1
|
Hu H, Wu Y, Yuan S, Li H, Xiao S, Liu J, Li Y, Xie X, Gong Z, Zhong S, Xu H. Identification of a novel tRNA-derived small RNA fragment, tRF-16-2YU04DE, with the potential of inhibiting endometrial cancer progression. Med Oncol 2025; 42:173. [PMID: 40261523 DOI: 10.1007/s12032-025-02716-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Accepted: 04/14/2025] [Indexed: 04/24/2025]
Abstract
As the second most prevalent gynecological malignancy, the incidence and mortality of endometrial cancer (EC) are rising. Transfer RNA-derived small RNAs (tsRNAs), a novel class of non-coding RNAs, are frequently dysregulated in multiple cancers. Nevertheless, its precise roles in EC remain to be elucidated. High-throughput sequencing technology was employed to characterize the expression profiles of tsRNAs in EC and healthy controls (HCs) tissues, followed by differential expression analyses. Quantitative real-time polymerase chain reaction (RT-qPCR) was applied to identify the target tsRNA for further biological functions experiments. Bioinformatics followed with RT-qPCR and Western blot systematically explore potential target genes and delineated the underlying molecular mechanisms. Eventually, a total of 284 tsRNAs were identified in both EC and HC tissues with 26 upregulated and 47 downregulated significantly. tRF-16-2YU04DE was finally identified as the target molecule. Functional experiments revealed that the overexpression of tRF-16-2YU04DE not only inhibited the proliferation, migration, and invasion of EC cells, but also promoted apoptosis and disrupted cell cycle progression. Although the downregulation of tRF-16-2YU04DE significantly promotes the proliferation, migration, and invasion of EC cells, it does not have a notable effect on cell apoptosis or the cell cycle. Bioinformatics analyses combined with RT-qPCR and Western blot results showed KLF5 expression was particularly downregulated by the overexpression of tRF-16-2YU04DE. tRF-16-2YU04DE-inhibiting EC progression in vitro may serve as a promising therapeutic target. The underlying mechanism is likely linked to its RNA silencing function, specifically targeting the 3' untranslated region (3' -UTR) of KLF5 mRNA.
Collapse
Affiliation(s)
- Huanhuan Hu
- Department of Gynecology, Women's Hospital of Nanjing Medical University & Nanjing Women and Children's Healthcare Hospital, 123 Tianfeixiang, Nanjing, 210004, China
| | - Yinan Wu
- Department of Pathology, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China
| | - Shenglong Yuan
- Department of Gynecology, Women's Hospital of Nanjing Medical University & Nanjing Women and Children's Healthcare Hospital, 123 Tianfeixiang, Nanjing, 210004, China
| | - Huixin Li
- Department of Gynecology, Women's Hospital of Nanjing Medical University & Nanjing Women and Children's Healthcare Hospital, 123 Tianfeixiang, Nanjing, 210004, China
| | - Shuyue Xiao
- Department of Gynecology, Women's Hospital of Nanjing Medical University & Nanjing Women and Children's Healthcare Hospital, 123 Tianfeixiang, Nanjing, 210004, China
| | - Jianyao Liu
- Department of Radiation Oncology, The Affiliated Cancer Hospital of Nanjing Medical University & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, Nanjing, 210009, China
| | - Yue Li
- Department of Radiation Oncology, The Affiliated Cancer Hospital of Nanjing Medical University & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, Nanjing, 210009, China
| | - Xinyi Xie
- Department of Gynecology, Women's Hospital of Nanjing Medical University & Nanjing Women and Children's Healthcare Hospital, 123 Tianfeixiang, Nanjing, 210004, China
| | - Zhen Gong
- Department of Gynecology, Women's Hospital of Nanjing Medical University & Nanjing Women and Children's Healthcare Hospital, 123 Tianfeixiang, Nanjing, 210004, China.
| | - Shanliang Zhong
- Center of Clinical Laboratory Science, The Affiliated Cancer Hospital of Nanjing Medical University & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, Baiziting 42, Nanjing, 210009, China.
| | - Hanzi Xu
- Department of Radiation Oncology, The Affiliated Cancer Hospital of Nanjing Medical University & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, Nanjing, 210009, China
| |
Collapse
|
2
|
Liu H, Hu W, Zhang L, Li Z, Liu J, Chen L. Plasma-Derived Exosomal i-tRF-LeuCAA as Biomarker for Glioma Diagnosis and Promoter of Epithelial-Mesenchymal Transition via TPM4 Regulation. CNS Neurosci Ther 2025; 31:e70356. [PMID: 40202170 PMCID: PMC11979793 DOI: 10.1111/cns.70356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 03/03/2025] [Accepted: 03/14/2025] [Indexed: 04/10/2025] Open
Abstract
AIMS This study aimed to discover plasma-derived exosomal tsRNAs that serve as novel diagnostic biomarkers for glioma and to investigate the mechanism by which tsRNAs regulate glioma development. METHODS Differentially expressed tsRNAs in the plasma exosomes of glioma patients were identified using small RNA array sequencing. Bioinformatics analyses were used to predict the biological function of tsRNAs. The changes in the phenotypes of glioma cells treated with a tsRNA mimic and inhibitor were detected. The diagnostic and prognostic characteristics of potential target genes and their related functions in gliomas were further analyzed. The cell and animal experiments were used to analyze the molecular mechanisms. RESULTS Among the 453 differentially expressed tsRNAs identified in the plasma-derived exosomes of glioma patients using small RNA sequencing, i-tRF-LeuCAA was associated with the prognosis and molecular diagnostic characteristics of glioma patients and promoted the migration, invasion, and proliferation of glioma cells and inhibited their apoptosis. In addition, TPM4 is a potential target of i-tRF-LeuCAA and is related to epithelial-mesenchymal transition in gliomas. CONCLUSIONS i-tRF-LeuCAA could be served as a non-invasive biomarker in the diagnosis and prognosis of glioma. i-tRF-LeuCAA may indirectly regulate TPM4 expression and influence epithelial-mesenchymal transition, which may promote glioma progression.
Collapse
Affiliation(s)
- Hongyu Liu
- Medical School of Chinese PLABeijingChina
- Department of NeurosurgeryHainan Hospital of Chinese PLA General HospitalSanyaHainanChina
- Department of NeurosurgeryFirst Medical Center of Chinese PLA General HospitalBeijingChina
| | - Wentao Hu
- School of Medicine, Nankai UniversityTianjinChina
| | - Lijun Zhang
- Laboratory of OncologyThe First Medical Center of Chinese PLA General HospitalBeijingChina
| | - Ze Li
- Department of NeurosurgeryFirst Medical Center of Chinese PLA General HospitalBeijingChina
| | - Jialin Liu
- Department of NeurosurgeryFirst Medical Center of Chinese PLA General HospitalBeijingChina
| | - Ling Chen
- Department of NeurosurgeryFirst Medical Center of Chinese PLA General HospitalBeijingChina
| |
Collapse
|
3
|
Pan Y, Ying X, Zhang X, Jiang H, Yan J, Duan S. The role of tRNA-Derived small RNAs (tsRNAs) in pancreatic cancer and acute pancreatitis. Noncoding RNA Res 2025; 11:200-208. [PMID: 39896345 PMCID: PMC11786804 DOI: 10.1016/j.ncrna.2024.12.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 12/18/2024] [Accepted: 12/29/2024] [Indexed: 02/04/2025] Open
Abstract
tRNA-derived small RNAs (tsRNAs), encompassing tRNA fragments (tRFs) and tRNA-derived stress-induced RNAs (tiRNAs), represent a category of non-coding small RNAs (sncRNAs) that are increasingly recognized for their diverse biological functions. These functions include gene silencing, ribosome biogenesis, retrotransposition, and epigenetics. tsRNAs have been identified as key players in the progression of various tumors, yet their specific roles in pancreatic cancer (PC) and acute pancreatitis (AP) remain largely unexplored. Pancreatic cancer, particularly pancreatic ductal adenocarcinoma, is notorious for its high mortality rate and extremely low patient survival rate, primarily due to challenges in early diagnosis. Similarly, acute pancreatitis is a complex and significant disease. This article reviews the roles of 18 tsRNAs in PC and AP, focusing on their mechanisms of action and potential clinical applications in these two diseases. These tsRNAs influence the progression of pancreatic cancer and acute pancreatitis by modulating various pathways, including ZBP1/NLRP3, Hippo, PI3K/AKT, glycolysis/gluconeogenesis, and Wnt signaling. Notably, the dysregulation of tsRNAs is closely linked to critical clinical factors in pancreatic cancer and acute pancreatitis, such as lymph node metastasis, tumor-node-metastasis (TNM) stage, overall survival (OS), and disease-free survival (DFS). This article not only elucidates the mechanisms by which tsRNAs affect pancreatic cancer and acute pancreatitis but also explores their potential as biomarkers and therapeutic targets for pancreatic cancer. The insights provided here offer valuable references for future research, highlighting the importance of tsRNAs in the diagnosis and treatment of these challenging diseases.
Collapse
Affiliation(s)
- Yan Pan
- Department of Integrative Oncology, The First People's Hospital of Fuyang, Fuyang First Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, China
| | - Xiaowei Ying
- Department of Clinical Medicine, School of Medicine, Hangzhou City University, Hangzhou, Zhejiang, China
| | - Xueting Zhang
- Department of Clinical Medicine, School of Medicine, Hangzhou City University, Hangzhou, Zhejiang, China
| | - Hongting Jiang
- Department of Clinical Medicine, School of Medicine, Hangzhou City University, Hangzhou, Zhejiang, China
| | - Junjie Yan
- Department of Clinical Medicine, School of Medicine, Hangzhou City University, Hangzhou, Zhejiang, China
| | - Shiwei Duan
- Department of Clinical Medicine, School of Medicine, Hangzhou City University, Hangzhou, Zhejiang, China
| |
Collapse
|
4
|
Swain SP, Bisht N, Kumar S. Comprehensive study of tRNA-derived fragments in plants for biotic stress responses. Funct Integr Genomics 2025; 25:70. [PMID: 40131555 DOI: 10.1007/s10142-025-01576-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2025] [Revised: 02/28/2025] [Accepted: 03/11/2025] [Indexed: 03/27/2025]
Abstract
Plant growth and development are often disrupted by biological stressors as they interfere with the regulatory pathways. Among the key regulators, transfer-RNA-derived fragments (tRFs) have emerged as key players in plant defense mechanisms. While tRF-mediated responses to abiotic stress have been well studied, their role in biotic stress remains less understood, as various stressors may elicit different regulatory systems. In this study, tRF-mediated biotic responses in three species, viz. Arabidopsis thaliana, Oryza sativa, and Solanum lycopersicum are investigated using in-silico approaches. Analysis of predicted tRFs across various biotic stress conditions reveals specific interactions with mRNA targets, microRNAs (miRNAs), and transposable elements (TEs), highlighting their regulatory significance in plant adaptation mechanisms. These findings provide new insights into tRF-mediated stress responses and establish a computational framework for further functional studies. The study's database is publicly available at http://www.nipgr.ac.in/PbtRFdb .
Collapse
Affiliation(s)
- Supriya P Swain
- Bioinformatics Lab, National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Niyati Bisht
- Bioinformatics Lab, National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Shailesh Kumar
- Bioinformatics Lab, National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India.
| |
Collapse
|
5
|
Zhao S, Wang Y, Zhou L, Li Z, Weng Q. Exploring the Potential of tsRNA as Biomarkers for Diagnosis and Treatment of Neurogenetic Disorders. Mol Neurobiol 2025:10.1007/s12035-025-04760-5. [PMID: 40009263 DOI: 10.1007/s12035-025-04760-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 02/08/2025] [Indexed: 02/27/2025]
Abstract
tRNA-derived small RNA (tsRNA) is a recently discovered small non-coding RNA (ncRNA) molecule that widely exists in prokaryotic and eukaryotic transcriptomes and is produced by specific cleavage of mature tRNA or precursor tRNA. In recent years, with the development of high-throughput sequencing technology, tsRNA has been found to have a variety of biological functions, including gene expression regulation, stress signal activation, etc. In addition, it has been found that these molecules are abnormally expressed in various diseases and participate in various pathological processes, which play an important role. At present, more and more studies have shown that the expression level of tsRNA changes significantly during the development of neurogenetic diseases. This review provides an overview of the classification and biological functions of tsRNAs, with a particular emphasis on their roles in neurogenetic disorders and their potential as diagnostic biomarkers and therapeutic targets. Despite the nascent stage of tsRNA research, their relevance to the diagnosis and treatment of neurogenetic diseases warrants further investigation.
Collapse
Affiliation(s)
- Shiqi Zhao
- Department of Neurology, The First Affiliated Hospital of Ningbo University, Ningbo, 315010, Zhejiang, China
- Health Science Center, Ningbo University, Ningbo, 315211, Zhejiang, China
| | - Yujia Wang
- Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China
| | - Liqun Zhou
- Health Science Center, Ningbo University, Ningbo, 315211, Zhejiang, China
| | - Zhe Li
- Department of Neurology, The First Affiliated Hospital of Ningbo University, Ningbo, 315010, Zhejiang, China.
| | - Qiuyan Weng
- Department of Neurology, The First Affiliated Hospital of Ningbo University, Ningbo, 315010, Zhejiang, China.
| |
Collapse
|
6
|
Jiang X, Li X, Li Y, Zhang Y, Gu X, Zong W, Shen X, Ju S. Systematic assessment of serum i-tRF-AsnGTT in gastric cancer: a potential clinical biomarker. Carcinogenesis 2025; 46:bgae044. [PMID: 39023209 DOI: 10.1093/carcin/bgae044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 06/07/2024] [Accepted: 07/17/2024] [Indexed: 07/20/2024] Open
Abstract
Since gastric cancer (GC) shows no apparent signs in its early stages, most patients are diagnosed later with a poor prognosis. We therefore seek more sensitive and specific GC biomarkers. Small RNAs formed from tRNAs represent a novel class of non-coding RNAs that are highly abundant in bodily fluids and essential to biological metabolism. This study explores the potential of i-tRF-AsnGTT in gastric cancer diagnostics. To begin with, we sequenced i-tRF-AsnGTT using high-throughput methods. i-tRF-AsnGTT expression levels in GC were determined using real-time fluorescence polymerase chain reaction. Agarose gel electrophoresis, Sanger sequencing, and repeated freezing and thawing were performed to verify molecular properties. A correlation was found between clinical and pathological parameters and i-tRF-AsnGTT expression levels through the χ2 test, and receiver operating characteristic was used to analyze its diagnostic value in GC. In serum, i-tRF-AsnGTT has a low and stable expression level. It can differentiate between patients with gastric cancer and gastritis and healthy donors with better diagnostic efficacy. In combination with clinicopathological parameters, i-tRF-AsnGTT correlates with tumor differentiation; infiltration depth of tumors; tumor, node, metastasis stage; lymph node metastases; and neural/vascular invasion. Serum i-tRF-AsnGTT expression is low in GC patients. Serum from postoperative patients shows increased i-tRF-AsnGTT expression levels. Potentially, this could be used as a biomarker to help diagnose gastric cancer and monitor its prognosis.
Collapse
Affiliation(s)
- Xiaodan Jiang
- Department of Laboratory Medicine, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226001, China
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong 226001, Jiangsu, China
| | - Xun Li
- Department of Laboratory Medicine, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226001, China
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong 226001, Jiangsu, China
| | - Yang Li
- Department of Laboratory Medicine, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226001, China
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong 226001, Jiangsu, China
| | - Yu Zhang
- Department of Laboratory Medicine, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226001, China
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong 226001, Jiangsu, China
| | - Xinliang Gu
- General Clinical Research Center, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006, China
| | - Wei Zong
- Department of Laboratory Medicine, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226001, China
| | - Xianjuan Shen
- Department of Laboratory Medicine, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226001, China
| | - Shaoqing Ju
- Department of Laboratory Medicine, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226001, China
| |
Collapse
|
7
|
Zhang B, Pan Y, Li Z, Hu K. tRNA-derived small RNAs: their role in the mechanisms, biomarkers, and therapeutic strategies of colorectal cancer. J Transl Med 2025; 23:51. [PMID: 39806419 PMCID: PMC11727791 DOI: 10.1186/s12967-025-06109-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Accepted: 01/08/2025] [Indexed: 01/16/2025] Open
Abstract
Colorectal cancer (CRC) is the third most prevalent malignancy and the second leading cause of cancer-related mortality worldwide, with an increasing shift towards younger age of onset. In recent years, there has been increasing recognition of the significance of tRNA-derived small RNAs (tsRNAs), encompassing tRNA-derived fragments (tRFs) and tRNA halves (tiRNAs). Their involvement in regulating translation, gene expression, reverse transcription, and epigenetics has gradually come to light. Emerging research has revealed dysregulation of tsRNAs in CRC, implicating their role in CRC initiation and progression, and highlighting their potential in early diagnosis, prognosis, and therapeutic strategies. Although the clinical application of tsRNAs is still in its early stages, recent findings highlight a close relationship between the biogenesis and function of tsRNAs, tRNA chemical modifications, and the tumor immune microenvironment (TIME). Additionally, similar to other small RNAs, tsRNAs can be effectively delivered via nanoparticles (NPs). Consequently, future research should focus on elucidating the clinical significance of tsRNAs concerning base modifications, TIME regulation, cancer immunotherapy, and NPs delivery systems to facilitate their clinical translation.
Collapse
Affiliation(s)
- Bo Zhang
- Department of Gastroenterology, The First Affiliated Hospital of Ningbo University, Ningbo, 315010, China
- Health Science Center, Ningbo University, Ningbo, 315211, China
| | - Yanru Pan
- Health Science Center, Ningbo University, Ningbo, 315211, China
| | - Zhe Li
- Department of Gastroenterology, The First Affiliated Hospital of Ningbo University, Ningbo, 315010, China.
| | - Kefeng Hu
- Department of Gastroenterology, The First Affiliated Hospital of Ningbo University, Ningbo, 315010, China.
| |
Collapse
|
8
|
Zhao P, Zhu K, Xie C, Liu S, Chen X. Role and clinical value of serum hsa_tsr011468 in lung adenocarcinoma. Mol Med Rep 2024; 30:226. [PMID: 39364758 PMCID: PMC11485271 DOI: 10.3892/mmr.2024.13350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 08/27/2024] [Indexed: 10/05/2024] Open
Abstract
Transfer RNA‑derived small RNAs (tsRNAs) are novel non‑coding RNAs that are associated with the pathogenesis of various diseases. However, their association with lung adenocarcinoma (LUAD) has not been studied comprehensively. Therefore, the present study aimed to explore the diagnostic value of a tsRNA, hsa_tsr011468, in LUAD. The OncotRF database was used to screen tsRNAs and reverse transcription‑quantitative PCR (RT‑qPCR) was performed to detect the expression levels of hsa_tsr011468 in various samples. Subsequently, the diagnostic and prognostic values of hsa_tsr011468 for LUAD were determined via receiver operating characteristic (ROC) curve and survival curve analyses, and by assessing clinicopathological parameters. In addition, both nuclear and cytoplasmic RNA were extracted to assess the location of hsa_tsr011468. The OncotRF database identified high expression of hsa_tsr011468 in LUAD. In addition, the results of RT‑qPCR showed that the relative expression levels of hsa_tsr011468 in the serum and tissues of patients with LUAD were higher than those in normal controls. Furthermore, its expression was lower in postoperative serum samples than in preoperative serum samples from patients with LUAD. ROC and survival curves indicated that hsa_tsr011468 had good diagnostic and prognostic value. Furthermore, the clinicopathological analysis revealed that hsa_tsr011468 was associated with tumor size. In addition, hsa_tsr011468 was mainly localized in the cytoplasm of LUAD cells. The present study indicated that hsa_tsr011468 has good diagnostic value and, therefore, could be employed as a serum marker for LUAD.
Collapse
Affiliation(s)
- Ping Zhao
- Department of Laboratory Medicine, Nantong First People's Hospital and The Second Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Kui Zhu
- Department of Laboratory Medicine, Nantong First People's Hospital and The Second Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Cuihua Xie
- Department of Laboratory Medicine, Rugao Hospital of Traditional Chinese Medicine, Nantong, Jiangsu 226001, P.R. China
| | - Sinan Liu
- Department of Laboratory Medicine, Nantong First People's Hospital and The Second Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Xiang Chen
- Department of Laboratory Medicine, Nantong First People's Hospital and The Second Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, Jiangsu 226001, P.R. China
| |
Collapse
|
9
|
Shen X, Xu S, Zheng Z, Liang W, Guo J. The regulatory role of tRNA-derived small RNAs in the prognosis of gastric cancer. Cell Signal 2024; 125:111511. [PMID: 39551416 DOI: 10.1016/j.cellsig.2024.111511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 11/09/2024] [Accepted: 11/12/2024] [Indexed: 11/19/2024]
Abstract
In recent years, tRNA-derived small RNAs (tsRNAs) including tRNA-derived stress-induced RNAs (tiRNAs) and tRNA-derived fragments (tRFs), with specific structure and enriched in body fluids, have been found to have specific biological functions. In this paper, the biogenesis, classification, subcellular localization, and biological functions of tsRNAs were summarized. It has been proved that tsRNAs affected tumor cells in proliferation, apoptosis, migration and invasion, and played roles in regulating the occurrence and development of various tumors. In gastric cancer (GC), the imbalance of tsRNAs, such as tRF-33-P4R8YP9LON4VDP, tRF-17-WS7K092, tRF-23-Q99P9P9NDD and others, was closely related to the clinicopathological characteristics of GC patients. Some tsRNAs, such as tRF-23-Q99P9P9NDD, tRF-31-U5YKFN8DYDZDD, and tRF-27-FDXXE6XRK45 promoted the proliferation, migration and invasion of GC cells. Other tsRNAs, such as tRF-41-YDLBRY73W0K5KKOVD, tRF-18-79MP9PO4, and tRF-Glu-TTC-027 inhibited the proliferation, migration and invasion of GC cells. The tsRNAs played roles in the occurrence of GC were through several signaling pathways, such as phosphoinositide 3-kinase (PI3K)-AKT serine/threonine kinase (AKT), Wnt-β-Catenin, and mitogen-activated protein kinase (MAPK) pathways. These findings may provide new strategies for the diagnosis and treatment of GC.
Collapse
Affiliation(s)
- Xiaoban Shen
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Health Science Center, Ningbo University, Ningbo 315211, China
| | - Shiyi Xu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Health Science Center, Ningbo University, Ningbo 315211, China
| | - Zhinuo Zheng
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Health Science Center, Ningbo University, Ningbo 315211, China
| | - Wei Liang
- Department of Laboratory Medicine, The First Affiliated Hospital of Ningbo University, Ningbo 315211, China.
| | - Junming Guo
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Health Science Center, Ningbo University, Ningbo 315211, China.
| |
Collapse
|
10
|
Wang Q, Ying X, Huang Q, Wang Z, Duan S. Exploring the role of tRNA-derived small RNAs (tsRNAs) in disease: implications for HIF-1 pathway modulation. J Mol Med (Berl) 2024; 102:973-985. [PMID: 38850298 DOI: 10.1007/s00109-024-02458-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 04/26/2024] [Accepted: 05/27/2024] [Indexed: 06/10/2024]
Abstract
The tRNA-derived small RNAs (tsRNAs) can be categorized into two main groups: tRNA-derived fragments (tRFs) and tRNA-derived stress-induced RNAs (tiRNAs). Each group possesses specific molecular sizes, nucleotide compositions, and distinct physiological functions. Notably, hypoxia-inducible factor-1 (HIF-1), a transcriptional activator dependent on oxygen, comprises one HIF-1β subunit and one HIF-α subunit (HIF-1α/HIF-2α/HIF-3α). The activation of HIF-1 plays a crucial role in gene transcription, influencing key aspects of cancer biology such as angiogenesis, cell survival, glucose metabolism, and invasion. The involvement of HIF-1α activation has been demonstrated in numerous human diseases, particularly cancer, making HIF-1 an attractive target for potential disease treatments. Through a series of experiments, researchers have identified two tiRNAs that interact with the HIF-1 pathway, impacting disease development: 5'tiRNA-His-GTG in colorectal cancer (CRC) and tiRNA-Val in diabetic retinopathy (DR). Specifically, 5'tiRNA-His-GTG promotes CRC development by targeting LATS2, while tiRNA-Val inhibits Sirt1, leading to HIF-1α accumulation and promoting DR development. Clinical data have further indicated that certain tsRNAs' expression levels are associated with the prognosis and pathological features of CRC patients. In CRC tumor tissues, the expression level of 5'tiRNA-His-GTG is significantly higher compared to normal tissues, and it shows a positive correlation with tumor size. Additionally, KEGG analysis has revealed multiple tRFs involved in regulating the HIF-1 pathway, including tRF-Val-AAC-016 in diabetic foot ulcers (DFU) and tRF-1001 in pathological ocular angiogenesis. This comprehensive article reviews the biological functions and mechanisms of tsRNAs related to the HIF-1 pathway in diseases, providing a promising direction for subsequent translational medicine research.
Collapse
Affiliation(s)
- Qurui Wang
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou, Zhejiang, 310015, China
| | - Xiaowei Ying
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou, Zhejiang, 310015, China
| | - Qinyuan Huang
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou, Zhejiang, 310015, China
| | - Zehua Wang
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou, Zhejiang, 310015, China
| | - Shiwei Duan
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou, Zhejiang, 310015, China.
- Department of Clinical Medicine, School of Medicine, Hangzhou City University, Hangzhou, Zhejiang, 310015, China.
| |
Collapse
|
11
|
Mo D, Tang X, Ma Y, Chen D, Xu W, Jiang N, Zheng J, Yan F. tRNA-derived fragment 3'tRF-AlaAGC modulates cell chemoresistance and M2 macrophage polarization via binding to TRADD in breast cancer. J Transl Med 2024; 22:706. [PMID: 39080676 PMCID: PMC11290069 DOI: 10.1186/s12967-024-05513-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 07/16/2024] [Indexed: 08/02/2024] Open
Abstract
BACKGROUND Drug resistance, including Adriamycin-based therapeutic resistance, remains a challenge in breast cancer (BC) treatment. Studies have revealed that macrophages could play a pivotal role in mediating the chemoresistance of cancer cells. Accumulating evidence suggests that tRNA-Derived small RNAs (tDRs) are associated the physiological and pathological processes in multiple cancers. However, the underlying mechanisms of tDRs on chemoresistance of BC in tumor-associated macrophages remain largely unknown. METHODS The high-throughput sequencing technique was used to screen tDRs expression profile in BC cells. Gain- and loss-of-function experiments and xenograft models were performed to verify the biological function of 3'tRF-Ala-AGC in BC cells. The CIBERSORT algorithm was used to investigate immune cell infiltration in BC tissues. To explore the role of 3'tRF-Ala-AGC in macrophages, M2 macrophages transfected with 3'tRF-Ala-AGC mimic or inhibitor were co-cultured with BC cells. Effects on Nuclear factor-κb (NF-κb) pathway were investigated by NF-κb nuclear translocation assay and western blot analysis. RNA pull-down assay was performed to identify 3'tRF-Ala-AGC interacting proteins. RESULTS A 3'tRF fragment of 3'tRF-AlaAGC was screened, which is significantly overexpressed in BC specimens and Adriamycin-resistant cells. 3'tRF-AlaAGC could promote cell malignant activity and facilitate M2 polarization of macrophages in vitro and in vivo. Higher expression of M2 macrophages were more likely to have lymph node metastasis and deeper invasion in BC patients. Mechanistically, 3'tRF-AlaAGC binds Type 1-associated death domain protein (TRADD) in BC cells, and suppression of TRADD partially abolished the enhanced effect of 3'tRF-AlaAGC mimic on phenotype of M2. The NF-κb signaling pathway was activated in BC cells co-cultured with M2 macrophages transfected with 3'tRF-AlaAGC mimic. CONCLUSIONS 3'tRF-AlaAGC might modulate macrophage polarization via binding to TRADD and increase the effect of M2 on promoting the chemoresistance in BC cells through NF-κb signaling pathway.
Collapse
Affiliation(s)
- Dongping Mo
- Department of Clinical Laboratory, Nanjing Medical University Affiliated Cancer Hospital & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, Baizi Ting No.42, Nanjing, 210009, China
- Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Baizi Ting No.42, Nanjing, 210009, China
| | - Xun Tang
- Department of Clinical Laboratory, Nanjing Medical University Affiliated Cancer Hospital & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, Baizi Ting No.42, Nanjing, 210009, China
- Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Baizi Ting No.42, Nanjing, 210009, China
| | - Yuyan Ma
- Department of Clinical Laboratory, Nanjing Medical University Affiliated Cancer Hospital & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, Baizi Ting No.42, Nanjing, 210009, China
- Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Baizi Ting No.42, Nanjing, 210009, China
| | - Dayu Chen
- Department of Clinical Laboratory, Nanjing Medical University Affiliated Cancer Hospital & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, Baizi Ting No.42, Nanjing, 210009, China
| | - Weiguo Xu
- Department of General Surgery, Naning Medical University Affiliated Cancer Hospital & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, Baizi Ting No.42, Nanjing, 210009, China
- Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Baizi Ting No.42, Nanjing, 210009, China
| | - Ning Jiang
- Department of Clinical Laboratory, Nanjing Medical University Affiliated Cancer Hospital & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, Baizi Ting No.42, Nanjing, 210009, China
- Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Baizi Ting No.42, Nanjing, 210009, China
| | - Junyu Zheng
- Department of Clinical Laboratory, Nanjing Medical University Affiliated Cancer Hospital & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, Baizi Ting No.42, Nanjing, 210009, China
| | - Feng Yan
- Department of Clinical Laboratory, Nanjing Medical University Affiliated Cancer Hospital & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, Baizi Ting No.42, Nanjing, 210009, China.
- Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Baizi Ting No.42, Nanjing, 210009, China.
| |
Collapse
|
12
|
Zhou M, He X, Zhang J, Mei C, Zhong B, Ou C. tRNA-derived small RNAs in human cancers: roles, mechanisms, and clinical application. Mol Cancer 2024; 23:76. [PMID: 38622694 PMCID: PMC11020452 DOI: 10.1186/s12943-024-01992-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 04/02/2024] [Indexed: 04/17/2024] Open
Abstract
Transfer RNA (tRNA)-derived small RNAs (tsRNAs) are a new type of non-coding RNAs (ncRNAs) produced by the specific cleavage of precursor or mature tRNAs. tsRNAs are involved in various basic biological processes such as epigenetic, transcriptional, post-transcriptional, and translation regulation, thereby affecting the occurrence and development of various human diseases, including cancers. Recent studies have shown that tsRNAs play an important role in tumorigenesis by regulating biological behaviors such as malignant proliferation, invasion and metastasis, angiogenesis, immune response, tumor resistance, and tumor metabolism reprogramming. These may be new potential targets for tumor treatment. Furthermore, tsRNAs can exist abundantly and stably in various bodily fluids (e.g., blood, serum, and urine) in the form of free or encapsulated extracellular vesicles, thereby affecting intercellular communication in the tumor microenvironment (TME). Meanwhile, their abnormal expression is closely related to the clinicopathological features of tumor patients, such as tumor staging, lymph node metastasis, and poor prognosis of tumor patients; thus, tsRNAs can be served as a novel type of liquid biopsy biomarker. This review summarizes the discovery, production, and expression of tsRNAs and analyzes their molecular mechanisms in tumor development and potential applications in tumor therapy, which may provide new strategies for early diagnosis and targeted therapy of tumors.
Collapse
Affiliation(s)
- Manli Zhou
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
- Department of Clinical Laboratory, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Xiaoyun He
- Departments of Ultrasound Imaging, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Jing Zhang
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Cheng Mei
- Department of Blood Transfusion, Xiangya Hospital, Clinical Transfusion Research Center, Central South University, Changsha, Hunan, 410008, China.
| | - Baiyun Zhong
- Department of Clinical Laboratory, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China.
| | - Chunlin Ou
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China.
| |
Collapse
|
13
|
Yu X, Bu C, Yang X, Jiang W, He X, Sun R, Guo H, Shang L, Ou C. Exosomal non-coding RNAs in colorectal cancer metastasis. Clin Chim Acta 2024; 556:117849. [PMID: 38417779 DOI: 10.1016/j.cca.2024.117849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 02/24/2024] [Accepted: 02/25/2024] [Indexed: 03/01/2024]
Abstract
Colorectal cancer (CRC) is a type of gastrointestinal cancer with high morbidity and mortality rates, and is often accompanied by distant metastases. Metastasis is a major cause of shortened survival time and poor treatment outcomes for patients with CRC. However, the molecular mechanisms underlying the metastasis of CRC remain unclear. Exosomes are a class of small extracellular vesicles that originate from almost all human cells and can transmit biological information (e.g., nucleic acids, lipids, proteins, and metabolites) from secretory cells to target recipient cells. Recent studies have revealed that non-coding RNAs (ncRNAs) can be released by exosomes into the tumour microenvironment or specific tissues, and play a pivotal role in tumorigenesis by regulating a series of key molecules or signalling pathways, particularly those involved in tumour metastasis. Exosomal ncRNAs have potential as novel therapeutic targets for CRC metastasis, and can also be used as liquid biopsy biomarkers because of their specificity and sensitivity. Therefore, further investigations into the biological function and clinical value of exosomal ncRNAs will be of great value for the prevention, early diagnosis, and treatment of CRC metastasis.
Collapse
Affiliation(s)
- Xiaoqian Yu
- Department of Pathology, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
| | - Chiwen Bu
- Department of General Surgery, People's Hospital of Guanyun County, Lianyungang 222200, Jiangsu, China
| | - Xuejie Yang
- Department of Pathology, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
| | - Wenying Jiang
- Department of Pathology, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
| | - Xiaoyun He
- Departments of Ultrasound Imaging, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
| | - Ru Sun
- Department of Blood Transfusion, Affiliated Hospital of North Sichuan Medical College, Xichang 637000, Sichuan, China
| | - Hongbin Guo
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
| | - Li Shang
- Department of Pathology, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China.
| | - Chunlin Ou
- Department of Pathology, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China.
| |
Collapse
|
14
|
Huang T, Zhao Y, Jiang G, Yang Z. tsRNA: A Promising Biomarker in Breast Cancer. J Cancer 2024; 15:2613-2626. [PMID: 38577588 PMCID: PMC10988313 DOI: 10.7150/jca.93531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Accepted: 02/29/2024] [Indexed: 04/06/2024] Open
Abstract
tRNA-derived small RNAs (tsRNAs) are a novel class of non-coding small RNAs, generated from specific cleavage sites of tRNA or pre-tRNA. tsRNAs can directly participate in RNA silencing, transcription, translation, and other processes. Their dysregulation is closely related to the occurrence and development of various cancers. Breast cancer is one of the most common and fastest-growing malignant tumors in humans. tsRNAs have been found to be dysregulated in breast cancer, serving as a new target for exploring the pathogenesis of breast cancer. They are also considered new tumor markers, providing a basis for diagnosis and treatment. This article reviews the generation, classification, mechanism of action, function of tsRNAs, and their biological effects and related mechanisms in breast cancer, in the hope of providing a new direction for the diagnosis and treatment of breast cancer.
Collapse
Affiliation(s)
- Ting Huang
- Department of Thyroid and Breast Surgery, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, China
| | - Yuexin Zhao
- Department of Clinical Laboratory, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, China
| | - Guoqin Jiang
- Department of Thyroid and Breast Surgery, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, China
| | - Zhixue Yang
- Department of Thyroid and Breast Surgery, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, China
| |
Collapse
|