1
|
Sudhakar DVS, Shah R, Gajbhiye RK. Genetics of Male Infertility - Present and Future: A Narrative Review. J Hum Reprod Sci 2021; 14:217-227. [PMID: 34759610 PMCID: PMC8527069 DOI: 10.4103/jhrs.jhrs_115_21] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 08/25/2021] [Accepted: 09/02/2021] [Indexed: 11/16/2022] Open
Abstract
Infertility affects 8%–12% of couples worldwide with a male factor contributing to nearly 50% of couples either as a primary or contributing cause. Several genetic factors that include single-gene and multiple-gene defects associated with male infertility were reported in the past two decades. However, the etiology remains ambiguous in a majority of infertile men (~40%). The objective of this narrative review is to provide an update on the genetic factors associated with idiopathic male infertility and male reproductive system abnormalities identified in the last two decades. We performed a thorough literature search in online databases from January 2000 to July 2021. We observed a total of 13 genes associated with nonobstructive azoospermia due to maturation/meiotic arrest. Several studies that reported novel genes associated with multiple morphological abnormalities of the sperm flagella are also discussed in this review. ADGRG2, PANK2, SCNN1B, and CA12 genes are observed in non-CFTR-related vas aplasia. The genomic analysis should be quickly implemented in clinical practice as the detection of gene abnormalities in different male infertility phenotypes will facilitate genetic counseling.
Collapse
Affiliation(s)
- Digumarthi V S Sudhakar
- Department of Gamete Immunobiology, ICMR-National Institute for Research in Reproductive Health, Mumbai, Maharashtra, India
| | - Rupin Shah
- Lilavati Hospital and Research Centre, Mumbai, Maharashtra, India
| | - Rahul K Gajbhiye
- Clinical Research Lab and Andrology Clinic, ICMR-National Institute for Research in Reproductive Health, Mumbai, Maharashtra, India
| |
Collapse
|
2
|
Liu W, Li N, Zhang M, Arisha AH, Hua J. The role of Eif2s3y in mouse spermatogenesis. Curr Stem Cell Res Ther 2021; 17:750-755. [PMID: 34727865 DOI: 10.2174/1574888x16666211102091513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Revised: 08/29/2021] [Accepted: 09/10/2021] [Indexed: 11/22/2022]
Abstract
Eukaryotic translation initiation factor 2 subunit 3 and structural gene Y-linked (Eif2s3y) gene, the gene encoding eIF2γ protein, is located on the mouse Y chromosome short arm. The Eif2s3y gene is globally expressed in all tissues and plays an important role in regulating global and gene-specific mRNA translation initiation. During the process of protein translation initiation, Eif2s3x(its homolog) and Eif2s3y encoded eIF2γ perform similar functions. However, it has been noticed that Eif2s3y plays a crucial role in spermatogenesis, including spermatogonia mitosis, meiosis, and spermiogenesis of spermatids, which may account for infertility. In the period of spermatogenesis, the role of Eif2s3x and Eif2s3y are not equivalent. Importance of Eif2s3y has been observed in ESC and implicated in several aspects, including the pluripotency state and the proliferation rate. Here, we discuss the functional significance of Eif2s3y in mouse spermatogenesis and self-renewal of ESCs.
Collapse
Affiliation(s)
- Wenqing Liu
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering & Technology, Northwest A&F University, Yangling, Shaanxi, 712100 . China
| | - Na Li
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering & Technology, Northwest A&F University, Yangling, Shaanxi, 712100 . China
| | - Mengfei Zhang
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering & Technology, Northwest A&F University, Yangling, Shaanxi, 712100 . China
| | - Ahmed H Arisha
- Department of physiology, Faculty of Veterinary Medicine, Zagazig University, Zagazig El_Sharkia 44519 . Egypt
| | - Jinlian Hua
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering & Technology, Northwest A&F University, Yangling, Shaanxi, 712100 . China
| |
Collapse
|
3
|
Rogers MJ. Y chromosome copy number variation and its effects on fertility and other health factors: a review. Transl Androl Urol 2021; 10:1373-1382. [PMID: 33850773 PMCID: PMC8039628 DOI: 10.21037/tau.2020.04.06] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
The Y chromosome is essential for testis development and spermatogenesis. It is a chromosome with the lowest gene density owing to its medium size but paucity of coding genes. The Y chromosome is unique in that the majority of its structure is highly repetitive sequences, with the majority of these limited genes occurring in 9 amplionic sequences throughout the chromosome. The repetitive nature has its benefits as it can be protective against gene loss over many generations, but it can also predispose the Y chromosome to having wide variations of the number of gene copies present in these repeated sequences. This is known as copy number variation. Copy number variation is not unique to the Y chromosome but copy number variation is a well-known cause of male infertility and having effects on spermatogenesis. This is most commonly seen as deletions of the AZF sequences on the Y chromosome. However, there are other implications for copy number variation beyond just the AZF deletions that can affect spermatogenesis and potentially have other health implications. Copy number variations of TSPY1, DAZ, CDY1, RBMY1, the DYZ1 array, along with minor deletions of gr/gr, b1/b3, and b2/b3 have all be implicated in affecting spermatogenesis. UTY copy number variations have been implicated in risk for cardiovascular disease, and other deletions within gr/gr and the AZF sequences have been implicated in cancer and neuropsychiatric diseases. This review sets out to describe the Y chromosome and unique susceptibility to copy number variation and then to examine how this growing body of research impacts spermatogenesis and other health factors.
Collapse
Affiliation(s)
- Marc J Rogers
- Department of Urology, Medical University of South Carolina, Charleston, SC, USA
| |
Collapse
|
4
|
Sayyari M, Salehzadeh A, Tabatabaiefar MA, Abbasi A. Profiling of 17 Y-STR loci in Mazandaran and Gilan provinces of Iran. Turk J Med Sci 2019; 49:1277-1286. [PMID: 30893979 PMCID: PMC7018379 DOI: 10.3906/sag-1808-179] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Accepted: 01/20/2019] [Indexed: 11/19/2022] Open
Abstract
Background/aim The Y-chromosome mainly consists of heterochromatin regions that have a father-to-son inheritance. Short tandem repeat polymorphic (STRP) markers distributed all over the chromosome provide the opportunity for investigations in forensic medicine and ancestral lineage studies. Due to the existence of wide varieties of geographical and ethnic groups in Iran, studying Y-STRP markers is necessary for further applications. Here we investigated the provinces of Mazandaran and Gilan for the first time. Materials and methods Samples included 119 and 90 unrelated males from Mazandaran and Gilan, respectively. Using a PCR amplification kit, 17 Y-STRP markers were amplified and genotyping was conducted by capillary electrophoresis. Allele frequency, haplotype diversity (HD), and haplotype discrimination capacity (DC) were calculated. The populations were compared together and to neighboring countries including Afghanistan and Azerbaijan by FST index. Results A total of 204 unique haplotypes were observed. No uniqueness was observed between the two provinces. HD was 0.9993 and 0.9998 in Mazandaran and Gilan, respectively. DC was 0.9666 and 0.9888 for Mazandaran and Gilan, respectively. DYS385b and DYS391 had the most and least polymorphic content in both provinces, respectively. There was not a significant difference between these two provinces (FST = 0.0006 and P = 0.00) and neighboring countries. Conclusion The results highlight the effectiveness of these Y-STRP markers for male discrimination in the north of Iran. Using additional markers along with extended sample size would provide a better opportunity for removing matched haplotypes and introducing the best polymorphic markers in this specific population.
Collapse
Affiliation(s)
- Minoo Sayyari
- Department of Biology, Rasht Branch, Islamic Azad University, Rasht, Iran
| | - Ali Salehzadeh
- Department of Biology, Rasht Branch, Islamic Azad University, Rasht, Iran
| | - Mohamad Amin Tabatabaiefar
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran,Pediatric Inherited Diseases Research Center, Research Institute for Primordial Prevention of Noncommunicable Disease,Isfahan University of Medical Sciences, Isfahan, Iran
| | - Ali Abbasi
- Iranian Legal Medicine Research Center, Legal Medicine Organization, Tehran, Iran
| |
Collapse
|
5
|
Nino CL, Perez GF, Isaza N, Gutierrez MJ, Gomez JL, Nino G. Characterization of Sex-Based Dna Methylation Signatures in the Airways During Early Life. Sci Rep 2018; 8:5526. [PMID: 29615635 PMCID: PMC5882800 DOI: 10.1038/s41598-018-23063-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Accepted: 03/06/2018] [Indexed: 12/17/2022] Open
Abstract
Human respiratory conditions are largely influenced by the individual’s sex resulting in overall higher risk for males. Sex-based respiratory differences are present at birth suggesting a strong genetic component. Our objective was to characterize early life sex-based genomic signatures determined by variable X-chromosome methylation in the airways. We compared male versus female genome-wide DNA methylation in nasal airway samples from newborns and infants aged 1–6 months (N = 12). We analyzed methylation signals across CpG sites mapped to each X-linked gene using an unsupervised classifier (principal components) followed by an internal evaluation and an exhaustive cross-validation. Results were validated in an independent population of children (N = 72) following the same algorithm. X-linked genes with significant sex-based differential methylation in the nasal airway of infants represented only about 50% of the unique protein coding transcripts. X-linked genes without significant sex-based differential methylation included genes with evidence of escaping X-inactivation and female-biased airway expression. These genes showed similar methylation patterns in males and females suggesting unbalanced X-chromosome dosage. In conclusion, we identified that the human airways have already sex-based DNA methylation signatures at birth. These early airway epigenomic marks may determine sex-based respiratory phenotypes and overall predisposition to develop respiratory disorders later in life.
Collapse
Affiliation(s)
- Cesar L Nino
- Department of Electronics Engineering, Pontificia Universidad Javeriana, Bogota, Colombia
| | - Geovanny F Perez
- Division of Pulmonary and Sleep Medicine, Children's National Medical Center, Washington, DC, USA.,Department of Pediatrics, George Washington University School of Medicine and Health Sciences, Washington, DC, USA.,Center for Genetic Medicine, Children's National Medical Center, Washington, DC, USA
| | - Natalia Isaza
- Division of Neonatology, Children's National Medical Center, Washington, DC, USA
| | - Maria J Gutierrez
- Division of Pediatric Allergy Immunology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Jose L Gomez
- Division of Pulmonary, Critical Care and Sleep Medicine, Yale University School of Medicine, New-Haven, CT, USA
| | - Gustavo Nino
- Division of Pulmonary and Sleep Medicine, Children's National Medical Center, Washington, DC, USA. .,Department of Pediatrics, George Washington University School of Medicine and Health Sciences, Washington, DC, USA. .,Center for Genetic Medicine, Children's National Medical Center, Washington, DC, USA.
| |
Collapse
|
6
|
Nath Choudhury M, Uddin A, Chakraborty S. Codon usage bias and its influencing factors for Y-linked genes in human. Comput Biol Chem 2017; 69:77-86. [DOI: 10.1016/j.compbiolchem.2017.05.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Revised: 05/04/2017] [Accepted: 05/20/2017] [Indexed: 11/30/2022]
|
7
|
Gene expression, nucleotide composition and codon usage bias of genes associated with human Y chromosome. Genetica 2017; 145:295-305. [PMID: 28421323 DOI: 10.1007/s10709-017-9965-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2016] [Accepted: 04/08/2017] [Indexed: 10/19/2022]
Abstract
Analysis of codon usage pattern is important to understand the genetic and evolutionary characteristics of genomes. We have used bioinformatic approaches to analyze the codon usage bias (CUB) of the genes located in human Y chromosome. Codon bias index (CBI) indicated that the overall extent of codon usage bias was low. The relative synonymous codon usage (RSCU) analysis suggested that approximately half of the codons out of 59 synonymous codons were most frequently used, and possessed a T or G at the third codon position. The codon usage pattern was different in different genes as revealed from correspondence analysis (COA). A significant correlation between effective number of codons (ENC) and various GC contents suggests that both mutation pressure and natural selection affect the codon usage pattern of genes located in human Y chromosome. In addition, Y-linked genes have significant difference in GC contents at the second and third codon positions, expression level, and codon usage pattern of some codons like the SPANX genes in X chromosome.
Collapse
|
8
|
Rengaraj D, Kwon WS, Pang MG. Bioinformatics Annotation of Human Y Chromosome-Encoded Protein Pathways and Interactions. J Proteome Res 2015; 14:3503-18. [PMID: 26279084 DOI: 10.1021/acs.jproteome.5b00491] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
We performed a comprehensive analysis of human Y chromosome-encoded proteins, their pathways, and their interactions using bioinformatics tools. From the NCBI annotation release 107 of human genome, we retrieved a total of 66 proteins encoded on Y chromosome. Most of the retrieved proteins were also matched with the proteins listed in the core databases of the Human Proteome Project including neXtProt, PeptideAtlas, and the Human Protein Atlas. When we examined the pathways of human Y-encoded proteins through KEGG database and Pathway Studio software, many of proteins fall into the categories related to cell signaling pathways. Using the STRING program, we found a total of 49 human Y-encoded proteins showing strong/medium interaction with each other. While using the Pathway studio software, we found that a total of 16 proteins interact with other chromosome-encoded proteins. In particular, the SRY protein interacted with 17 proteins encoded on other chromosomes. Additionally, we aligned the sequences of human Y-encoded proteins with the sequences of chimpanzee and mouse Y-encoded proteins using the NCBI BLAST program. This analysis resulted in a significant number of orthologous proteins between human, chimpanzee, and mouse. Collectively, our findings provide the scientific community with additional information on the human Y chromosome-encoded proteins.
Collapse
Affiliation(s)
- Deivendran Rengaraj
- Department of Animal Science and Technology, Chung-Ang University , Anseong, Gyeonggi-Do 456-756, Republic of Korea
| | - Woo-Sung Kwon
- Department of Animal Science and Technology, Chung-Ang University , Anseong, Gyeonggi-Do 456-756, Republic of Korea
| | - Myung-Geol Pang
- Department of Animal Science and Technology, Chung-Ang University , Anseong, Gyeonggi-Do 456-756, Republic of Korea
| |
Collapse
|
9
|
Ceylan GG, Ceylan C. Genetics and male infertility. World J Clin Urol 2015; 4:38-47. [DOI: 10.5410/wjcu.v4.i1.38] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2014] [Revised: 09/05/2014] [Accepted: 01/12/2015] [Indexed: 02/06/2023] Open
Abstract
The goal of this review is to explain the requirement for understanding the genetic structure of infertility arising from male factor and to discuss the essentials of these genetic elements (2). The majority of the population is affected by this disorder caused by male factor infertility (1); but the etiologies are still unknown. After the primary genetic structure in infertile phenotypes is searched, an evaluation can be made. Thus the reasons causing infertility can be discovered and patients can benefit from effective therapies (1). Publications about male infertility within the recent 10 years in the Pubmed database were discussed (1). There are some approachments for describing the function of specific genes, but no adequate study is present to be useful for diagnosing and treating male infertility (1). Male fertility and fertility in offspring of males are considerably affected by the exact transition of epigenetic information (1). When the genetic factors playing a role in male infertility were analysed, significant steps will be taken for treating patients and determining the reasons of idiopathic infertility (1). Developments in technology associated with the impact of genetics may enable to specify the etiology of male infertility by determining specific infertile phenotype marks (1).
Collapse
|
10
|
Yadav SK, Kumari A, Ali S. Fate of the human Y chromosome linked genes and loci in prostate cancer cell lines DU145 and LNCaP. BMC Genomics 2013; 14:323. [PMID: 23663454 PMCID: PMC3660188 DOI: 10.1186/1471-2164-14-323] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2013] [Accepted: 05/07/2013] [Indexed: 11/30/2022] Open
Abstract
Background Prostate cancer is a known cause of mortality in men worldwide although the risk factor varies among different ethnic groups. Loss of the Y chromosome is a common chromosomal abnormality observed in the human prostate cancer. Results We screened 51 standard sequence tagged sites (STSs) corresponding to a male-specific region of the Y chromosome (MSY), sequenced the coding region of the SRY gene and assessed the status of the DYZ1 arrays in the human prostate cancer cell lines DU145 and LNCaP. The MSY was found to be intact and coding region of SRY showed no sequence variation in both the cell lines. However, DYZ1 arrays showed sequence and copy number variations. DU145 and LNCaP cells were found to carry 742 and 1945 copies of the DYZ1, respectively per 3.3 pg of genomic DNA. The DYZ1 copies detected in these cell lines are much below the average of that reported in normal human males. Similarly, the number of “TTCCA” repeat and its derivatives within the DYZ1 arrays showed variation compared to those of the normal males. Conclusions Clearly, the DYZ1 is maximally affected in both the cell lines. Work on additional cell lines and biopsied samples would augment our understanding about the susceptibility of this region. Based on the present work, we construe that copy number status of the DYZ1 may be exploited as a supplementary prognostic tool to monitor the occurrence of prostate cancer using biopsied samples.
Collapse
|
11
|
Kumari A, Yadav SK, Ali S. Organizational and functional status of the Y-linked genes and loci in the infertile patients having normal spermiogram. PLoS One 2012; 7:e41488. [PMID: 22844483 PMCID: PMC3402420 DOI: 10.1371/journal.pone.0041488] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2012] [Accepted: 06/21/2012] [Indexed: 01/12/2023] Open
Abstract
Male fertility is an orchestrated interplay of loci on the Y chromosome with a number of genes from across the other chromosomes. In this context, micro-deletions in the Y chromosome have been correlated with spermatogenic failure often leading to infertility. However, causes of infertility in the patients with the normal spermiogram have remained unclear and therefore pose another level of challenge. In the present study, we analyzed 64 STSs, studied different Y-linked genes and loci and conducted single nucleotide variant (SNV) analyses in 31 infertile males with normal spermiogram along with 67 normal fertile males (NFMs) to gain an insight into the organization of their Y chromosome. Further, employing quantitative real-time PCR (qPCR), we studied copy number variation of DYZ1 arrays and three genes and mutational status of SRY by direct sequence analyses. STS analyses of the AZFa, b and c regions in these patients showed known and new mutations. Further, copies of DAZ and BPY2 in the patients were found to be affected compared to those in NFMs. All the patients had normal copy number of the SRY however its sequence analysis (in silico) showed mutations in eight patients. In four of these eight patients, SRY mutations resulted into truncated proteins. Similarly, DYZ1 analysis showed micro-deletions and it's much reduced copy number as compared to those in NFMs. Present study in males with unexplained infertility revealed deletions similar to those observed in oligospermic and azoospermic patients. Thus, there are some common but still unknown factors underlying infertility in these patients irrespective of their spermatogenic status. This work is envisaged to augment DNA diagnosis, proving beneficial in the context of in vitro fertilization (IVF) and genetic counselling.
Collapse
Affiliation(s)
| | | | - Sher Ali
- Molecular Genetics Laboratory, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi, India
- * E-mail:
| |
Collapse
|
12
|
Sin HS, Koh E, Taya M, IIjima M, Sugimoto K, Maeda Y, Yoshida A, Iwamoto T, Namiki M. A Novel Y Chromosome Microdeletion With the Loss of an Endogenous Retrovirus Related, Testis Specific Transcript in AZFb Region. J Urol 2011; 186:1545-52. [DOI: 10.1016/j.juro.2011.05.044] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2010] [Indexed: 02/08/2023]
Affiliation(s)
- Ho-Su Sin
- Departments of Integrative Cancer Therapy and Urology, Andrology Unit, Kanazawa University Graduate School of Medical Science, Kanazawa, Japan
| | - Eitetsu Koh
- Departments of Integrative Cancer Therapy and Urology, Andrology Unit, Kanazawa University Graduate School of Medical Science, Kanazawa, Japan
| | - Masaki Taya
- Departments of Integrative Cancer Therapy and Urology, Andrology Unit, Kanazawa University Graduate School of Medical Science, Kanazawa, Japan
| | - Masashi IIjima
- Departments of Integrative Cancer Therapy and Urology, Andrology Unit, Kanazawa University Graduate School of Medical Science, Kanazawa, Japan
| | - Kazuhiro Sugimoto
- Departments of Integrative Cancer Therapy and Urology, Andrology Unit, Kanazawa University Graduate School of Medical Science, Kanazawa, Japan
| | - Yuji Maeda
- Departments of Integrative Cancer Therapy and Urology, Andrology Unit, Kanazawa University Graduate School of Medical Science, Kanazawa, Japan
| | | | - Teruaki Iwamoto
- Division of Male Infertility, Center for Infertility and IVF, International University of Health and Welfare, Nasushiobara, Japan
| | - Mikio Namiki
- Departments of Integrative Cancer Therapy and Urology, Andrology Unit, Kanazawa University Graduate School of Medical Science, Kanazawa, Japan
| |
Collapse
|
13
|
Yan J, Fan L, Zhao Y, You L, Wang L, Zhao H, Li Y, Chen ZJ. DYZ1 copy number variation, Y chromosome polymorphism and early recurrent spontaneous abortion/early embryo growth arrest. Eur J Obstet Gynecol Reprod Biol 2011; 159:371-4. [PMID: 21831514 DOI: 10.1016/j.ejogrb.2011.07.033] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2010] [Revised: 06/25/2011] [Accepted: 07/11/2011] [Indexed: 12/16/2022]
Abstract
OBJECTIVES To find the association between recurrent spontaneous abortion (RSA)/early embryo growth arrest and Y chromosome polymorphism. STUDY DESIGN Peripheral blood samples of the male patients of big Y chromosome, small Y chromosome and other male patients whose partners suffered from unexplained RSA/early embryo growth arrest were collected. PCR and real-time fluorescent quantitative PCR were used to test the deletion and the copy number variation of DYZ1 region in Y chromosome of the patients. A total of 79 big Y chromosome patients (48 of whose partners suffered from RSA or early embryo growth arrest), 7 small Y chromosome patients, 106 other male patients whose partners had suffered from unexplained RSA or early embryo growth arrest, and 100 normal male controls were enrolled. RESULTS There was no fraction deletion of DYZ1 detected both in big Y patients and in normal men. Of RSA patients, 1 case showed deletion of 266bp from the gene locus 25-290bp, and 2 cases showed deletion of 773bp from 1347 to 2119bp. Of only 7 small Y chromosome patients, 2 cases showed deletion of 266bp from 25 to 290bp, and 4 cases showed deletion of 773bp from 1347 to 2119bp and 275bp from 3128 to 3420bp. The mean of DYZ1 copies was 3900 in normal control men; the mean in big Y patients was 5571, in RSA patients was 2655, and in small Y patients was 1059. All of the others were significantly different (P<0.01) compared with normal control men, which meant that DYZ1 copy number in normal control men was less than that of big Y chromosome patients, and was more than that of unexplained early RSA patients and small Y patients. CONCLUSIONS The integrity and copy number variation of DYZ1 are closely related to the Y chromosome length under microscope. The cause of RSA/early embryo growth arrest in some couples may be the increase (big Y patients) or decrease of DYZ1 copy number in the husbands' Y chromosome.
Collapse
Affiliation(s)
- Junhao Yan
- Center for Reproductive Medicine, Provincial Hospital Affiliated to Shandong University, Jinan, China
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Paar V, Glunčić M, Basar I, Rosandić M, Paar P, Cvitković M. Large Tandem, Higher Order Repeats and Regularly Dispersed Repeat Units Contribute Substantially to Divergence Between Human and Chimpanzee Y Chromosomes. J Mol Evol 2010; 72:34-55. [DOI: 10.1007/s00239-010-9401-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2010] [Accepted: 10/25/2010] [Indexed: 10/18/2022]
|
15
|
Premi S, Srivastava J, Chandy SP, Ahmad J, Ali S. Tandem duplication and copy number polymorphism of the SRY gene in patients with sex chromosome anomalies and males exposed to natural background radiation. Mol Hum Reprod 2006; 12:113-21. [PMID: 16510537 DOI: 10.1093/molehr/gal012] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Mutations in the SRY gene encompassing the HMG box have been well characterized in gonadal dysgenesis, male infertility and other types of sex chromosome related anomalies (SCRA). However, no information is available on copy number status of this gene under such abnormal conditions. Employing 'Taqman Probe Assay' specific to the SRY gene, we screened 16 DNA samples from patients with SCRA and 36 samples from males exposed to high levels of natural background radiation (HNBR). Patients with SCRA showed 2-16 copies of the SRY gene of which, one, Oxen (49, XYYYY) had eight copies with sequences different from one another. Of the 36 HNBR samples, 12 had one copy whereas 24 harboured 2-8 copies of the SRY gene. A HNBR male 33F had one normal and one mutated copy of this gene. Analysis of 25 DNA samples from blood and semen of normal males showed only one copy of this gene. Despite multiple copies in affected males, fluorescence in-situ hybridization (FISH) with SRY probe detected a single signal on the Y chromosome in HNBR males suggesting its possible localized tandem duplication. Copy number status of the other Y-linked loci is envisaged to augment DNA diagnostics facilitating genetic counselling to affected patients.
Collapse
Affiliation(s)
- Sanjay Premi
- Molecular Genetics Laboratory, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi, India
| | | | | | | | | |
Collapse
|
16
|
Martínez-Frías ML. [Men infertility and microdelections of Y chromosome]. Med Clin (Barc) 2005; 125:736-9. [PMID: 16324468 DOI: 10.1016/s0025-7753(05)72173-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
17
|
Rahman MM, Bashamboo A, Prasad A, Pathak D, Ali S. Organizational variation of DYZ1 repeat sequences on the human Y chromosome and its diagnostic potentials. DNA Cell Biol 2004; 23:561-71. [PMID: 15383176 DOI: 10.1089/dna.2004.23.561] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The long arm of the human Y chromosome is flecked with various fractions of repetitive DNA. DYZ1 is one such fraction, which is organized tandemly as an array of a 3.4-kb repeat ranging from 2000-4000 copies in normal males. We have studied the organizational variation of the DYZ1 fraction on the human Y chromosome using DNA samples from CEPH family members and the random population employing the RFLP approach, fluorescence in situ hybridization (FISH), and conducted a similarity search with GenBank sequences. Typing of genomic DNA using DYZ1 as a probe showed an allele length and copy number variations even between two male siblings. Hybridization of DNA from monochromosome hybrids with this probe showed its presence on chromosome 15 in addition to the Y chromosome. Fluorescence in situ hybridization of metaphase chromosomes from an apparently normal male showed DYZ1 sequences in the proximal region of chromosome 11 in addition to the long arm of the Y chromosome. Typing of sets of semen and blood DNA samples from the same human individuals showed discernible allelic variation between the two samples, indicating tissue-specific programmed sequence modulation. DYZ1 seems to be the first probe having the unique potential to discriminate unequivocally the difference between the DNA originating from semen and blood samples, and may be exploited in forensic cases. This probe may also be used as a diagnostic tool to ascertain Y chromosome mosaicism in patients (e.g., Turner), its aberrant status in somatic cells, and possible sequence modulation/rearrangement in the germline samples. Additionally, this can be used to uncover sequence polymorphism in the human population.
Collapse
|
18
|
Raudsepp T, Santani A, Wallner B, Kata SR, Ren C, Zhang HB, Womack JE, Skow LC, Chowdhary BP. A detailed physical map of the horse Y chromosome. Proc Natl Acad Sci U S A 2004; 101:9321-6. [PMID: 15197257 PMCID: PMC438975 DOI: 10.1073/pnas.0403011101] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We herein report a detailed physical map of the horse Y chromosome. The euchromatic region of the chromosome comprises approximately 15 megabases (Mb) of the total 45- to 50-Mb size and lies in the distal one-third of the long arm, where the pseudoautosomal region (PAR) is located terminally. The rest of the chromosome is predominantly heterochromatic. Because of the unusual organization of the chromosome (common to all mammalian Y chromosomes), a number of approaches were used to crossvalidate the results. Analysis of the 5,000-rad horse x hamster radiation hybrid panel produced a map spanning 88 centirays with 8 genes and 15 sequence-tagged site (STS) markers. The map was verified by several fluorescence in situ hybridization approaches. Isolation of bacterial artificial chromosome (BAC) clones for the radiation hybrid-mapped markers, end sequencing of the BACs, STS development, and bidirectional chromosome walking yielded 109 markers (100 STS and 9 genes) contained in 73 BACs. STS content mapping grouped the BACs into seven physically ordered contigs (of which one is predominantly ampliconic) that were verified by metaphase-, interphase-, and fiber-fluorescence in situ hybridization and also BAC fingerprinting. The map spans almost the entire euchromatic region of the chromosome, of which 20-25% (approximately 4 Mb) is covered by isolated BACs. The map is presently the most informative among Y chromosome maps in domesticated species, third only to the human and mouse maps. The foundation laid through the map will be critical in obtaining complete sequence of the euchromatic region of the horse Y chromosome, with an aim to identify Y specific factors governing male infertility and phenotypic sex variation.
Collapse
Affiliation(s)
- Terje Raudsepp
- Department of Veterinary Anatomy and Public Health, Texas A&M University, College Station, 77843, USA
| | | | | | | | | | | | | | | | | |
Collapse
|