1
|
Xiao S, Du J, Yuan G, Luo X, Song L. Granulosa Cells-Related MicroRNAs in Ovarian Diseases: Mechanism, Facts and Perspectives. Reprod Sci 2024; 31:3635-3650. [PMID: 38594585 DOI: 10.1007/s43032-024-01523-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Accepted: 03/19/2024] [Indexed: 04/11/2024]
Abstract
MicroRNAs (miRNAs) are a class of short single-stranded, noncoding RNAs that affect the translation of mRNAs by imperfectly binding to homologous 3'UTRs. Research on miRNAs in ovarian diseases is constantly expanding because miRNAs are powerful regulators of gene expression and cellular processes and are promising biomarkers. miRNA mimics, miRNA inhibitors and molecules targeting miRNAs (antimiRs) have shown promise as novel therapeutic agents in preclinical development. Granulosa cells (GCs) are supporting cells for developing oocytes in the ovary. GCs regulate female reproductive health by producing sex hormones and LH receptors. Increasing research has reported the relevance of miRNAs in GC pathophysiology. With in-depth studies of disease mechanisms, there are an increasing number of studies on the biomolecular pathways of miRNAs in gynecology and endocrinology. In the present review, we summarize the different functions of GC-related microRNAs in various ovarian disorders, such as polycystic ovary syndrome, premature ovarian insufficiency, premature ovarian failure and ovarian granulosa cell tumors.
Collapse
Affiliation(s)
- Shengmin Xiao
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, People's Republic of China
| | - Juan Du
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, People's Republic of China
| | - Guanghui Yuan
- Department of Oncology, Hejiang Hospital of Traditional Chinese Medicine, Luzhou, 611137, People's Republic of China
| | - Xiaohong Luo
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, People's Republic of China.
| | - Linjiang Song
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, People's Republic of China.
| |
Collapse
|
2
|
Fan L, Zhang L, Zhang X, Wei W, Liu Z. Long Noncoding RNA EMX2-AS Facilitates Osteoblast Differentiation and Bone Formation by Inhibiting EMX2 Protein Translation and Activating Wnt/ β-Catenin Pathway. Stem Cells Int 2024; 2024:4397807. [PMID: 39628661 PMCID: PMC11614513 DOI: 10.1155/sci/4397807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 06/24/2024] [Accepted: 11/11/2024] [Indexed: 12/06/2024] Open
Abstract
Long noncoding RNAs (lncRNAs), as a potentially new and crucial element of biological regulation, have gained widespread attention in recent years. Our previous work identified lncRNA empty spiracles homeobox 2 antisence (EMX2-AS) was significantly increased during the osteoblast differentiation of mesenchymal stem cells (MSCs). Overexpression of lncRNA EMX2-AS promoted osteogenesis in vitro and enhanced heterotopic bone formation in vivo, whereas lncRNA EMX2-AS knockdown had the opposite effect. EMX2 could negatively regulate the osteoblast differentiation of MSCs. lncRNA EMX2-AS was 80% expressed in the cytoplasm during osteoblast differentiation in MSCs. Mechanistic analysis revealed that lncRNA EMX2-AS acts as a positive regulator of osteogenic differentiation through interaction with EMX2 and suppression of its expression at the translational level and Wnt/β-catenin pathway is involved in lncRNA EMX2-AS/EMX2 regulated osteogenic differentiation. Our findings not only provide new targets for the treatment of diseases related to osteoblast differentiation disruption but also enrich the understanding of the regulation mechanisms of lncRNA during stem cell differentiation.
Collapse
Affiliation(s)
- Linyuan Fan
- Department of Gynecology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Maternal and Child Health Care Hospital Beijing, Beijing 100026, China
| | - Li Zhang
- Department of Gynecology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Maternal and Child Health Care Hospital Beijing, Beijing 100026, China
| | - Xin Zhang
- Department of Gynecology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Maternal and Child Health Care Hospital Beijing, Beijing 100026, China
| | - Wei Wei
- Department of Gynecology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Maternal and Child Health Care Hospital Beijing, Beijing 100026, China
| | - Zhaohui Liu
- Department of Gynecology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Maternal and Child Health Care Hospital Beijing, Beijing 100026, China
| |
Collapse
|
3
|
Dong Y, He Y, Geng Y, Wei M, Zhou X, Lian J, Hallajzadeh J. Autophagy-related lncRNAs and exosomal lncRNAs in colorectal cancer: focusing on lncRNA-targeted strategies. Cancer Cell Int 2024; 24:328. [PMID: 39342235 PMCID: PMC11439232 DOI: 10.1186/s12935-024-03503-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 09/06/2024] [Indexed: 10/01/2024] Open
Abstract
Autophagy is a cellular process that involves the degradation and recycling of cellular components, including damaged proteins and organelles. It is an important mechanism for maintaining cellular homeostasis and has been implicated in various diseases, including cancer. Long non-coding RNAs (lncRNAs) are a class of RNA molecules that do not code for proteins but instead play regulatory roles in gene expression. Emerging evidence suggests that lncRNAs can influence autophagy and contribute to the development and progression of colorectal cancer (CRC). Several lncRNAs have been identified as key players in modulating autophagy in CRC. The dysregulation of autophagy and non-coding RNAs (ncRNAs) in CRC suggests a complex interplay between these two factors in the pathogenesis of the disease. Modulating autophagy may sensitize cancer cells to existing therapies or improve the efficacy of new treatment approaches. Additionally, targeting specific lncRNAs involved in autophagy regulation could potentially be used as a therapeutic intervention to inhibit tumor growth, metastasis, and overcome drug resistance in CRC. In this review, a thorough overview is presented, encompassing the functions and underlying mechanisms of autophagy-related lncRNAs in a range of critical areas within tumor biology. These include cell proliferation, apoptosis, migration, invasion, drug resistance, angiogenesis, and radiation resistance.
Collapse
Affiliation(s)
- Yan Dong
- The First Affiliated Hospital of Hebei University of Chinese Medicine, Shijiazhuang, 050011, Hebei, China
| | - Yiwei He
- The First Affiliated Hospital of Hebei University of Chinese Medicine, Shijiazhuang, 050011, Hebei, China
| | - Yanna Geng
- The First Affiliated Hospital of Hebei University of Chinese Medicine, Shijiazhuang, 050011, Hebei, China
| | - Meimei Wei
- The First Affiliated Hospital of Hebei University of Chinese Medicine, Shijiazhuang, 050011, Hebei, China
| | - Xiaomei Zhou
- The First Affiliated Hospital of Hebei University of Chinese Medicine, Shijiazhuang, 050011, Hebei, China
| | - Jianlun Lian
- The First Affiliated Hospital of Hebei University of Chinese Medicine, Shijiazhuang, 050011, Hebei, China.
| | - Jamal Hallajzadeh
- Department of Biochemistry and Nutrition, Research Center for Evidence-Based Health Management, Maragheh University of Medical Sciences, Maragheh, Iran.
| |
Collapse
|
4
|
Wu T, Dong Y, Yang X, Mo L, You Y. Crosstalk between lncRNAs and Wnt/β-catenin signaling pathways in lung cancers: From cancer progression to therapeutic response. Noncoding RNA Res 2024; 9:667-677. [PMID: 38577016 PMCID: PMC10987302 DOI: 10.1016/j.ncrna.2024.02.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 01/24/2024] [Accepted: 02/21/2024] [Indexed: 04/06/2024] Open
Abstract
Lung cancer (LC) is considered to have the highest mortality rate around the world. Because there are no early diagnostic signs or efficient clinical alternatives, distal metastasis and increasing numbers of recurrences are a challenge in the clinical management of LC. Long non-coding RNAs (lncRNAs) have recently been recognized as a critical regulator involved in the progression and treatment response to LC. The Wnt/β-catenin pathway has been shown to influence LC occurrence and progress. Therefore, discovering connections between Wnt signaling pathway and lncRNAs may offer new therapeutic targets for improving LC treatment and management. In this review, the purpose of this article is to present possible therapeutic approaches by reviewing particular relationships, key processes, and molecules associated to the beginning and development of LC.
Collapse
Affiliation(s)
- Ting Wu
- Research Laboratory of Translational Medicine/Laboratory of Protein Structure and Function, Hengyang Medical School, University of South China, Hengyang, 421001, China
| | - YiRan Dong
- Research Laboratory of Translational Medicine/Laboratory of Protein Structure and Function, Hengyang Medical School, University of South China, Hengyang, 421001, China
| | - XinZhi Yang
- Research Laboratory of Translational Medicine/Laboratory of Protein Structure and Function, Hengyang Medical School, University of South China, Hengyang, 421001, China
| | - Liang Mo
- Department of Thoracic Surgery, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, 421001, China
| | - Yong You
- Research Laboratory of Translational Medicine/Laboratory of Protein Structure and Function, Hengyang Medical School, University of South China, Hengyang, 421001, China
| |
Collapse
|
5
|
Yang Y, Quan Y, Liu Y, Yang J, Chen K, You X, Hua H, Yan L, Zhao J, Wang J. Exploring the potential mechanism of Xiaojin Pill therapy for benign prostatic hyperplasia through metabolomics and gut microbiota analysis. Front Microbiol 2024; 15:1431954. [PMID: 39234552 PMCID: PMC11371748 DOI: 10.3389/fmicb.2024.1431954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 07/17/2024] [Indexed: 09/06/2024] Open
Abstract
Background Xiaojin Pill (XJP) is a traditional Chinese medicine prescribed for treating benign prostatic hyperplasia (BPH). It has been proven to have multiple effects, such as regulating sex hormone levels, exhibiting anti-tumor, anti-inflammatory, analgesic, and anti-platelet aggregation properties, and improving immunity. However, the material basis of XJP's therapeutic effect on BPH and its metabolic process in vivo remains to be clarified. At the same time, many microorganisms that exist in the urogenital tract, including those related to BPH, can also affect the health of the host. Methods Using ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS), the chemical components of XJP were identified. A BPH model was created through bilateral testicular ablation and injections of testosterone propionate. A comprehensive evaluation of XJP efficacy was conducted using pathological ELISA, TUNEL, and immunohistochemical techniques. In addition, UPLC-MS metabolomics and 16S rRNA sequencing revealed the serum metabolic profile and intestinal microbiota composition. We performed a Spearman correlation coefficient analysis to highlight the interactions between "intestinal microbiota-serum factors" and "intestinal microbiota-metabolites." Results XJP contains 91 compounds that alleviate pathologies of BPH in rats, decreasing prostate weight, index, and serum levels of Dihydrotestosterone (DHT), Prostate-Specific Antigen (PSA), epidermal growth factor (EGF), basic fibroblast growth factor (bFGF), and vascular endothelial growth factor (VEGF) levels. It inhibits prostatic epithelial cell apoptosis and downregulates Bax, TGF-β1, and IGF-1 proteins in the caspase-3 pathway. Metabolomics studies have revealed 10 upregulated and 10 downregulated metabolites in treated rats, with 5-methylcytosine, uracil, and cytosine enriched in pyrimidine metabolism. L-arginine plays a pivotal role in metabolic pathways encompassing pyrimidine metabolism, arginine biosynthesis, and the mammalian target of rapamycin (mTOR) signaling pathway. 16S rRNA sequencing revealed that XJP optimized the diversity and balance of intestinal flora in BPH rats by decreasing the Bacteroidetes/Firmicutes (B/F) ratio, enhancing the beneficial bacteria, such as Eggerthellaceae, Anaerovoracaceae, and Romboutsia, and suppressing the dysfunctional bacteria, such as Atopobiaceae, Prevotellaceae_NK3B31_group, Dorea, and Frisingicoccus. According to the Spearman correlation coefficient analysis, Lactobacillus was found to be most associated with serum factors, whereas Romboutsia showed the highest correlation with metabolites. This finding suggests that XJP modulates pyrimidine metabolism disorders in BPH rats, a regulation that aligns closely with Romboutsia, Prevotellaceae_NK3B31_group, Lactobacillus, Chujaibacter, and Enterorhabdus, thereby providing valuable biological insights. Conclusion In summary, these findings indicate that XJP possesses a synergistic anti-BHP effect through its multi-component, multi-target, multi-gut microbiota, and multi-metabolic pathway properties. The effect involves the regulation of sex hormone levels, growth factors, and the anti-epithelial cell apoptosis process. The modulation of specific gut microbiota by the host and the involvement of multiple metabolic pathways are likely one of the significant mechanisms of XJP in treating BPH. Notably, pyrimidine metabolism and the intestinal microbial ecosystem are closely intertwined in this process.
Collapse
Affiliation(s)
- Yuying Yang
- School of Pharmacy, Southwest Medical University, Luzhou, China
- Sichuan Institute for Translational Chinese Medicine, Sichuan Academy of Chinese Medicine Sciences, Key Laboratory of Biological Evaluation of Translational Chinese Medicine (TCM) Quality of National Administration of TCM, Sichuan Key Laboratory of Translational Medicine of TCM, Sichuan Authentic Medicine System Development Engineering Technology Research Center, Sichuan Authentic Medicine Formation Principle and Quality Evaluation Engineering Research Center, Chengdu, China
| | - Yunyun Quan
- Sichuan Institute for Translational Chinese Medicine, Sichuan Academy of Chinese Medicine Sciences, Key Laboratory of Biological Evaluation of Translational Chinese Medicine (TCM) Quality of National Administration of TCM, Sichuan Key Laboratory of Translational Medicine of TCM, Sichuan Authentic Medicine System Development Engineering Technology Research Center, Sichuan Authentic Medicine Formation Principle and Quality Evaluation Engineering Research Center, Chengdu, China
| | - Yunteng Liu
- College of Food and Biological Engineering, Chengdu University, Chengdu, China
| | - Juhua Yang
- College of Food and Biological Engineering, Chengdu University, Chengdu, China
| | - Keyu Chen
- Pharmacology of Chinese Medicine, Shanxi University, Xianyang, China
| | - Xiaozhou You
- Sichuan Institute for Translational Chinese Medicine, Sichuan Academy of Chinese Medicine Sciences, Key Laboratory of Biological Evaluation of Translational Chinese Medicine (TCM) Quality of National Administration of TCM, Sichuan Key Laboratory of Translational Medicine of TCM, Sichuan Authentic Medicine System Development Engineering Technology Research Center, Sichuan Authentic Medicine Formation Principle and Quality Evaluation Engineering Research Center, Chengdu, China
| | - Hua Hua
- Sichuan Institute for Translational Chinese Medicine, Sichuan Academy of Chinese Medicine Sciences, Key Laboratory of Biological Evaluation of Translational Chinese Medicine (TCM) Quality of National Administration of TCM, Sichuan Key Laboratory of Translational Medicine of TCM, Sichuan Authentic Medicine System Development Engineering Technology Research Center, Sichuan Authentic Medicine Formation Principle and Quality Evaluation Engineering Research Center, Chengdu, China
- College of Food and Biological Engineering, Chengdu University, Chengdu, China
| | - Liangchun Yan
- Sichuan Institute for Translational Chinese Medicine, Sichuan Academy of Chinese Medicine Sciences, Key Laboratory of Biological Evaluation of Translational Chinese Medicine (TCM) Quality of National Administration of TCM, Sichuan Key Laboratory of Translational Medicine of TCM, Sichuan Authentic Medicine System Development Engineering Technology Research Center, Sichuan Authentic Medicine Formation Principle and Quality Evaluation Engineering Research Center, Chengdu, China
| | - Junning Zhao
- Sichuan Institute for Translational Chinese Medicine, Sichuan Academy of Chinese Medicine Sciences, Key Laboratory of Biological Evaluation of Translational Chinese Medicine (TCM) Quality of National Administration of TCM, Sichuan Key Laboratory of Translational Medicine of TCM, Sichuan Authentic Medicine System Development Engineering Technology Research Center, Sichuan Authentic Medicine Formation Principle and Quality Evaluation Engineering Research Center, Chengdu, China
| | - Jianbo Wang
- School of Pharmacy, Southwest Medical University, Luzhou, China
- Sichuan Institute for Translational Chinese Medicine, Sichuan Academy of Chinese Medicine Sciences, Key Laboratory of Biological Evaluation of Translational Chinese Medicine (TCM) Quality of National Administration of TCM, Sichuan Key Laboratory of Translational Medicine of TCM, Sichuan Authentic Medicine System Development Engineering Technology Research Center, Sichuan Authentic Medicine Formation Principle and Quality Evaluation Engineering Research Center, Chengdu, China
- Pharmacology of Chinese Medicine, Shanxi University, Xianyang, China
| |
Collapse
|
6
|
Yu JM, Sun CQ, Xu HH, Jiang YL, Jiang XY, Ni SQ, Zhao TY, Liu LX. Navigating the labyrinth of long non-coding RNAs in colorectal cancer: From chemoresistance to autophagy. World J Gastrointest Oncol 2024; 16:3376-3381. [PMID: 39171173 PMCID: PMC11334040 DOI: 10.4251/wjgo.v16.i8.3376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 05/03/2024] [Accepted: 05/22/2024] [Indexed: 08/07/2024] Open
Abstract
Long non-coding RNAs (lncRNAs), with transcript lengths exceeding 200 nucleotides and little or no protein-coding capacity, have been found to impact colorectal cancer (CRC) through various biological processes. LncRNA expression can regulate autophagy, which plays dual roles in the initiation and progression of cancers, including CRC. Abnormal expression of lncRNAs is associated with the emergence of chemoresistance. Moreover, it has been confirmed that targeting autophagy through lncRNA regulation could be a viable approach for combating chemoresistance. Two recent studies titled "Human β-defensin-1 affects the mammalian target of rapamycin pathway and autophagy in colon cancer cells through long non-coding RNA TCONS_00014506" and "Upregulated lncRNA PRNT promotes progression and oxaliplatin resistance of colorectal cancer cells by regulating HIPK2 transcription" revealed novel insights into lncRNAs associated with autophagy and oxaliplatin resistance in CRC, respectively. In this editorial, we particularly focus on the regulatory role of lncRNAs in CRC-related autophagy and chemoresistance since the regulation of chemotherapeutic sensitivity by intervening with the lncRNAs involved in the autophagy process has become a promising new approach for cancer treatment.
Collapse
Affiliation(s)
- Jia-Mei Yu
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, Jiangsu Province, China
| | - Chong-Qi Sun
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, Jiangsu Province, China
| | - Huan-Huan Xu
- Department of Hematology and Oncology, Department of Geriatric Lung Cancer Research Laboratory, Jiangsu Province Geriatric Hospital, Nanjing 210009, Jiangsu Province, China
| | - Ya-Li Jiang
- Central Laboratory, The Friendship Hospital of Ili Kazakh Autonomous Prefecture, Ili & Jiangsu Joint Institute of Health, Yining 835000, Xinjiang Uyghur Autonomous Region, China
| | - Xing-Yu Jiang
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, Jiangsu Province, China
| | - Si-Qi Ni
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, Jiangsu Province, China
| | - Ting-Yu Zhao
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, Jiangsu Province, China
| | - Ling-Xiang Liu
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, Jiangsu Province, China
| |
Collapse
|
7
|
Li J, Li W, Li L, Wang W, Zhang M, Tang X. Induction of Peroxiredoxin 1 by Hypoxia Promotes Cellular Autophagy and Cell Proliferation in Oral Leukoplakia via HIF-1α/BNIP3 Pathway. J Mol Histol 2024; 55:403-413. [PMID: 38758520 DOI: 10.1007/s10735-024-10197-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Accepted: 04/23/2024] [Indexed: 05/18/2024]
Abstract
Hypoxia is a key trigger in the transformation of oral leukoplakia into oral cancer. However, it is still too early to determine the role of hypoxia in the development of oral leukoplakia. Prx1, an antioxidant protein, upregulated by hypoxia, regulates cellular autophagy in leukoplakia. This study aimed to understand the mechanisms by which hypoxia induces Prx1 expression during autophagy in oral leukoplakia. We used an experimental model of tongue epithelial hyperplasia induced by 4-nitroquinoline-1-oxide (4NQO) and dysplastic oral keratinocytes. Prx1 knockdown DOK cells, Leuk-1 cells and control cells were harvested, and cell proliferation was assayed using the Cell Counting Kit-8. Several hypoxia and autophagy-related proteins were examined using quantitative real-time polymerase chain reaction, immunohistochemistry, immunofluorescence, and western blotting in cells and mouse tongue tissues. In addition, the ultrastructure of the cells was observed by transmission electron microscopy. Hypoxia induces cell proliferation, autophagic vesicles and the expression of Prx1, BNIP3, LC3II/I and Beclin-1 in DOK and Leuk-1 cells. However, these effects were all attenuated by Prx1 knockdown. Histologically, 4NQO induced epithelial hyperplasia in the tongue mucosa. The expression of proliferation marker PCNA, autophagy-related proteins LC3B and Beclin-1, as well as HIF-1α/BNIP3 was significantly lower in the tongue tissues of Prx1flox/flox:Cre+ mice compared with Prx1flox/flox mice. In Prx1flox/flox:Cre+ mice, an increased expression of HIF-1α/BNIP3, LC3B and Beclin-1 was detected in epithelial hyperplasia tongue tissues compared to normal tissues. The current study suggests that Prx1 may promotes cell proliferation and autophagy in oral leukoplakia cells via the HIF-1α/BNIP3 pathway.
Collapse
Affiliation(s)
- Jing Li
- Beijing Institute of Dental Research, Beijing Stomatological Hospital and School of Stomatology, Capital Medical University, Dongcheng District, Beijing, China
| | - Wenjing Li
- Beijing Institute of Dental Research, Beijing Stomatological Hospital and School of Stomatology, Capital Medical University, Dongcheng District, Beijing, China
| | - Lingyu Li
- Beijing Institute of Dental Research, Beijing Stomatological Hospital and School of Stomatology, Capital Medical University, Dongcheng District, Beijing, China
| | - Wenchao Wang
- Beijing Institute of Dental Research, Beijing Stomatological Hospital and School of Stomatology, Capital Medical University, Dongcheng District, Beijing, China
| | - Min Zhang
- Beijing Institute of Dental Research, Beijing Stomatological Hospital and School of Stomatology, Capital Medical University, Dongcheng District, Beijing, China.
| | - Xiaofei Tang
- Beijing Institute of Dental Research, Beijing Stomatological Hospital and School of Stomatology, Capital Medical University, Dongcheng District, Beijing, China.
| |
Collapse
|
8
|
Thangavelu L, Moglad E, Gupta G, Menon SV, Gaur A, Sharma S, Kaur M, Chahar M, Sivaprasad GV, Deorari M. GAS5 lncRNA: A biomarker and therapeutic target in breast cancer. Pathol Res Pract 2024; 260:155424. [PMID: 38909406 DOI: 10.1016/j.prp.2024.155424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 06/19/2024] [Accepted: 06/19/2024] [Indexed: 06/25/2024]
Abstract
Breast cancer is one of the most common causes of cancer-related mortality globally, and its aggressive phenotype results in poor treatment outcomes. Growth Arrest-Specific 5 long non-coding RNA has attracted considerable attention due to its pivotal function in apoptosis regulation and tumor aggressiveness in breast cancer. Gas5 enhances apoptosis by regulating apoptotic proteins, such as caspases and BCL2 family proteins, and the sensitivity of BCCs to chemotherapeutic agents. At the same time, low levels of GAS5 increased invasion, metastasis, and overall tumor aggressiveness. GAS5 also regulates EMT markers, critical for cancer metastasis, and influences tumor cell proliferation by regulating various signaling components. As a result, GAS5 can be restored to suppress tumor development as a possible therapeutic strategy, which might present promising prospects for a patient's treatment. Its activity levels might also be a crucial indicator and diagnostic parameter for prediction. This review highlights the significant role of GAS5 in modulating apoptosis and tumor aggressiveness in breast cancer, emphasizing its potential as a therapeutic target for breast cancer treatment and management.
Collapse
Affiliation(s)
- Lakshmi Thangavelu
- Center for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, India
| | - Ehssan Moglad
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al Kharj 11942, Saudi Arabia
| | - Gaurav Gupta
- Centre for Research Impact & Outcome-Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Soumya V Menon
- Department of Chemistry and Biochemistry, School of Sciences, JAIN (Deemed to be University), Bangalore, Karnataka, India
| | - Ashish Gaur
- Graphic Era (Deemed to be University), Clement Town, Dehradun 248002, India; Graphic Era Hill University, Clement Town, Dehradun 248002, India
| | - Snehlata Sharma
- Chandigarh Pharmacy College, Chandigarh Group of Colleges, Jhanjheri, Mohali, Punjab 140307, India
| | - Mandeep Kaur
- Department of Sciences, Vivekananda Global University, Jaipur, Rajasthan 303012, India
| | - Mamata Chahar
- Department of Chemistry, NIMS University, Jaipur, India
| | - G V Sivaprasad
- Department of Basic Science & Humanities, Raghu Engineering College, Visakhapatnam, India
| | - Mahamedha Deorari
- Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, India.
| |
Collapse
|
9
|
Zhou M, Li R, Hua H, Dai Y, Yin Z, Li L, Zeng J, Yang M, Zhao J, Tan R. The role of tetrahydrocurcumin in disease prevention and treatment. Food Funct 2024; 15:6798-6824. [PMID: 38836693 DOI: 10.1039/d3fo05739a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2024]
Abstract
In recent decades, natural compounds derived from herbal medicine or dietary sources have played important roles in prevention and treatment of various diseases and have attracted more and more attention. Curcumin, extracted from the Curcumae Longae Rhizoma and widely used as food spice and coloring agent, has been proven to possess high pharmacological value. However, the pharmacological application of curcumin is limited due to its poor systemic bioavailability. As a major active metabolite of curcumin, tetrahydrocurcumin (THC) has higher bioavailability and stability than curcumin. Increasing evidence confirmed that THC had a wide range of biological activities and significant treatment effects on diseases. In this paper, we reviewed the research progress on the biological activities and therapeutic potential of THC on different diseases such as neurological disorders, metabolic syndromes, cancers, and inflammatory diseases. The extensive pharmacological effects of THC involve the modulation of various signaling transduction pathways including MAPK, JAK/STAT, NF-κB, Nrf2, PI3K/Akt/mTOR, AMPK, Wnt/β-catenin. In addition, the pharmacokinetics, drug combination and toxicology of THC were discussed, thus providing scientific basis for the safe application of THC and the development of its dietary supplements and drugs.
Collapse
Affiliation(s)
- Mengting Zhou
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Translational Chinese Medicine Key Laboratory of Sichuan Province, State Key Laboratory of Quality Evaluation of Traditional Chinese Medicine, Sichuan Engineering Technology Research Center of Genuine Regional Drug, Sichuan Provincial Engineering Research Center of Formation Principle and Quality Evaluation of Genuine Medicinal Materials, Sichuan Institute for Translational Chinese Medicine, Sichuan Academy of Chinese Medicine Sciences, Chengdu, China.
| | - Rui Li
- Department of Radiation Oncology, Radiation Oncology Key Laboratory of Sichuan Province, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital and Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China
| | - Hua Hua
- Translational Chinese Medicine Key Laboratory of Sichuan Province, State Key Laboratory of Quality Evaluation of Traditional Chinese Medicine, Sichuan Engineering Technology Research Center of Genuine Regional Drug, Sichuan Provincial Engineering Research Center of Formation Principle and Quality Evaluation of Genuine Medicinal Materials, Sichuan Institute for Translational Chinese Medicine, Sichuan Academy of Chinese Medicine Sciences, Chengdu, China.
| | - Ying Dai
- Translational Chinese Medicine Key Laboratory of Sichuan Province, State Key Laboratory of Quality Evaluation of Traditional Chinese Medicine, Sichuan Engineering Technology Research Center of Genuine Regional Drug, Sichuan Provincial Engineering Research Center of Formation Principle and Quality Evaluation of Genuine Medicinal Materials, Sichuan Institute for Translational Chinese Medicine, Sichuan Academy of Chinese Medicine Sciences, Chengdu, China.
| | - Zhujun Yin
- Translational Chinese Medicine Key Laboratory of Sichuan Province, State Key Laboratory of Quality Evaluation of Traditional Chinese Medicine, Sichuan Engineering Technology Research Center of Genuine Regional Drug, Sichuan Provincial Engineering Research Center of Formation Principle and Quality Evaluation of Genuine Medicinal Materials, Sichuan Institute for Translational Chinese Medicine, Sichuan Academy of Chinese Medicine Sciences, Chengdu, China.
| | - Li Li
- Translational Chinese Medicine Key Laboratory of Sichuan Province, State Key Laboratory of Quality Evaluation of Traditional Chinese Medicine, Sichuan Engineering Technology Research Center of Genuine Regional Drug, Sichuan Provincial Engineering Research Center of Formation Principle and Quality Evaluation of Genuine Medicinal Materials, Sichuan Institute for Translational Chinese Medicine, Sichuan Academy of Chinese Medicine Sciences, Chengdu, China.
| | - Jin Zeng
- Translational Chinese Medicine Key Laboratory of Sichuan Province, State Key Laboratory of Quality Evaluation of Traditional Chinese Medicine, Sichuan Engineering Technology Research Center of Genuine Regional Drug, Sichuan Provincial Engineering Research Center of Formation Principle and Quality Evaluation of Genuine Medicinal Materials, Sichuan Institute for Translational Chinese Medicine, Sichuan Academy of Chinese Medicine Sciences, Chengdu, China.
| | - Mengni Yang
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Translational Chinese Medicine Key Laboratory of Sichuan Province, State Key Laboratory of Quality Evaluation of Traditional Chinese Medicine, Sichuan Engineering Technology Research Center of Genuine Regional Drug, Sichuan Provincial Engineering Research Center of Formation Principle and Quality Evaluation of Genuine Medicinal Materials, Sichuan Institute for Translational Chinese Medicine, Sichuan Academy of Chinese Medicine Sciences, Chengdu, China.
| | - Junning Zhao
- Translational Chinese Medicine Key Laboratory of Sichuan Province, State Key Laboratory of Quality Evaluation of Traditional Chinese Medicine, Sichuan Engineering Technology Research Center of Genuine Regional Drug, Sichuan Provincial Engineering Research Center of Formation Principle and Quality Evaluation of Genuine Medicinal Materials, Sichuan Institute for Translational Chinese Medicine, Sichuan Academy of Chinese Medicine Sciences, Chengdu, China.
- National Key Laboratory of Drug Regulatory Science, National Medical Products Administration (NMPA), Beijing 100038, China.
| | - Ruirong Tan
- Translational Chinese Medicine Key Laboratory of Sichuan Province, State Key Laboratory of Quality Evaluation of Traditional Chinese Medicine, Sichuan Engineering Technology Research Center of Genuine Regional Drug, Sichuan Provincial Engineering Research Center of Formation Principle and Quality Evaluation of Genuine Medicinal Materials, Sichuan Institute for Translational Chinese Medicine, Sichuan Academy of Chinese Medicine Sciences, Chengdu, China.
| |
Collapse
|
10
|
Gan L, Zheng L, Zou J, Luo P, Chen T, Zou J, Li W, Chen Q, Cheng L, Zhang F, Qian B. Critical roles of lncRNA-mediated autophagy in urologic malignancies. Front Pharmacol 2024; 15:1405199. [PMID: 38939836 PMCID: PMC11208713 DOI: 10.3389/fphar.2024.1405199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 05/23/2024] [Indexed: 06/29/2024] Open
Abstract
Urologic oncology is a significant public health concern on a global scale. Recent research indicates that long chain non-coding RNAs (lncRNAs) and autophagy play crucial roles in various cancers, including urologic malignancies. This article provides a summary of the latest research findings, suggesting that lncRNA-mediated autophagy could either suppress or promote tumors in prostate, kidney, and bladder cancers. The intricate network involving different lncRNAs, target genes, and mediated signaling pathways plays a crucial role in urological malignancies by modulating the autophagic process. Dysregulated expression of lncRNAs can disrupt autophagy, leading to tumorigenesis, progression, and enhanced resistance to therapy. Consequently, targeting particular lncRNAs that control autophagy could serve as a dependable diagnostic tool and a promising prognostic biomarker in urologic oncology, while also holding potential as an effective therapeutic approach.
Collapse
Affiliation(s)
- Lifeng Gan
- The First Clinical College, Gannan Medical University, Ganzhou, Jiangxi, China
- Department of Urology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
- Key Laboratory of Urology and Andrology of Ganzhou, Ganzhou, Jiangxi, China
| | - Liying Zheng
- Department of Graduate, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
| | - Junrong Zou
- Department of Urology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
- Key Laboratory of Urology and Andrology of Ganzhou, Ganzhou, Jiangxi, China
| | - Peiyue Luo
- The First Clinical College, Gannan Medical University, Ganzhou, Jiangxi, China
- Department of Urology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
- Key Laboratory of Urology and Andrology of Ganzhou, Ganzhou, Jiangxi, China
| | - Tao Chen
- The First Clinical College, Gannan Medical University, Ganzhou, Jiangxi, China
- Department of Urology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
- Key Laboratory of Urology and Andrology of Ganzhou, Ganzhou, Jiangxi, China
| | - Jun Zou
- The First Clinical College, Gannan Medical University, Ganzhou, Jiangxi, China
- Department of Urology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
- Key Laboratory of Urology and Andrology of Ganzhou, Ganzhou, Jiangxi, China
| | - Wei Li
- The First Clinical College, Gannan Medical University, Ganzhou, Jiangxi, China
- Department of Urology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
- Key Laboratory of Urology and Andrology of Ganzhou, Ganzhou, Jiangxi, China
| | - Qi Chen
- The First Clinical College, Gannan Medical University, Ganzhou, Jiangxi, China
- Department of Urology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
- Key Laboratory of Urology and Andrology of Ganzhou, Ganzhou, Jiangxi, China
| | - Le Cheng
- The First Clinical College, Gannan Medical University, Ganzhou, Jiangxi, China
- Department of Urology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
- Key Laboratory of Urology and Andrology of Ganzhou, Ganzhou, Jiangxi, China
| | - Fangtao Zhang
- The First Clinical College, Gannan Medical University, Ganzhou, Jiangxi, China
- Department of Urology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
- Key Laboratory of Urology and Andrology of Ganzhou, Ganzhou, Jiangxi, China
| | - Biao Qian
- Department of Urology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
- Key Laboratory of Urology and Andrology of Ganzhou, Ganzhou, Jiangxi, China
| |
Collapse
|
11
|
Zhang H, Li M, Zhou X, Tang L, Chen G, Zhang Y. Design, synthesis of combretastatin A-4 piperazine derivatives as potential antitumor agents by inhibiting tubulin polymerization and inducing autophagy in HCT116 cells. Eur J Med Chem 2024; 272:116497. [PMID: 38759453 DOI: 10.1016/j.ejmech.2024.116497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 04/30/2024] [Accepted: 05/11/2024] [Indexed: 05/19/2024]
Abstract
A series of combretastatin A-4 (CA-4) derivatives were designed and synthesized, which contain stilbene core structure with different linker, predominantly piperazine derivatives. These compounds were evaluated for their cytotoxic activities against four cancer cell lines, HCT116, A549, AGS, and SK-MES-1. Among them, compound 13 displayed the best effectiveness with IC50 values of 0.227 μM and 0.253 μM against HCT116 and A549 cells, respectively, showing low toxicity to normal cells. Mechanistic studies showed that 13 inhibited HCT116 proliferation via arresting cell cycle at the G2/M phase through disrupting the microtubule network and inducing autophagy in HCT116 cells by regulating the expression levels of autophagy-related proteins. In addition, 13 displayed antiproliferative activities against A549 cells through blocking the cell cycle and inducing A549 cells apoptosis. Because of the poor water solubility of 13, four carbohydrate conjugates were synthesized which exhibited better water solubility. Further investigations revealed that 13 showed positive effects in vivo anticancer study with HCT116 xenograft models. These data suggest that 13 could be served as a promising lead compound for further development of anti-colon carcinoma agent.
Collapse
Affiliation(s)
- Hangqi Zhang
- Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education and Key Laboratory of Tropical Medicinal Plant Chemistry of Hainan Province, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou, Hainan, 571158, China
| | - Ming Li
- Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education and Key Laboratory of Tropical Medicinal Plant Chemistry of Hainan Province, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou, Hainan, 571158, China
| | - Xueming Zhou
- Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education and Key Laboratory of Tropical Medicinal Plant Chemistry of Hainan Province, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou, Hainan, 571158, China
| | - Li Tang
- Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education and Key Laboratory of Tropical Medicinal Plant Chemistry of Hainan Province, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou, Hainan, 571158, China
| | - Guangying Chen
- Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education and Key Laboratory of Tropical Medicinal Plant Chemistry of Hainan Province, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou, Hainan, 571158, China.
| | - Yongmin Zhang
- Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education and Key Laboratory of Tropical Medicinal Plant Chemistry of Hainan Province, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou, Hainan, 571158, China; Sorbonne Université, CNRS, Institut Parisien de Chimie Moléculaire, UMR 8232, 4 Place Jussieu, 75005, Paris, France.
| |
Collapse
|
12
|
Fu J, Lin J, Dai Z, Lin B, Zhang J. Hypoxia-associated autophagy flux dysregulation in human cancers. Cancer Lett 2024; 590:216823. [PMID: 38521197 DOI: 10.1016/j.canlet.2024.216823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 03/09/2024] [Accepted: 03/18/2024] [Indexed: 03/25/2024]
Abstract
A general feature of cancer is hypoxia, determined as low oxygen levels. Low oxygen levels may cause cells to alter in ways that contribute to tumor growth and resistance to treatment. Hypoxia leads to variations in cancer cell metabolism, angiogenesis and metastasis. Furthermore, a hypoxic tumor microenvironment might induce immunosuppression. Moreover, hypoxia has the potential to impact cellular processes, such as autophagy. Autophagy refers to the catabolic process by which damaged organelles and toxic macromolecules are broken down. The abnormal activation of autophagy has been extensively recorded in human tumors and it serves as a regulator of cell growth, spread to other parts of the body, and resistance to treatment. There is a correlation between hypoxia and autophagy in human malignancies. Hypoxia can regulate the activity of AMPK, mTOR, Beclin-1, and ATGs to govern autophagy in human malignancies. Furthermore, HIF-1α, serving as an indicator of low oxygen levels, controls the process of autophagy. Hypoxia-induced autophagy has a crucial role in regulating the growth, spread, and resistance to treatment in human malignancies. Hypoxia-induced regulation of autophagy can impact other mechanisms of cell death, such as apoptosis. Chemoresistance and radioresistance have become significant challenges in recent years. Hypoxia-mediated autophagy plays a crucial role in determining the response to these therapeutic treatments.
Collapse
Affiliation(s)
- Jiding Fu
- Department of Intensive Care Unit, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, Guangdong, 510095, China
| | - Jie Lin
- Department of Radiation Oncology, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, Guangdong, 510095, China
| | - Zili Dai
- Department of Radiation Oncology, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, Guangdong, 510095, China
| | - Baisheng Lin
- Department of Radiation Oncology, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, Guangdong, 510095, China
| | - Jian Zhang
- Department of Radiation Oncology, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, Guangdong, 510095, China.
| |
Collapse
|
13
|
Liu Q, Chen J, Zeng A, Song L. Pharmacological functions of salidroside in renal diseases: facts and perspectives. Front Pharmacol 2024; 14:1309598. [PMID: 38259279 PMCID: PMC10800390 DOI: 10.3389/fphar.2023.1309598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Accepted: 12/18/2023] [Indexed: 01/24/2024] Open
Abstract
Rhodiola rosea is a valuable functional medicinal plant widely utilized in China and other Asian countries for its anti-fatigue, anti-aging, and altitude sickness prevention properties. Salidroside, a most active constituent derived from Rhodiola rosea, exhibits potent antioxidative, hypoxia-resistant, anti-inflammatory, anticancer, and anti-aging effects that have garnered significant attention. The appreciation of the pharmacological role of salidroside has burgeoned over the last decade, making it a beneficial option for the prevention and treatment of multiple diseases, including atherosclerosis, Alzheimer's disease, Parkinson's disease, cardiovascular disease, and more. With its anti-aging and renoprotective effects, in parallel with the inhibition of oxidative stress and inflammation, salidroside holds promise as a potential therapeutic agent for kidney damage. This article provides an overview of the microinflammatory state in kidney disease and discuss the current therapeutic strategies, with a particular focus on highlighting the recent advancements in utilizing salidroside for renal disease. The potential mechanisms of action of salidroside are primarily associated with the regulation of gene and protein expression in glomerular endothelial cells, podocytes, renal tubule cells, renal mesangial cells and renal cell carcinoma cell, including TNF-α, TGF-β, IL-1β, IL-17A, IL-6, MCP-1, Bcl-2, VEGF, ECM protein, caspase-3, HIF-1α, BIM, as well as the modulation of AMPK/SIRT1, Nrf2/HO-1, Sirt1/PGC-1α, ROS/Src/Cav-1, Akt/GSK-3β, TXNIP-NLRP3, ERK1/2, TGF-β1/Smad2/3, PI3K/Akt, Wnt1/Wnt3a β-catenin, TLR4/NF-κB, MAPK, JAK2/STAT3, SIRT1/Nrf2 pathways. To the best of our knowledge, this review is the first to comprehensively cover the protective effects of salidroside on diverse renal diseases, and suggests that salidroside has great potential to be developed as a drug for the prevention and treatment of metabolic syndrome, cardiovascular and cerebrovascular diseases and renal complications.
Collapse
Affiliation(s)
- Qiong Liu
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Jianzhu Chen
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Anqi Zeng
- Translational Chinese Medicine Key Laboratory of Sichuan Province, Sichuan Academy of Chinese Medicine Sciences, Sichuan Institute for Translational Chinese Medicine, Chengdu, Sichuan, China
| | - Linjiang Song
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| |
Collapse
|
14
|
He R, He Y, Du R, Liu C, Chen Z, Zeng A, Song L. Revisiting of TAMs in tumor immune microenvironment: Insight from NF-κB signaling pathway. Biomed Pharmacother 2023; 165:115090. [PMID: 37390708 DOI: 10.1016/j.biopha.2023.115090] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 06/20/2023] [Accepted: 06/26/2023] [Indexed: 07/02/2023] Open
Abstract
Tumor-associated macrophages (TAMs) are key components of tumor immune microenvironment and play a dual role in promoting tumor growth and anti-tumor immunity. Therefore, regulating TAMs has become a promising method in cancer immunotherapy. NF- κB pathway is the key regulatory pathway of TAMs. Targeting this pathway has shown the potential to improve tumor immune microenvironment. At present, there are still some controversies and the idea of combined therapy in this field. This article reviews the progress in the field of immunotherapy in improving tumor immune microenvironment by exploring the mechanism of regulating TAMs (including promoting M1 polarization, inhibiting M2 polarization and regulating TAMs infiltration).
Collapse
Affiliation(s)
- Rui He
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, PR China
| | - Yan He
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, PR China
| | - Ran Du
- College of Education and Psychology, Chengdu Normal University, Chengdu, Sichuan 611130, PR China
| | - Chenxin Liu
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, PR China
| | - Zeran Chen
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, PR China
| | - Anqi Zeng
- Institute of Translational Pharmacology and Clinical Application, Sichuan Academy of Chinese Medical Science, Chengdu, Sichuan 610041, PR China
| | - Linjiang Song
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, PR China
| |
Collapse
|
15
|
Tao H, Zhong X, Zeng A, Song L. Unveiling the veil of lactate in tumor-associated macrophages: a successful strategy for immunometabolic therapy. Front Immunol 2023; 14:1208870. [PMID: 37564659 PMCID: PMC10411982 DOI: 10.3389/fimmu.2023.1208870] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 07/12/2023] [Indexed: 08/12/2023] Open
Abstract
Lactate, traditionally regarded as a metabolic waste product at the terminal of the glycolysis process, has recently been found to have multifaceted functional roles in metabolism and beyond. A metabolic reprogramming phenomenon commonly seen in tumor cells, known as the "Warburg effect," sees high levels of aerobic glycolysis result in an excessive production of lactate. This lactate serves as a substrate that sustains not only the survival of cancer cells but also immune cells. However, it also inhibits the function of tumor-associated macrophages (TAMs), a group of innate immune cells ubiquitously present in solid tumors, thereby facilitating the immune evasion of malignant tumor cells. Characterized by their high plasticity, TAMs are generally divided into the pro-inflammatory M1 phenotype and the pro-tumour M2 phenotype. Through a process of 'education' by lactate, TAMs tend to adopt an immunosuppressive phenotype and collaborate with tumor cells to promote angiogenesis. Additionally, there is growing evidence linking metabolic reprogramming with epigenetic modifications, suggesting the participation of histone modification in diverse cellular events within the tumor microenvironment (TME). In this review, we delve into recent discoveries concerning lactate metabolism in tumors, with a particular focus on the impact of lactate on the function of TAMs. We aim to consolidate the molecular mechanisms underlying lactate-induced TAM polarization and angiogenesis and explore the lactate-mediated crosstalk between TAMs and tumor cells. Finally, we also touch upon the latest progress in immunometabolic therapies and drug delivery strategies targeting glycolysis and lactate production, offering new perspectives for future therapeutic approaches.
Collapse
Affiliation(s)
- Hongxia Tao
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Xuansheng Zhong
- Clinical Medicine Department, Bengbu Medical College, Bengbu, China
| | - Anqi Zeng
- Institute of Translational Pharmacology and Clinical Application, Sichuan Academy of Chinese Medical Science, Chengdu, Sichuan, China
| | - Linjiang Song
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| |
Collapse
|