2
|
Hao X, Hu Z, Li M, Zhang S, Tang M, Hao C, Qi S, Liang Y, Almeida MF, Smith K, Zuo C, Feng Y, Guo M, Ma D, Li S, Wang Z, Sun Y, Deng Z, Mao C, Xia Z, Jiang Y, Gao Y, Xu Y, Schisler JC, Shi C. E3 ubiquitin ligase CHIP facilitates cAMP and cGMP signalling cross-talk by polyubiquitinating PDE9A. EMBO J 2025; 44:1249-1273. [PMID: 39806097 PMCID: PMC11833080 DOI: 10.1038/s44318-024-00351-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 12/12/2024] [Accepted: 12/12/2024] [Indexed: 01/16/2025] Open
Abstract
The carboxyl terminus of Hsc70-interacting protein (CHIP) is pivotal for managing misfolded and aggregated proteins via chaperone networks and degradation pathways. In a preclinical rodent model of CHIP-related ataxia, we observed that CHIP mutations lead to increased levels of phosphodiesterase 9A (PDE9A), whose role in this context remains poorly understood. Here, we investigated the molecular mechanisms underlying the role of PDE9A in CHIP-related ataxia and demonstrated that CHIP binds to PDE9A, facilitating its polyubiquitination and autophagic degradation. Conversely, dysfunctional CHIP disrupts this process, resulting in PDE9A accumulation, increased cGMP hydrolysis, and impaired PKG phosphorylation of CHIP at serine 19. This cascade further amplifies PDE9A accumulation, ultimately disrupting mitophagy and triggering neuronal apoptosis. Elevated PKA levels inhibit PDE9A degradation, further exacerbating this neuronal dysfunction. Notably, pharmacological inhibition of PDE9A via Bay 73-6691 or virus-mediated CHIP expression restored the balance of cGMP/cAMP signalling. These interventions protect against cerebellar neuropathologies, particularly Purkinje neuron mitophagy dysfunction. Thus, PDE9A upregulation considerably exacerbates ataxia associated with CHIP mutations, and targeting the interaction between PDE9A and CHIP is an innovative therapeutic strategy for CHIP-related ataxia.
Collapse
Affiliation(s)
- Xiaoyan Hao
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, 450000, Henan, China
| | - Zhengwei Hu
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, 450000, Henan, China
| | - Mengjie Li
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, 450000, Henan, China
| | - Shuo Zhang
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, 450000, Henan, China
| | - Mibo Tang
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, 450000, Henan, China
| | - Chenwei Hao
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, 450000, Henan, China
| | - Shasha Qi
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, 450000, Henan, China
| | - Yuanyuan Liang
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, 450000, Henan, China
| | - Michael F Almeida
- McAllister Heart Institute and the Department of Pharmacology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Kaitlan Smith
- McAllister Heart Institute and the Department of Pharmacology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Chunyan Zuo
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, 450000, Henan, China
| | - Yanmei Feng
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, 450000, Henan, China
| | - Mengnan Guo
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, 450000, Henan, China
| | - Dongrui Ma
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, 450000, Henan, China
| | - Shuangjie Li
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, 450000, Henan, China
| | - Zhiyun Wang
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, 450000, Henan, China
| | - Yuemeng Sun
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, 450000, Henan, China
| | - Zhifen Deng
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, 450000, Henan, China
| | - Chengyuan Mao
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, 450000, Henan, China
- Institute of Neuroscience, Zhengzhou University, Zhengzhou, 450000, Henan, China
- Henan Key Laboratory of Cerebrovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, 450000, Henan, China
- NHC Key Laboratory of Prevention and Treatment of Cerebrovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, 450000, Henan, China
| | - Zongping Xia
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, 450000, Henan, China
| | - Yong Jiang
- State Key Laboratory of Antiviral Drugs, The First Affiliated Hospital, Zhengzhou University, Zhengzhou, 450000, China
- Henan Key Laboratory of Critical Care Medicine, Department of Emergency Medicine, The First Affiliated Hospital, Zhengzhou University, Zhengzhou, 450000, China
- Institute of Infection and Immunity, Henan Academy of Innovations in Medical Science, Zhengzhou, 450000, China
| | - Yanxia Gao
- State Key Laboratory of Antiviral Drugs, The First Affiliated Hospital, Zhengzhou University, Zhengzhou, 450000, China
- Henan Key Laboratory of Critical Care Medicine, Department of Emergency Medicine, The First Affiliated Hospital, Zhengzhou University, Zhengzhou, 450000, China
- Institute of Infection and Immunity, Henan Academy of Innovations in Medical Science, Zhengzhou, 450000, China
- Department of Emergency Medicine, The First Affiliated Hospital of Zhengzhou University, Medical Key Laboratory of Poisoning Diseases of Henan Province, Zhengzhou, China
| | - Yuming Xu
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, 450000, Henan, China.
- Institute of Neuroscience, Zhengzhou University, Zhengzhou, 450000, Henan, China.
- Henan Key Laboratory of Cerebrovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, 450000, Henan, China.
- NHC Key Laboratory of Prevention and Treatment of Cerebrovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, 450000, Henan, China.
| | - Jonathan C Schisler
- McAllister Heart Institute and the Department of Pharmacology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.
| | - Changhe Shi
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, 450000, Henan, China.
- Institute of Neuroscience, Zhengzhou University, Zhengzhou, 450000, Henan, China.
- Henan Key Laboratory of Cerebrovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, 450000, Henan, China.
- NHC Key Laboratory of Prevention and Treatment of Cerebrovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, 450000, Henan, China.
- Tianjian Laboratory of Advanced Biomedical Sciences, Zhengzhou University, Zhengzhou, 450000, Henan, China.
| |
Collapse
|
3
|
Vignard V, Baruteau AE, Toutain B, Mercier S, Isidor B, Redon R, Schott JJ, Küry S, Bézieau S, Monsoro-Burq AH, Ebstein F. Exploring the origins of neurodevelopmental proteasomopathies associated with cardiac malformations: are neural crest cells central to certain pathological mechanisms? Front Cell Dev Biol 2024; 12:1370905. [PMID: 39071803 PMCID: PMC11272537 DOI: 10.3389/fcell.2024.1370905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 06/05/2024] [Indexed: 07/30/2024] Open
Abstract
Neurodevelopmental proteasomopathies constitute a recently defined class of rare Mendelian disorders, arising from genomic alterations in proteasome-related genes. These alterations result in the dysfunction of proteasomes, which are multi-subunit protein complexes essential for maintaining cellular protein homeostasis. The clinical phenotype of these diseases manifests as a syndromic association involving impaired neural development and multisystem abnormalities, notably craniofacial anomalies and malformations of the cardiac outflow tract (OFT). These observations suggest that proteasome loss-of-function variants primarily affect specific embryonic cell types which serve as origins for both craniofacial structures and the conotruncal portion of the heart. In this hypothesis article, we propose that neural crest cells (NCCs), a highly multipotent cell population, which generates craniofacial skeleton, mesenchyme as well as the OFT of the heart, in addition to many other derivatives, would exhibit a distinctive vulnerability to protein homeostasis perturbations. Herein, we introduce the diverse cellular compensatory pathways activated in response to protein homeostasis disruption and explore their potential implications for NCC physiology. Altogether, the paper advocates for investigating proteasome biology within NCCs and their early cranial and cardiac derivatives, offering a rationale for future exploration and laying the initial groundwork for therapeutic considerations.
Collapse
Affiliation(s)
- Virginie Vignard
- Nantes Université, CHU Nantes, CNRS, INSERM, l’institut du thorax, Nantes, France
| | - Alban-Elouen Baruteau
- Nantes Université, CHU Nantes, CNRS, INSERM, l’institut du thorax, Nantes, France
- CHU Nantes, Department of Pediatric Cardiology and Pediatric Cardiac Surgery, FHU PRECICARE, Nantes Université, Nantes, France
- Nantes Université, CHU Nantes, INSERM, CIC FEA 1413, Nantes, France
| | - Bérénice Toutain
- Nantes Université, CNRS, INSERM, l’institut du thorax, Nantes, France
| | - Sandra Mercier
- Nantes Université, CHU Nantes, CNRS, INSERM, l’institut du thorax, Nantes, France
- CHU Nantes, Service de Génétique Médicale, Nantes Université, Nantes, France
| | - Bertrand Isidor
- Nantes Université, CHU Nantes, CNRS, INSERM, l’institut du thorax, Nantes, France
- CHU Nantes, Service de Génétique Médicale, Nantes Université, Nantes, France
| | - Richard Redon
- Nantes Université, CNRS, INSERM, l’institut du thorax, Nantes, France
| | | | - Sébastien Küry
- Nantes Université, CHU Nantes, CNRS, INSERM, l’institut du thorax, Nantes, France
- CHU Nantes, Service de Génétique Médicale, Nantes Université, Nantes, France
| | - Stéphane Bézieau
- Nantes Université, CHU Nantes, CNRS, INSERM, l’institut du thorax, Nantes, France
- CHU Nantes, Service de Génétique Médicale, Nantes Université, Nantes, France
| | - Anne H. Monsoro-Burq
- Faculté des Sciences d'Orsay, CNRS, UMR 3347, INSERM, Université Paris-Saclay, Orsay, France
- Institut Curie, PSL Research University, CNRS, UMR 3347, INSERM, Orsay, France
- Institut Universitaire de France, Paris, France
| | - Frédéric Ebstein
- Nantes Université, CNRS, INSERM, l’institut du thorax, Nantes, France
| |
Collapse
|
4
|
Deb W, Rosenfelt C, Vignard V, Papendorf JJ, Möller S, Wendlandt M, Studencka-Turski M, Cogné B, Besnard T, Ruffier L, Toutain B, Poirier L, Cuinat S, Kritzer A, Crunk A, diMonda J, Vengoechea J, Mercier S, Kleinendorst L, van Haelst MM, Zuurbier L, Sulem T, Katrínardóttir H, Friðriksdóttir R, Sulem P, Stefansson K, Jonsdottir B, Zeidler S, Sinnema M, Stegmann APA, Naveh N, Skraban CM, Gray C, Murrell JR, Isikay S, Pehlivan D, Calame DG, Posey JE, Nizon M, McWalter K, Lupski JR, Isidor B, Bolduc FV, Bézieau S, Krüger E, Küry S, Ebstein F. PSMD11 loss-of-function variants correlate with a neurobehavioral phenotype, obesity, and increased interferon response. Am J Hum Genet 2024; 111:1352-1369. [PMID: 38866022 PMCID: PMC11267520 DOI: 10.1016/j.ajhg.2024.05.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 05/15/2024] [Accepted: 05/16/2024] [Indexed: 06/14/2024] Open
Abstract
Primary proteasomopathies have recently emerged as a new class of rare early-onset neurodevelopmental disorders (NDDs) caused by pathogenic variants in the PSMB1, PSMC1, PSMC3, or PSMD12 proteasome genes. Proteasomes are large multi-subunit protein complexes that maintain cellular protein homeostasis by clearing ubiquitin-tagged damaged, misfolded, or unnecessary proteins. In this study, we have identified PSMD11 as an additional proteasome gene in which pathogenic variation is associated with an NDD-causing proteasomopathy. PSMD11 loss-of-function variants caused early-onset syndromic intellectual disability and neurodevelopmental delay with recurrent obesity in 10 unrelated children. Our findings demonstrate that the cognitive impairment observed in these individuals could be recapitulated in Drosophila melanogaster with depletion of the PMSD11 ortholog Rpn6, which compromised reversal learning. Our investigations in subject samples further revealed that PSMD11 loss of function resulted in impaired 26S proteasome assembly and the acquisition of a persistent type I interferon (IFN) gene signature, mediated by the integrated stress response (ISR) protein kinase R (PKR). In summary, these data identify PSMD11 as an additional member of the growing family of genes associated with neurodevelopmental proteasomopathies and provide insights into proteasomal biology in human health.
Collapse
Affiliation(s)
- Wallid Deb
- Nantes Université, CHU Nantes, Service de Génétique Médicale, 44000 Nantes, France; Nantes Université, CNRS, INSERM, l'institut du thorax, 44000 Nantes, France
| | - Cory Rosenfelt
- Department of Pediatrics, University of Alberta, Edmonton, AB T6G 1C9, Canada
| | - Virginie Vignard
- Nantes Université, CHU Nantes, Service de Génétique Médicale, 44000 Nantes, France; Nantes Université, CNRS, INSERM, l'institut du thorax, 44000 Nantes, France
| | - Jonas Johannes Papendorf
- Institut für Medizinische Biochemie und Molekularbiologie (IMBM), Universitätsmedizin Greifswald, Ferdinand-Sauerbruch-Straße, 17475 Greifswald, Germany
| | - Sophie Möller
- Institut für Medizinische Biochemie und Molekularbiologie (IMBM), Universitätsmedizin Greifswald, Ferdinand-Sauerbruch-Straße, 17475 Greifswald, Germany
| | - Martin Wendlandt
- Institut für Medizinische Biochemie und Molekularbiologie (IMBM), Universitätsmedizin Greifswald, Ferdinand-Sauerbruch-Straße, 17475 Greifswald, Germany
| | - Maja Studencka-Turski
- Institut für Medizinische Biochemie und Molekularbiologie (IMBM), Universitätsmedizin Greifswald, Ferdinand-Sauerbruch-Straße, 17475 Greifswald, Germany
| | - Benjamin Cogné
- Nantes Université, CHU Nantes, Service de Génétique Médicale, 44000 Nantes, France; Nantes Université, CNRS, INSERM, l'institut du thorax, 44000 Nantes, France
| | - Thomas Besnard
- Nantes Université, CHU Nantes, Service de Génétique Médicale, 44000 Nantes, France; Nantes Université, CNRS, INSERM, l'institut du thorax, 44000 Nantes, France
| | - Léa Ruffier
- Nantes Université, CNRS, INSERM, l'institut du thorax, 44000 Nantes, France
| | - Bérénice Toutain
- Nantes Université, CNRS, INSERM, l'institut du thorax, 44000 Nantes, France
| | - Léa Poirier
- Nantes Université, CNRS, INSERM, l'institut du thorax, 44000 Nantes, France
| | - Silvestre Cuinat
- Nantes Université, CHU Nantes, Service de Génétique Médicale, 44000 Nantes, France; Nantes Université, CNRS, INSERM, l'institut du thorax, 44000 Nantes, France
| | - Amy Kritzer
- Division of Genetics and Genomics, Department of Medicine, Boston Children's Hospital, Boston, MA 02115, USA; Harvard Medical School, Boston, MA, USA
| | | | - Janette diMonda
- Department of Human Genetics, School of Medicine, Emory University, Atlanta, GA, USA
| | - Jaime Vengoechea
- Department of Human Genetics, School of Medicine, Emory University, Atlanta, GA, USA
| | - Sandra Mercier
- Nantes Université, CHU Nantes, Service de Génétique Médicale, 44000 Nantes, France; Nantes Université, CNRS, INSERM, l'institut du thorax, 44000 Nantes, France
| | - Lotte Kleinendorst
- Amsterdam Reproduction & Development Research Institute, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands; Emma Center for Personalized Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Mieke M van Haelst
- Amsterdam Reproduction & Development Research Institute, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands; Emma Center for Personalized Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands; Department of Human Genetics, Amsterdam UMC, Amsterdam UMC, Location AMC, Amsterdam, the Netherlands
| | - Linda Zuurbier
- Amsterdam Reproduction & Development Research Institute, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands; Department of Human Genetics, Amsterdam UMC, Amsterdam UMC, Location AMC, Amsterdam, the Netherlands
| | - Telma Sulem
- deCODE Genetics/Amgen, Inc., Reykjavik, Iceland
| | | | | | | | | | - Berglind Jonsdottir
- Childrens Hospital Hringurinn, National University Hospital of Iceland, Reykjavik, Iceland
| | - Shimriet Zeidler
- Department of Clinical Genetics, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Margje Sinnema
- Department of Clinical Genetics, Maastricht University Medical Center, Maastricht, the Netherlands
| | - Alexander P A Stegmann
- Department of Clinical Genetics, Maastricht University Medical Center, Maastricht, the Netherlands
| | - Natali Naveh
- Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Cara M Skraban
- Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, PA, USA; Roberts Individualized Medical Genetics Center, Children's Hospital of Philadelphia, Philadelphia, PA, USA; Departments of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Christopher Gray
- Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, PA, USA; Roberts Individualized Medical Genetics Center, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Jill R Murrell
- Department of Pathology and Laboratory Medicine, Children's Hospital of the University of Pennsylvania, Philadelphia, PA, USA
| | - Sedat Isikay
- Division of Pediatric Neurology, Department of Pediatrics, Gaziantep Islam, Science and Technology University Faculty of Medicine, Gaziantep, Türkiye
| | - Davut Pehlivan
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Section of Pediatric Neurology and Developmental Neuroscience, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA; Texas Children's Hospital, Houston, TX 77030, USA
| | - Daniel G Calame
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Section of Pediatric Neurology and Developmental Neuroscience, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA; Texas Children's Hospital, Houston, TX 77030, USA
| | - Jennifer E Posey
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Mathilde Nizon
- Nantes Université, CHU Nantes, Service de Génétique Médicale, 44000 Nantes, France; Nantes Université, CNRS, INSERM, l'institut du thorax, 44000 Nantes, France
| | | | - James R Lupski
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Texas Children's Hospital, Houston, TX 77030, USA; Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030, USA; Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Bertrand Isidor
- Nantes Université, CHU Nantes, Service de Génétique Médicale, 44000 Nantes, France; Nantes Université, CNRS, INSERM, l'institut du thorax, 44000 Nantes, France
| | - François V Bolduc
- Department of Pediatrics, University of Alberta, Edmonton, AB T6G 1C9, Canada; Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB T6G 2E1, Canada; Department of Medical Genetics, University of Alberta, Edmonton, AB T6G 2H7, Canada
| | - Stéphane Bézieau
- Nantes Université, CHU Nantes, Service de Génétique Médicale, 44000 Nantes, France; Nantes Université, CNRS, INSERM, l'institut du thorax, 44000 Nantes, France
| | - Elke Krüger
- Institut für Medizinische Biochemie und Molekularbiologie (IMBM), Universitätsmedizin Greifswald, Ferdinand-Sauerbruch-Straße, 17475 Greifswald, Germany.
| | - Sébastien Küry
- Nantes Université, CHU Nantes, Service de Génétique Médicale, 44000 Nantes, France; Nantes Université, CNRS, INSERM, l'institut du thorax, 44000 Nantes, France
| | - Frédéric Ebstein
- Nantes Université, CNRS, INSERM, l'institut du thorax, 44000 Nantes, France; Institut für Medizinische Biochemie und Molekularbiologie (IMBM), Universitätsmedizin Greifswald, Ferdinand-Sauerbruch-Straße, 17475 Greifswald, Germany.
| |
Collapse
|