPR-based technologies for therapeutic purposes, with a particular focus on clinical translation.
Collapse
Affiliation(s)
- Razan Masarwy
- Laboratory of Precision Nanomedicine, The Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel; Department of Materials Sciences and Engineering, Iby and Aladar Fleischman Faculty of Engineering, Tel Aviv University, Tel Aviv, Israel; Center for Nanoscience and Nanotechnology, Tel Aviv University, Tel Aviv, Israel; School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Lior Stotsky-Oterin
- Laboratory of Precision Nanomedicine, The Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel; Department of Materials Sciences and Engineering, Iby and Aladar Fleischman Faculty of Engineering, Tel Aviv University, Tel Aviv, Israel; Center for Nanoscience and Nanotechnology, Tel Aviv University, Tel Aviv, Israel
| | - Aviad Elisha
- Laboratory of Precision Nanomedicine, The Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel; Department of Materials Sciences and Engineering, Iby and Aladar Fleischman Faculty of Engineering, Tel Aviv University, Tel Aviv, Israel; Center for Nanoscience and Nanotechnology, Tel Aviv University, Tel Aviv, Israel; School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Inbal Hazan-Halevy
- Laboratory of Precision Nanomedicine, The Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel; Department of Materials Sciences and Engineering, Iby and Aladar Fleischman Faculty of Engineering, Tel Aviv University, Tel Aviv, Israel; Center for Nanoscience and Nanotechnology, Tel Aviv University, Tel Aviv, Israel.
| | - Dan Peer
- Laboratory of Precision Nanomedicine, The Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel; Department of Materials Sciences and Engineering, Iby and Aladar Fleischman Faculty of Engineering, Tel Aviv University, Tel Aviv, Israel; Center for Nanoscience and Nanotechnology, Tel Aviv University, Tel Aviv, Israel.
| |
Collapse
|
8
|
Soroudi S, Jaafari MR, Arabi L. Lipid nanoparticle (LNP) mediated mRNA delivery in cardiovascular diseases: Advances in genome editing and CAR T cell therapy. J Control Release 2024; 372:113-140. [PMID: 38876358 DOI: 10.1016/j.jconrel.2024.06.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 06/05/2024] [Accepted: 06/09/2024] [Indexed: 06/16/2024]
Abstract
Cardiovascular diseases (CVDs) are the leading cause of global mortality among non-communicable diseases. Current cardiac regeneration treatments have limitations and may lead to adverse reactions. Hence, innovative technologies are needed to address these shortcomings. Messenger RNA (mRNA) emerges as a promising therapeutic agent due to its versatility in encoding therapeutic proteins and targeting "undruggable" conditions. It offers low toxicity, high transfection efficiency, and controlled protein production without genome insertion or mutagenesis risk. However, mRNA faces challenges such as immunogenicity, instability, and difficulty in cellular entry and endosomal escape, hindering its clinical application. To overcome these hurdles, lipid nanoparticles (LNPs), notably used in COVID-19 vaccines, have a great potential to deliver mRNA therapeutics for CVDs. This review highlights recent progress in mRNA-LNP therapies for CVDs, including Myocardial Infarction (MI), Heart Failure (HF), and hypercholesterolemia. In addition, LNP-mediated mRNA delivery for CAR T-cell therapy and CRISPR/Cas genome editing in CVDs and the related clinical trials are explored. To enhance the efficiency, safety, and clinical translation of mRNA-LNPs, advanced technologies like artificial intelligence (AGILE platform) in RNA structure design, and optimization of LNP formulation could be integrated. We conclude that the strategies to facilitate the extra-hepatic delivery and targeted organ tropism of mRNA-LNPs (SORT, ASSET, SMRT, and barcoded LNPs) hold great prospects to accelerate the development and translation of mRNA-LNPs in CVD treatment.
Collapse
Affiliation(s)
- Setareh Soroudi
- School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran; Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mahmoud Reza Jaafari
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran; Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Leila Arabi
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
9
|
Rueda J, Segers S, Hopster J, Kudlek K, Liedo B, Marchiori S, Danaher J. Anticipatory gaps challenge the public governance of heritable human genome editing. JOURNAL OF MEDICAL ETHICS 2024:jme-2023-109801. [PMID: 38955479 DOI: 10.1136/jme-2023-109801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 06/14/2024] [Indexed: 07/04/2024]
Abstract
Considering public moral attitudes is a hallmark of the anticipatory governance of emerging biotechnologies, such as heritable human genome editing. However, such anticipatory governance often overlooks that future morality is open to change and that future generations may perform different moral assessments on the very biotechnologies we are trying to govern in the present. In this article, we identify an 'anticipatory gap' that has not been sufficiently addressed in the discussion on the public governance of heritable genome editing, namely, uncertainty about the moral visions of future generations about the emerging applications that we are currently attempting to govern now. This paper motivates the relevance of this anticipatory gap, identifying the challenges it generates and offering various recommendations so that moral uncertainty does not lead to governance paralysis with regard to human germline genome editing.
Collapse
Affiliation(s)
- Jon Rueda
- University of Basque Country, Leioa, Spain
| | - Seppe Segers
- Department of Philosophy and Moral Sciences, Universiteit Gent, Gent, Belgium
| | - Jeroen Hopster
- Ethics Institute, Utrecht University, Utrecht, The Netherlands
| | - Karolina Kudlek
- Ethics Institute, Utrecht University, Utrecht, The Netherlands
| | - Belén Liedo
- Instituto de Filosfía, CSIC, Madrid, Spain
- Complutense University of Madrid, Madrid, Spain
| | | | - John Danaher
- National University of Ireland Galway, Galway, Ireland
| |
Collapse
|
10
|
Khoshandam M, Soltaninejad H, Hamidieh AA, Hosseinkhani S. CRISPR, CAR-T, and NK: Current applications and future perspectives. Genes Dis 2024; 11:101121. [PMID: 38545126 PMCID: PMC10966184 DOI: 10.1016/j.gendis.2023.101121] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Accepted: 08/16/2023] [Indexed: 11/11/2024] Open
Abstract
Chimeric antigen receptor T (CAR-T) cell therapy represents a breakthrough in personalized cancer treatments. In this regard, synthetic receptors comprised of antigen recognition domains, signaling, and stimulatory domains are used to reprogram T-cells to target tum or cells and destroy them. Despite the success of this approach in refractory B-cell malignancies, the optimal potency of CAR T-cell therapy for many other cancers, particularly solid tumors, has not been validated. Natural killer cells are powerful cytotoxic lymphocytes specialized in recognizing and dispensing the tumor cells in coordination with other anti-tumor immunity cells. Based on these studies, many investigations are focused on the accurate designing of CAR T-cells with clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9) system or other novel gene editing tools that can induce hereditary changes with or without the presence of a double-stranded break into the genome. These methodologies can be specifically focused on negative controllers of T-cells, induce modifications to a particular gene, and produce reproducible, safe, and powerful allogeneic CAR T-cells for on-demand cancer immunotherapy. The improvement of the CRISPR/Cas9 innovation offers an adaptable and proficient gene-editing capability in activating different pathways to help natural killer cells interact with novel CARs to particularly target tumor cells. Novel achievements and future challenges of combining next-generation CRISPR-Cas9 gene editing tools to optimize CAR T-cell and natural killer cell treatment for future clinical trials toward the foundation of modern cancer treatments have been assessed in this review.
Collapse
Affiliation(s)
- Mohadeseh Khoshandam
- Department of Reproductive Biology, Academic Center for Education, Culture, and Research (ACECR), Qom branch 3716986466, Iran
- National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran 14965/161, Iran
| | - Hossein Soltaninejad
- Department of stem cells technology and Tissue Regeneration, Faculty of Interdisciplinary Science and Technologies, Tarbiat Modares University, Tehran 15614, Iran
- Pediatric Cell Therapy and Gene Therapy Research Center, Gene, Cell & Tissue Research Institute, Tehran University of Medical Sciences, Tehran 1417935840, Iran
| | - Amir Ali Hamidieh
- Pediatric Cell Therapy and Gene Therapy Research Center, Gene, Cell & Tissue Research Institute, Tehran University of Medical Sciences, Tehran 1417935840, Iran
| | - Saman Hosseinkhani
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran 15614, Iran
| |
Collapse
|
11
|
Walsh C, Jin S. Induced Pluripotent Stem Cells and CRISPR-Cas9 Innovations for Treating Alpha-1 Antitrypsin Deficiency and Glycogen Storage Diseases. Cells 2024; 13:1052. [PMID: 38920680 PMCID: PMC11201389 DOI: 10.3390/cells13121052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 06/12/2024] [Accepted: 06/14/2024] [Indexed: 06/27/2024] Open
Abstract
Human induced pluripotent stem cell (iPSC) and CRISPR-Cas9 gene-editing technologies have become powerful tools in disease modeling and treatment. By harnessing recent biotechnological advancements, this review aims to equip researchers and clinicians with a comprehensive and updated understanding of the evolving treatment landscape for metabolic and genetic disorders, highlighting how iPSCs provide a unique platform for detailed pathological modeling and pharmacological testing, driving forward precision medicine and drug discovery. Concurrently, CRISPR-Cas9 offers unprecedented precision in gene correction, presenting potential curative therapies that move beyond symptomatic treatment. Therefore, this review examines the transformative role of iPSC technology and CRISPR-Cas9 gene editing in addressing metabolic and genetic disorders such as alpha-1 antitrypsin deficiency (A1AD) and glycogen storage disease (GSD), which significantly impact liver and pulmonary health and pose substantial challenges in clinical management. In addition, this review discusses significant achievements alongside persistent challenges such as technical limitations, ethical concerns, and regulatory hurdles. Future directions, including innovations in gene-editing accuracy and therapeutic delivery systems, are emphasized for next-generation therapies that leverage the full potential of iPSC and CRISPR-Cas9 technologies.
Collapse
Affiliation(s)
| | - Sha Jin
- Department of Biomedical Engineering, Thomas J. Watson College of Engineering and Applied Sciences, State University of New York at Binghamton, Binghamton, NY 13902, USA
| |
Collapse
|
12
|
Hussen BM, Najmadden ZB, Abdullah SR, Rasul MF, Mustafa SA, Ghafouri-Fard S, Taheri M. CRISPR/Cas9 gene editing: a novel strategy for fighting drug resistance in respiratory disorders. Cell Commun Signal 2024; 22:329. [PMID: 38877530 PMCID: PMC11179281 DOI: 10.1186/s12964-024-01713-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 06/12/2024] [Indexed: 06/16/2024] Open
Abstract
Respiratory disorders are among the conditions that affect the respiratory system. The healthcare sector faces challenges due to the emergence of drug resistance to prescribed medications for these illnesses. However, there is a technology called CRISPR/Cas9, which uses RNA to guide DNA targeting. This technology has revolutionized our ability to manipulate and visualize the genome, leading to advancements in research and treatment development. It can effectively reverse epigenetic alterations that contribute to drug resistance. Some studies focused on health have shown that targeting genes using CRISPR/Cas9 can be challenging when it comes to reducing drug resistance in patients with respiratory disorders. Nevertheless, it is important to acknowledge the limitations of this technology, such as off-target effects, immune system reactions to Cas9, and challenges associated with delivery methods. Despite these limitations, this review aims to provide knowledge about CRISPR/Cas9 genome editing tools and explore how they can help overcome resistance in patients with respiratory disorders. Additionally, this study discusses concerns related to applications of CRISPR and provides an overview of successful clinical trial studies.
Collapse
Affiliation(s)
- Bashdar Mahmud Hussen
- Department of Biomedical Sciences, College of Science, Cihan University-Erbil, Erbil, 44001, Kurdistan Region, Iraq
- Department of Clinical Analysis, College of Pharmacy, Hawler Medical University, Kurdistan Region, Erbil, Iraq
| | - Zana Baqi Najmadden
- Research Center, University of Halabja, Halabja, 46018, Kurdistan region, Iraq
| | - Snur Rasool Abdullah
- Medical Laboratory Science, College of Health Sciences, Lebanese French University, Kurdistan Region, Erbil, Iraq
| | - Mohammed Fatih Rasul
- Department of Pharmaceutical Basic Science, Tishk International University, Kurdistan Region, Iraq
| | - Suhad A Mustafa
- General Directorate of Scientific Research Center, Salahaddin University-Erbil, Erbil, Kurdistan Region, Iraq
| | - Soudeh Ghafouri-Fard
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Mohammad Taheri
- Institute of Human Genetics, Jena University Hospital, Jena, Germany.
| |
Collapse
|
13
|
Bonilla DA, Orozco CA, Forero DA, Odriozola A. Techniques, procedures, and applications in host genetic analysis. ADVANCES IN GENETICS 2024; 111:1-79. [PMID: 38908897 DOI: 10.1016/bs.adgen.2024.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/24/2024]
Abstract
This chapter overviews genetic techniques' fundamentals and methodological features, including different approaches, analyses, and applications that have contributed to advancing health and disease. The aim is to describe laboratory methodologies and analyses employed to understand the genetic landscape of different biological contexts, from conventional techniques to cutting-edge technologies. Besides describing detailed aspects of the polymerase chain reaction (PCR) and derived types as one of the principles for many novel techniques, we also discuss microarray analysis, next-generation sequencing, and genome editing technologies such as transcription activator-like effector nucleases (TALENs) and the clustered regularly interspaced short palindromic repeats (CRISPR) and CRISPR-associated (Cas) systems. These techniques study several phenotypes, ranging from autoimmune disorders to viral diseases. The significance of integrating diverse genetic methodologies and tools to understand host genetics comprehensively and addressing the ethical, legal, and social implications (ELSI) associated with using genetic information is highlighted. Overall, the methods, procedures, and applications in host genetic analysis provided in this chapter furnish researchers and practitioners with a roadmap for navigating the dynamic landscape of host-genome interactions.
Collapse
Affiliation(s)
- Diego A Bonilla
- Hologenomiks Research Group, Department of Genetics, Physical Anthropology and Animal Physiology, University of the Basque Country (UPV/EHU), Leioa, Spain; Research Division, Dynamical Business & Science Society-DBSS International SAS, Bogotá, Colombia.
| | - Carlos A Orozco
- Grupo de Investigación en Biología del Cáncer, Instituto Nacional de Cancerología de Colombia, Bogotá, Colombia
| | - Diego A Forero
- School of Health and Sport Sciences, Fundación Universitaria del Área Andina, Bogotá, Colombia
| | - Adrián Odriozola
- Hologenomiks Research Group, Department of Genetics, Physical Anthropology and Animal Physiology, University of the Basque Country (UPV/EHU), Leioa, Spain
| |
Collapse
|
14
|
Sharrar A, Meacham Z, Staples-Ager J, Arake de Tacca L, Rabuka D, Collingwood T, Schelle M. Viral Delivery of Compact CRISPR-Cas12f for Gene Editing Applications. CRISPR J 2024; 7:150-155. [PMID: 38695159 DOI: 10.1089/crispr.2024.0010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/27/2024] Open
Abstract
Treating human genetic conditions in vivo requires efficient delivery of the CRISPR gene editing machinery to the affected cells and organs. The gene editing field has seen clinical advances with ex vivo therapies and with in vivo delivery to the liver using lipid nanoparticle technology. Adeno-associated virus (AAV) serotypes have been discovered and engineered to deliver genetic material to nearly every organ in the body. However, the large size of most CRISPR-Cas systems limits packaging into the viral genome and reduces drug development flexibility and manufacturing efficiency. Here, we demonstrate efficient CRISPR gene editing using a miniature CRISPR-Cas12f system with expanded genome targeting packaged into AAV particles. We identified efficient guides for four therapeutic gene targets and encoded the guides and the Cas12f nuclease into a single AAV. We then demonstrate editing in multiple cell lines, patient fibroblasts, and primary hepatocytes. We then screened the cells for off-target editing, demonstrating the safety of the therapeutics. These results represent an important step in applying CRISPR editing to diverse genetic sequences and organs in the body.
Collapse
Affiliation(s)
| | | | | | | | - David Rabuka
- Acrigen Biosciences Inc., Berkeley, California, USA
| | | | | |
Collapse
|
15
|
Qin M, Deng C, Wen L, Luo G, Meng Y. CRISPR-Cas and CRISPR-based screening system for precise gene editing and targeted cancer therapy. J Transl Med 2024; 22:516. [PMID: 38816739 PMCID: PMC11138051 DOI: 10.1186/s12967-024-05235-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 04/24/2024] [Indexed: 06/01/2024] Open
Abstract
Target cancer therapy has been developed for clinical cancer treatment based on the discovery of CRISPR (clustered regularly interspaced short palindromic repeat) -Cas system. This forefront and cutting-edge scientific technique improves the cancer research into molecular level and is currently widely utilized in genetic investigation and clinical precision cancer therapy. In this review, we summarized the genetic modification by CRISPR/Cas and CRISPR screening system, discussed key components for successful CRISPR screening, including Cas enzymes, guide RNA (gRNA) libraries, target cells or organs. Furthermore, we focused on the application for CAR-T cell therapy, drug target, drug screening, or drug selection in both ex vivo and in vivo with CRISPR screening system. In addition, we elucidated the advantages and potential obstacles of CRISPR system in precision clinical medicine and described the prospects for future genetic therapy.In summary, we provide a comprehensive and practical perspective on the development of CRISPR/Cas and CRISPR screening system for the treatment of cancer defects, aiming to further improve the precision and accuracy for clinical treatment and individualized gene therapy.
Collapse
Affiliation(s)
- Mingming Qin
- Reproductive Medical Center, Affiliated Foshan Maternity & Child Healthcare Hospital, Southern Medical University (Foshan Women and Children Hospital), Foshan, Guangdong, 528000, China
- Department of Developmental Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Chunhao Deng
- Chinese Medicine and Translational Medicine R&D center, Zhuhai UM Science & Technology Research Institute, Zhuhai, Guangdong, 519031, China
| | - Liewei Wen
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai People's Hospital, Zhuhai Clinical Medical College of Jinan University, Zhuhai, Guangdong, 519000, China
| | - Guoqun Luo
- Reproductive Medical Center, Affiliated Foshan Maternity & Child Healthcare Hospital, Southern Medical University (Foshan Women and Children Hospital), Foshan, Guangdong, 528000, China.
| | - Ya Meng
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai People's Hospital, Zhuhai Clinical Medical College of Jinan University, Zhuhai, Guangdong, 519000, China.
| |
Collapse
|
16
|
An C, Li Z, Chen Y, Huang S, Yang F, Hu Y, Xu T, Zhang C, Ge S. The cGAS-STING pathway in cardiovascular diseases: from basic research to clinical perspectives. Cell Biosci 2024; 14:58. [PMID: 38720328 PMCID: PMC11080250 DOI: 10.1186/s13578-024-01242-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 04/29/2024] [Indexed: 05/12/2024] Open
Abstract
The cyclic guanosine monophosphate (GMP)-adenosine monophosphate (AMP) synthase-stimulator of interferon genes (cGAS-STING) signaling pathway, an important component of the innate immune system, is involved in the development of several diseases. Ectopic DNA-induced inflammatory responses are involved in several pathological processes. Repeated damage to tissues and metabolic organelles releases a large number of damage-associated molecular patterns (mitochondrial DNA, nuclear DNA, and exogenous DNA). The DNA fragments released into the cytoplasm are sensed by the sensor cGAS to initiate immune responses through the bridging protein STING. Many recent studies have revealed a regulatory role of the cGAS-STING signaling pathway in cardiovascular diseases (CVDs) such as myocardial infarction, heart failure, atherosclerosis, and aortic dissection/aneurysm. Furthermore, increasing evidence suggests that inhibiting the cGAS-STING signaling pathway can significantly inhibit myocardial hypertrophy and inflammatory cell infiltration. Therefore, this review is intended to identify risk factors for activating the cGAS-STING pathway to reduce risks and to simultaneously further elucidate the biological function of this pathway in the cardiovascular field, as well as its potential as a therapeutic target.
Collapse
Affiliation(s)
- Cheng An
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Anhui Medical University, No.218 Jixi Road, Hefei, 230032, Anhui, China
| | - Zhen Li
- Department of Orthopedics, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Yao Chen
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Anhui Medical University, No.218 Jixi Road, Hefei, 230032, Anhui, China
| | - Shaojun Huang
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Anhui Medical University, No.218 Jixi Road, Hefei, 230032, Anhui, China
| | - Fan Yang
- Department of Ophthalmology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Ying Hu
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, Jiangsu, China
| | - Tao Xu
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, Anhui, China
| | - Chengxin Zhang
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Anhui Medical University, No.218 Jixi Road, Hefei, 230032, Anhui, China.
| | - Shenglin Ge
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Anhui Medical University, No.218 Jixi Road, Hefei, 230032, Anhui, China.
| |
Collapse
|
17
|
Jia S, Liang R, Chen J, Liao S, Lin J, Li W. Emerging technology has a brilliant future: the CRISPR-Cas system for senescence, inflammation, and cartilage repair in osteoarthritis. Cell Mol Biol Lett 2024; 29:64. [PMID: 38698311 PMCID: PMC11067114 DOI: 10.1186/s11658-024-00581-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 04/19/2024] [Indexed: 05/05/2024] Open
Abstract
Osteoarthritis (OA), known as one of the most common types of aseptic inflammation of the musculoskeletal system, is characterized by chronic pain and whole-joint lesions. With cellular and molecular changes including senescence, inflammatory alterations, and subsequent cartilage defects, OA eventually leads to a series of adverse outcomes such as pain and disability. CRISPR-Cas-related technology has been proposed and explored as a gene therapy, offering potential gene-editing tools that are in the spotlight. Considering the genetic and multigene regulatory mechanisms of OA, we systematically review current studies on CRISPR-Cas technology for improving OA in terms of senescence, inflammation, and cartilage damage and summarize various strategies for delivering CRISPR products, hoping to provide a new perspective for the treatment of OA by taking advantage of CRISPR technology.
Collapse
Affiliation(s)
- Shicheng Jia
- Department of Sports Medicine and Rehabilitation, Peking University Shenzhen Hospital, Shenzhen, 518036, China
- Shantou University Medical College, Shantou, 515041, China
| | - Rongji Liang
- Shantou University Medical College, Shantou, 515041, China
| | - Jiayou Chen
- Department of Sports Medicine and Rehabilitation, Peking University Shenzhen Hospital, Shenzhen, 518036, China
- Shantou University Medical College, Shantou, 515041, China
| | - Shuai Liao
- Department of Bone and Joint, Peking University Shenzhen Hospital, Shenzhen, 518036, China
- Shenzhen University School of Medicine, Shenzhen, 518060, China
| | - Jianjing Lin
- Department of Sports Medicine and Rehabilitation, Peking University Shenzhen Hospital, Shenzhen, 518036, China.
| | - Wei Li
- Department of Sports Medicine and Rehabilitation, Peking University Shenzhen Hospital, Shenzhen, 518036, China.
| |
Collapse
|
18
|
Li X, Chen Z, Ye W, Yu J, Zhang X, Li Y, Niu Y, Ran S, Wang S, Luo Z, Zhao J, Hao Y, Zong J, Xia C, Xia J, Wu J. High-throughput CRISPR technology: a novel horizon for solid organ transplantation. Front Immunol 2024; 14:1295523. [PMID: 38239344 PMCID: PMC10794540 DOI: 10.3389/fimmu.2023.1295523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Accepted: 12/12/2023] [Indexed: 01/22/2024] Open
Abstract
Organ transplantation is the gold standard therapy for end-stage organ failure. However, the shortage of available grafts and long-term graft dysfunction remain the primary barriers to organ transplantation. Exploring approaches to solve these issues is urgent, and CRISPR/Cas9-based transcriptome editing provides one potential solution. Furthermore, combining CRISPR/Cas9-based gene editing with an ex vivo organ perfusion system would enable pre-implantation transcriptome editing of grafts. How to determine effective intervention targets becomes a new problem. Fortunately, the advent of high-throughput CRISPR screening has dramatically accelerated the effective targets. This review summarizes the current advancements, utilization, and workflow of CRISPR screening in various immune and non-immune cells. It also discusses the ongoing applications of CRISPR/Cas-based gene editing in transplantation and the prospective applications of CRISPR screening in solid organ transplantation.
Collapse
Affiliation(s)
- Xiaohan Li
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Center for Translational Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhang Chen
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Center for Translational Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Weicong Ye
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Center for Translational Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jizhang Yu
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Center for Translational Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xi Zhang
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Center for Translational Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuan Li
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Center for Translational Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuqing Niu
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Center for Translational Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shuan Ran
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Center for Translational Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Song Wang
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Center for Translational Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zilong Luo
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Center for Translational Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jiulu Zhao
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Center for Translational Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yanglin Hao
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Center for Translational Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Junjie Zong
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Center for Translational Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chengkun Xia
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jiahong Xia
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Center for Translational Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Organ Transplantation, Ministry of Education, National Health Commission (NHC) Key Laboratory of Organ Transplantation, Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, China
| | - Jie Wu
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Center for Translational Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Organ Transplantation, Ministry of Education, National Health Commission (NHC) Key Laboratory of Organ Transplantation, Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, China
| |
Collapse
|
19
|
Rabaan AA, Al Fares MA, Almaghaslah M, Alpakistany T, Al Kaabi NA, Alshamrani SA, Alshehri AA, Almazni IA, Saif A, Hakami AR, Khamis F, Alfaresi M, Alsalem Z, Alsoliabi ZA, Al Amri KAS, Hassoueh AK, Mohapatra RK, Arteaga-Livias K, Alissa M. Application of CRISPR-Cas System to Mitigate Superbug Infections. Microorganisms 2023; 11:2404. [PMID: 37894063 PMCID: PMC10609045 DOI: 10.3390/microorganisms11102404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 09/15/2023] [Accepted: 09/18/2023] [Indexed: 10/29/2023] Open
Abstract
Multidrug resistance in bacterial strains known as superbugs is estimated to cause fatal infections worldwide. Migration and urbanization have resulted in overcrowding and inadequate sanitation, contributing to a high risk of superbug infections within and between different communities. The CRISPR-Cas system, mainly type II, has been projected as a robust tool to precisely edit drug-resistant bacterial genomes to combat antibiotic-resistant bacterial strains effectively. To entirely opt for its potential, advanced development in the CRISPR-Cas system is needed to reduce toxicity and promote efficacy in gene-editing applications. This might involve base-editing techniques used to produce point mutations. These methods employ designed Cas9 variations, such as the adenine base editor (ABE) and the cytidine base editor (CBE), to directly edit single base pairs without causing DSBs. The CBE and ABE could change a target base pair into a different one (for example, G-C to A-T or C-G to A-T). In this review, we addressed the limitations of the CRISPR/Cas system and explored strategies for circumventing these limitations by applying diverse base-editing techniques. Furthermore, we also discussed recent research showcasing the ability of base editors to eliminate drug-resistant microbes.
Collapse
Affiliation(s)
- Ali A. Rabaan
- Molecular Diagnostic Laboratory, Johns Hopkins Aramco Healthcare, Dhahran 31311, Saudi Arabia
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia
- Department of Public Health and Nutrition, The University of Haripur, Haripur 22610, Pakistan
| | - Mona A. Al Fares
- Department of Internal Medicine, King Abdulaziz University Hospital, Jeddah 21589, Saudi Arabia
| | - Manar Almaghaslah
- Infectious Disease Division, Department of Internal Medicine, Dammam Medical Complex, Dammam 32245, Saudi Arabia
| | - Tariq Alpakistany
- Bacteriology Department, Public Health Laboratory, Taif 26521, Saudi Arabia
| | - Nawal A. Al Kaabi
- College of Medicine and Health Science, Khalifa University, Abu Dhabi 127788, United Arab Emirates
- Sheikh Khalifa Medical City, Abu Dhabi Health Services Company (SEHA), Abu Dhabi 51900, United Arab Emirates
| | - Saleh A. Alshamrani
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Najran University, Najran 61441, Saudi Arabia
| | - Ahmad A. Alshehri
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Najran University, Najran 61441, Saudi Arabia
| | - Ibrahim Abdullah Almazni
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Najran University, Najran 61441, Saudi Arabia
| | - Ahmed Saif
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha 62223, Saudi Arabia
| | - Abdulrahim R. Hakami
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha 62223, Saudi Arabia
| | - Faryal Khamis
- Infection Diseases Unit, Department of Internal Medicine, Royal Hospital, Muscat 1331, Oman
| | - Mubarak Alfaresi
- Department of Pathology and Laboratory Medicine, Zayed Military Hospital, Abu Dhabi 3740, United Arab Emirates
- Department of Pathology, College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai 505055, United Arab Emirates
| | - Zainab Alsalem
- Department of Epidemic Diseases Research, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia
| | | | | | - Amal K. Hassoueh
- Pharmacy Department, King Saud Medical City, Riyadh 7790, Saudi Arabia
| | - Ranjan K. Mohapatra
- Department of Chemistry, Government College of Engineering, Keonjhar 758002, India
| | - Kovy Arteaga-Livias
- Escuela de Medicina-Filial Ica, Universidad Privada San Juan Bautista, Ica 11000, Peru
- Escuela de Medicina, Universidad Nacional Hermilio Valdizán, Huanuco 10000, Peru
| | - Mohammed Alissa
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| |
Collapse
|