1
|
Nuismer SL, C. Layman N, Redwood AJ, Chan B, Bull JJ. Methods for measuring the evolutionary stability of engineered genomes to improve their longevity. Synth Biol (Oxf) 2021; 6:ysab018. [PMID: 34712842 PMCID: PMC8546616 DOI: 10.1093/synbio/ysab018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 07/05/2021] [Accepted: 07/26/2021] [Indexed: 11/14/2022] Open
Abstract
Diverse applications rely on engineering microbes to carry and express foreign transgenes. This engineered baggage rarely benefits the microbe and is thus prone to rapid evolutionary loss when the microbe is propagated. For applications where a transgene must be maintained for extended periods of growth, slowing the rate of transgene evolution is critical and can be achieved by reducing either the rate of mutation or the strength of selection. Because the benefits realized by changing these quantities will not usually be equal, it is important to know which will yield the greatest improvement to the evolutionary half-life of the engineering. Here, we provide a method for jointly estimating the mutation rate of transgene loss and the strength of selection favoring these transgene-free, revertant individuals. The method requires data from serial transfer experiments in which the frequency of engineered genomes is monitored periodically. Simple mathematical models are developed that use these estimates to predict the half-life of the engineered transgene and provide quantitative predictions for how alterations to mutation and selection will influence longevity. The estimation method and predictive tools have been implemented as an interactive web application, MuSe.
Collapse
Affiliation(s)
- Scott L Nuismer
- Department of Biological Sciences, University of Idaho, 875 Perimeter Dr, Moscow, Idaho 83844, USA
- Department of Mathematics, University of Idaho, 875 Perimeter Dr, Moscow, Idaho 83844, USA
| | - Nathan C. Layman
- Department of Biological Sciences, University of Idaho, 875 Perimeter Dr, Moscow, Idaho 83844, USA
| | - Alec J Redwood
- School of Biomedical Sciences, University of Western Australia, Perth, Western Australia, Australia
- The Institute for Respiratory Health, Nedlands, Western Australia, Australia
| | - Baca Chan
- School of Biomedical Sciences, University of Western Australia, Perth, Western Australia, Australia
- The Institute for Respiratory Health, Nedlands, Western Australia, Australia
| | - James J Bull
- Department of Biological Sciences, University of Idaho, 875 Perimeter Dr, Moscow, Idaho 83844, USA
| |
Collapse
|
2
|
Nuismer SL, Basinski A, Bull JJ. Evolution and containment of transmissible recombinant vector vaccines. Evol Appl 2019; 12:1595-1609. [PMID: 31462917 PMCID: PMC6708430 DOI: 10.1111/eva.12806] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 04/07/2019] [Accepted: 04/19/2019] [Indexed: 12/16/2022] Open
Abstract
Transmissible vaccines offer a revolutionary approach for controlling infectious disease and may provide one of the few feasible methods for eliminating pathogens from inaccessible wildlife populations. Current efforts to develop transmissible vaccines use recombinant vector technology whereby pathogen antigens are engineered to be expressed from innocuous infectious viral vectors. The resulting vaccines can transmit from host to host, amplifying the number of vaccine-protected individuals beyond those initially vaccinated directly through parenteral inoculation. One main engineering challenge is the potential for natural selection to favor vaccine mutants that eliminate or reduce expression of antigenic inserts, resulting in immunogenic decay of the vaccine over time. Here, we study a mathematical model of vector mutation whereby continuous elimination of the antigenic insert results in reversion of the vaccine back into the insert-free vector. We use this model to quantify the maximum allowable rate of reversion that can be tolerated for a transmissible vaccine to maintain a critical threshold level of immunogenicity against a target pathogen. Our results demonstrate that even for transmissible vaccines where reversion is frequent, performance will often substantially exceed that of conventional, directly administered vaccines. Further, our results demonstrate the feasibility of designing transmissible vaccines that yield desired levels of immunogenicity, yet degrade at a rate sufficient for persistence of the recombinant vaccine within the environment to be minimized.
Collapse
Affiliation(s)
| | | | - James J. Bull
- Department of Integrative BiologyThe University of Texas at AustinAustinTexas
| |
Collapse
|
3
|
Bull JJ, Nuismer SL, Antia R. Recombinant vector vaccine evolution. PLoS Comput Biol 2019; 15:e1006857. [PMID: 31323032 PMCID: PMC6668849 DOI: 10.1371/journal.pcbi.1006857] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 07/31/2019] [Accepted: 06/07/2019] [Indexed: 01/01/2023] Open
Abstract
Replicating recombinant vector vaccines consist of a fully competent viral vector backbone engineered to express an antigen from a foreign transgene. From the perspective of viral replication, the transgene is not only dispensable but may even be detrimental. Thus vaccine revertants that delete or inactivate the transgene may evolve to dominate the vaccine virus population both during the process of manufacture of the vaccine as well as during the course of host infection. A particular concern is that this vaccine evolution could reduce its antigenicity—the immunity elicited to the transgene. We use mathematical and computational models to study vaccine evolution and immunity. These models include evolution arising during the process of manufacture, the dynamics of vaccine and revertant growth, plus innate and adaptive immunity elicited during the course of infection. Although the selective basis of vaccine evolution is easy to comprehend, the immunological consequences are not. One complication is that the opportunity for vaccine evolution is limited by the short period of within-host growth before the viral population is cleared. Even less obvious, revertant growth may only weakly interfere with vaccine growth in the host and thus have a limited effect on immunity to vaccine. Overall, we find that within-host vaccine evolution can sometimes compromise vaccine immunity, but only when the extent of evolution during vaccine manufacture is severe, and this evolution can be easily avoided or mitigated. Recombinant vector vaccines are live replicating viruses that are engineered to carry extra genes derived from a pathogen—and these extra genes produce proteins against which we want to generate immunity. These vaccine genomes may evolve to lose the extra genes during the process of manufacture of the vaccine or during replication within an individual, and there is a concern that this evolution might severely limit the vaccine’s efficacy. The dynamics of this process are studied here with mathematical models. The potential for vaccine evolution within the host is somewhat limited by the short-term growth of the vaccine population before it is suppressed by the immune response. We find that evolution is a problem only when the process of manufacture results in the majority of the vaccine virus being revertant. We show that increasing the vaccine inoculum size or reducing the level of revertant in the vaccine inoculum can largely avoid the loss of immunity arising from evolution.
Collapse
Affiliation(s)
- James J. Bull
- Department Integrative Biology, University of Texas, Austin, Texas, United States of America
- * E-mail:
| | - Scott L. Nuismer
- Department of Biological Sciences, University of Idaho, Moscow, Idaho, United States of America
| | - Rustom Antia
- Department of Biology, Emory University, Altanta, Georgia, United States of America
| |
Collapse
|
4
|
Abstract
Viruses are widely used as vectors for heterologous gene expression in cultured cells or natural hosts, and therefore a large number of viruses with exogenous sequences inserted into their genomes have been engineered. Many of these engineered viruses are viable and express heterologous proteins at high levels, but the inserted sequences often prove to be unstable over time and are rapidly lost, limiting heterologous protein expression. Although virologists are aware that inserted sequences can be unstable, processes leading to insert instability are rarely considered from an evolutionary perspective. Here, we review experimental work on the stability of inserted sequences over a broad range of viruses, and we present some theoretical considerations concerning insert stability. Different virus genome organizations strongly impact insert stability, and factors such as the position of insertion can have a strong effect. In addition, we argue that insert stability not only depends on the characteristics of a particular genome, but that it will also depend on the host environment and the demography of a virus population. The interplay between all factors affecting stability is complex, which makes it challenging to develop a general model to predict the stability of genomic insertions. We highlight key questions and future directions, finding that insert stability is a surprisingly complex problem and that there is need for mechanism-based, predictive models. Combining theoretical models with experimental tests for stability under varying conditions can lead to improved engineering of viral modified genomes, which is a valuable tool for understanding genome evolution as well as for biotechnological applications, such as gene therapy.
Collapse
Affiliation(s)
- Anouk Willemsen
- Laboratory MIVEGEC (UMR CNRS IRD University of Montpellier), Centre National de la Recherche Scientifique (CNRS), 911 Avenue Agropolis, BP 64501, 34394 Montpellier cedex 5, France
| | - Mark P Zwart
- Netherlands Institute of Ecology (NIOO-KNAW), Postbus 50, 6700 AB, Wageningen, The Netherlands
| |
Collapse
|
5
|
The rapid production of high-titer porcine endogenous retrovirus(PERV)-B env pseudotype and construction of an EGFP-expressing replication competent PERV-A vector. J Virol Methods 2010; 171:61-6. [PMID: 20933542 DOI: 10.1016/j.jviromet.2010.09.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2010] [Revised: 09/29/2010] [Accepted: 09/30/2010] [Indexed: 11/22/2022]
Abstract
Porcine endogenous retroviruses (PERVs) present a unique concern associated with xenotransplantation because they have been shown to infect certain human cells in vitro and it is also difficult to generate herds of pigs free of PERVs. A simple system for the production of high-titer MoMLV-PERV pseudotypes is reported; an EGFP-expressing replication-competent molecular clone that allows direct measurement of titer was also constructed. To improve the MLV-based retroviral vector system, a 2.1-kb PERV-B env product was amplified from PK-15 genomic DNA and cloned into the pCL-Eco retroviral vector. The titer of lacZ (PERV-B) from the 293 cells was about 1.0×10(4) CFU/ml. In contrast, the titer of lacZ (PERV-B) from a conventional murine retroviral vector (split genome) was found to be 1.2×10(2) CFU/ml when the PERV-B env expression vector was transfected into TELCeB6 cells, which harbor MFGnlslacZ and the gag-pol-expressing vector. In addition, an infectious PERV-A clone containing enhanced GFP (EGFP) by using a PCR-based method was developed. This EGFP-expressing PERV-A-IRES-EGFP molecular clone was found to be stable genetically on transfection in 293 cells.
Collapse
|
6
|
Paar M, Klein D, Salmons B, Günzburg WH, Renner M, Portsmouth D. Influence of vector design and host cell on the mechanism of recombination and emergence of mutant subpopulations of replicating retroviral vectors. BMC Mol Biol 2009; 10:8. [PMID: 19203366 PMCID: PMC2645402 DOI: 10.1186/1471-2199-10-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2008] [Accepted: 02/09/2009] [Indexed: 12/22/2022] Open
Abstract
Background The recent advent of murine leukaemia virus (MLV)-based replication-competent retroviral (RCR) vector technology has provided exciting new tools for gene delivery, albeit the advances in vector efficiency which have been realized are also accompanied by a set of fresh challenges. The expression of additional transgene sequences, for example, increases the length of the viral genome, which can lead to reductions in replication efficiency and in turn to vector genome instability. This necessitates efforts to analyse the rate and mechanism of recombinant emergence during the replication of such vectors to provide data which should contribute to improvements in RCR vector design. Results In this study, we have performed detailed molecular analyses on packaged vector genomes and proviral DNA following propagation of MLV-based RCR vectors both in cell culture and in pre-formed subcutaneous tumours in vivo. The effects of strain of MLV, transgene position and host cell type on the rate of emergence of vector recombinants were quantitatively analysed by applying real-time PCR and real-time RT-PCR assays. Individual mutants were further characterized by PCR, and nucleotide sequence and structural motifs associated with these mutants were determined by sequencing. Our data indicate that virus strain, vector design and host cell influence the rate of emergence of predominating vector mutants, but not the underlying recombination mechanisms in vitro. In contrast, however, differences in the RNA secondary structural motifs associated with sequenced mutants emerging in cell culture and in solid tumours in vivo were observed. Conclusion Our data provide further evidence that MLV-based RCR vectors based on the Moloney strain of MLV and containing the transgene cassette in the 3' UTR region are superior to those based on Akv-MLV and/or containing the transgene cassette in the U3 region of the LTR. The observed discrepancies between the data obtained in solid tumours in vivo and our own and previously published data from infected cells in vitro demonstrates the importance of evaluating vectors designed for use in cancer gene therapy in vivo as well as in vitro.
Collapse
Affiliation(s)
- Matthias Paar
- Department of Pathobiology, Institute of Virology, University of Veterinary Medicine, Vienna, Austria.
| | | | | | | | | | | |
Collapse
|
7
|
Paar M, Schwab S, Rosenfellner D, Salmons B, Günzburg WH, Renner M, Portsmouth D. Effects of viral strain, transgene position, and target cell type on replication kinetics, genomic stability, and transgene expression of replication-competent murine leukemia virus-based vectors. J Virol 2007; 81:6973-83. [PMID: 17442710 PMCID: PMC1933297 DOI: 10.1128/jvi.02470-06] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The limited efficiency of in vivo gene transfer by replication-deficient retroviral vectors remains an obstacle to achieving effective gene therapy for solid tumors. One approach to circumvent this problem is the use of replication-competent retroviral vectors. However, the application of such vectors is at a comparatively early stage and the effects which virus strain, transgene cassette position, and target cell can exert on vector spread kinetics, genomic stability, and transgene expression levels remain to be fully elucidated. Thus, in this study a panel of vectors allowing the investigation of different design features on an otherwise genetically identical background were analyzed with respect to these readout parameters in cultures of both murine and human cells and in preformed tumors in nude mice. The obtained data revealed that (i) Moloney murine leukemia virus (Mo-MLV)-based vectors spread with faster kinetics, drive higher levels of transgene expression, and are more stable than equivalent Akv-MLV-based vectors; (ii) vectors containing the transgene cassette directly downstream of the envelope gene are genomically more stable than those containing it within the 3'-long terminal repeat U3 region; and (iii) the genomic stability of both strains seems to be cell line dependent.
Collapse
Affiliation(s)
- Matthias Paar
- Research Institute for Virology and Biomedicine, University of Veterinary Medicine, Vienna, Austria
| | | | | | | | | | | | | |
Collapse
|
8
|
Duch M, Carrasco ML, Jespersen T, Aagaard L, Pedersen FS. An RNA secondary structure bias for non-homologous reverse transcriptase-mediated deletions in vivo. Nucleic Acids Res 2004; 32:2039-48. [PMID: 15069126 PMCID: PMC390364 DOI: 10.1093/nar/gkh513] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Murine leukemia viruses harboring an internal ribosome entry site (IRES)-directed translational cassette are able to replicate, but undergo loss of heterologous sequences upon continued passage. While complete loss of heterologous sequences is favored when these are flanked by a direct repeat, deletion mutants with junction sites within the heterologous cassette may also be retrieved, in particular from vectors without flanking repeats. Such deletion mutants were here used to investigate determinants of reverse transcriptase-mediated non-homologous recombination. Based upon previous structural analysis the individual recombination sites within the IRES could be assigned to either base-paired or unpaired regions of RNA. This assignment showed a significant bias (P = 0.000082) towards recombination within unpaired regions of the IRES. We propose that the events observed in this in vivo system result from template switching during first-strand cDNA synthesis and that the choice of acceptor sites for non-homologous recombination are guided by non-paired regions. Our results may have implications for recombination events taking place within structured regions of retroviral RNA genomes, especially in the absence of longer stretches of sequence similarity.
Collapse
Affiliation(s)
- Mogens Duch
- Department of Molecular Biology, University of Aarhus, C.F. Mollers Allé, Building 130, DK-8000 Aarhus, Denmark
| | | | | | | | | |
Collapse
|
9
|
Wang CL, Hodgson JG, Malek T, Pedersen FS, Wabl M. A murine leukemia virus with Cre-LoxP excisible coding sequences allowing superinfection, transgene delivery, and generation of host genomic deletions. Retrovirology 2004; 1:5. [PMID: 15169571 PMCID: PMC419723 DOI: 10.1186/1742-4690-1-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2004] [Accepted: 04/05/2004] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND To generate a replication-competent retrovirus that could be conditionally inactivated, we flanked the viral genes of the Akv murine leukemia virus with LoxP sites. This provirus can delete its envelope gene by LoxP/Cre mediated recombination and thereby allow superinfection of Cre recombinase expressing cells. RESULTS In our studies, the virus repeatedly infected the cell and delivered multiple copies of the viral genome to the host genome; the superinfected cells expressed a viral transgene on average twenty times more than non-superinfected cells. The insertion of multiple LoxP sites into the cellular genome also led to genomic deletions, as demonstrated by comparative genome hybridization. CONCLUSION We envision that this technology may be particularly valuable for delivering transgenes and/or causing deletions.
Collapse
Affiliation(s)
- Clifford L Wang
- Department of Microbiology and Immunology, University of California, San Francisco, CA, USA, 94143-0414
| | - J Graeme Hodgson
- Department of Laboratory Medicine, University of California, San Francisco, CA, USA, 94143-0808
| | - Tiffany Malek
- Fred Hutchinson Cancer Research Centre, Department of Human Biology, Seattle, WA 98109, USA
| | - Finn Skou Pedersen
- Department of Molecular Biology and Department of Medical Microbiology and Immunology, University of Aarhus, Denmark, DK-8000
| | - Matthias Wabl
- Department of Microbiology and Immunology, University of California, San Francisco, CA, USA, 94143-0414
| |
Collapse
|