1
|
Zhu F, Wang P, Zhang Z, Yao C, Wang Y, Ye J, Wu J. Integrative genomic analysis reveals cancer-associated mutations in patients with ophthalmic tumors. J Int Med Res 2024; 52:3000605241258171. [PMID: 39053449 PMCID: PMC11283671 DOI: 10.1177/03000605241258171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 05/04/2024] [Indexed: 07/27/2024] Open
Abstract
OBJECTIVE Apart from the role of the retinoblastoma gene, the genomic events associated with poor outcomes in patients with ophthalmic tumors are poorly understood. METHODS We retrospectively analyzed 48 patients with six types of ophthalmic tumors. We searched for high-frequency mutated genes and susceptibility genes in these patients using combined exome and transcriptome analysis. RESULTS We identified four clearly causative genes (TP53, PTCH1, SMO, BAP1). Susceptibility gene analysis identified hotspot genes, including RUNX1, APC, IDH2, and BRCA2, and high-frequency gene analysis identified several genes, including TP53, TTN, and MUC16. Transcriptome analysis identified 5868 differentially expressed genes, of which TOP2A and ZWINT were upregulated in all samples, while CFD, ELANE, HBA1, and HBB were downregulated. Kyoto Encyclopedia of Genes and Genomes enrichment analysis indicated that the phosphoinositide 3-kinase (PI3K)-Akt and Transcriptional misregulation in cancer signaling pathways may be involved in ophthalmic tumorigenesis. CONCLUSIONS TP53 is clearly involved in ophthalmic tumorigenesis, especially in basal cell carcinoma, and the PI3K-Akt signaling pathway may be an essential pathway involved in ophthalmic tumorigenesis. RUNX1, SMO, TOP2A, and ZWINT are also highly likely to be involved in ophthalmic tumorigenesis, but further functional experiments are needed to verify the mechanisms of these genes in regulating tumorigenesis.
Collapse
Affiliation(s)
| | | | | | - Chunlei Yao
- Department of Ophthalmology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Yijie Wang
- Department of Ophthalmology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Juan Ye
- Department of Ophthalmology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Jian Wu
- MyGenostics Inc., Beijing, China
| |
Collapse
|
2
|
Di Nardo M, Musio A. Cohesin - bridging the gap among gene transcription, genome stability, and human diseases. FEBS Lett 2024. [PMID: 38852996 DOI: 10.1002/1873-3468.14949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 04/15/2024] [Accepted: 05/08/2024] [Indexed: 06/11/2024]
Abstract
The intricate landscape of cellular processes governing gene transcription, chromatin organization, and genome stability is a fascinating field of study. A key player in maintaining this delicate equilibrium is the cohesin complex, a molecular machine with multifaceted roles. This review presents an in-depth exploration of these intricate connections and their significant impact on various human diseases.
Collapse
Affiliation(s)
- Maddalena Di Nardo
- Institute for Biomedical Technologies (ITB), National Research Council (CNR), Pisa, Italy
| | - Antonio Musio
- Institute for Biomedical Technologies (ITB), National Research Council (CNR), Pisa, Italy
| |
Collapse
|
3
|
Zhang J, Liu X, Zhou W, Lu S, Wu C, Wu Z, Liu R, Li X, Wu J, Liu Y, Guo S, Jia S, Zhang X, Wang M. Identification of Key Genes Associated With the Process of Hepatitis B Inflammation and Cancer Transformation by Integrated Bioinformatics Analysis. Front Genet 2021; 12:654517. [PMID: 34539726 PMCID: PMC8440810 DOI: 10.3389/fgene.2021.654517] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Accepted: 06/21/2021] [Indexed: 12/13/2022] Open
Abstract
Background Hepatocellular carcinoma (HCC) has become the main cause of cancer death worldwide. More than half of hepatocellular carcinoma developed from hepatitis B virus infection (HBV). The purpose of this study is to find the key genes in the transformation process of liver inflammation and cancer and to inhibit the development of chronic inflammation and the transformation from disease to cancer. Methods Two groups of GEO data (including normal/HBV and HBV/HBV-HCC) were selected for differential expression analysis. The differential expression genes of HBV-HCC in TCGA were verified to coincide with the above genes to obtain overlapping genes. Then, functional enrichment analysis, modular analysis, and survival analysis were carried out on the key genes. Results We identified nine central genes (CDK1, MAD2L1, CCNA2, PTTG1, NEK2) that may be closely related to the transformation of hepatitis B. The survival and prognosis gene markers composed of PTTG1, MAD2L1, RRM2, TPX2, CDK1, NEK2, DEPDC1, and ZWINT were constructed, which performed well in predicting the overall survival rate. Conclusion The findings of this study have certain guiding significance for further research on the transformation of hepatitis B inflammatory cancer, inhibition of chronic inflammation, and molecular targeted therapy of cancer.
Collapse
Affiliation(s)
- Jingyuan Zhang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Xinkui Liu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Wei Zhou
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Shan Lu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Chao Wu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Zhishan Wu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Runping Liu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Xiaojiaoyang Li
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Jiarui Wu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Yingying Liu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Siyu Guo
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Shanshan Jia
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Xiaomeng Zhang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Miaomiao Wang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
4
|
Mastrodonato V, Beznoussenko G, Mironov A, Ferrari L, Deflorian G, Vaccari T. A genetic model of CEDNIK syndrome in zebrafish highlights the role of the SNARE protein Snap29 in neuromotor and epidermal development. Sci Rep 2019; 9:1211. [PMID: 30718891 PMCID: PMC6361908 DOI: 10.1038/s41598-018-37780-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Accepted: 12/06/2018] [Indexed: 12/25/2022] Open
Abstract
Homozygous mutations in SNAP29, encoding a SNARE protein mainly involved in membrane fusion, cause CEDNIK (Cerebral Dysgenesis, Neuropathy, Ichthyosis and Keratoderma), a rare congenital neurocutaneous syndrome associated with short life expectancy, whose pathogenesis is unclear. Here, we report the analysis of the first genetic model of CEDNIK in zebrafish. Strikingly, homozygous snap29 mutant larvae display CEDNIK-like features, such as microcephaly and skin defects. Consistent with Snap29 role in membrane fusion during autophagy, we observe accumulation of the autophagy markers p62 and LC3, and formation of aberrant multilamellar organelles and mitochondria. Importantly, we find high levels of apoptotic cell death during early development that might play a yet uncharacterized role in CEDNIK pathogenesis. Mutant larvae also display mouth opening problems, feeding impairment and swimming difficulties. These alterations correlate with defective trigeminal nerve formation and excess axonal branching. Since the paralog Snap25 is known to promote axonal branching, Snap29 might act in opposition with, or modulate Snap25 activity during neurodevelopment. Our vertebrate genetic model of CEDNIK extends the description in vivo of the multisystem defects due to loss of Snap29 and could provide the base to test compounds that might ameliorate traits of the disease.
Collapse
Affiliation(s)
- Valeria Mastrodonato
- IFOM, The FIRC Institute of Molecular Oncology, via Adamello 16, 20139, Milan, Italy
- University of Milan, Department of Biosciences, Via Celoria 26, 20133, Milan, Italy
| | - Galina Beznoussenko
- IFOM, The FIRC Institute of Molecular Oncology, via Adamello 16, 20139, Milan, Italy
| | - Alexandre Mironov
- IFOM, The FIRC Institute of Molecular Oncology, via Adamello 16, 20139, Milan, Italy
| | - Laura Ferrari
- IEO, European Institute of Oncology, via Adamello 16, 20139, Milan, Italy
| | - Gianluca Deflorian
- IFOM, The FIRC Institute of Molecular Oncology, via Adamello 16, 20139, Milan, Italy.
| | - Thomas Vaccari
- University of Milan, Department of Biosciences, Via Celoria 26, 20133, Milan, Italy.
| |
Collapse
|
5
|
Morelli E, Mastrodonato V, Beznoussenko GV, Mironov AA, Tognon E, Vaccari T. An essential step of kinetochore formation controlled by the SNARE protein Snap29. EMBO J 2016; 35:2223-2237. [PMID: 27647876 PMCID: PMC5069552 DOI: 10.15252/embj.201693991] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2016] [Accepted: 08/16/2016] [Indexed: 12/31/2022] Open
Abstract
The kinetochore is an essential structure that mediates accurate chromosome segregation in mitosis and meiosis. While many of the kinetochore components have been identified, the mechanisms of kinetochore assembly remain elusive. Here, we identify a novel role for Snap29, an unconventional SNARE, in promoting kinetochore assembly during mitosis in Drosophila and human cells. Snap29 localizes to the outer kinetochore and prevents chromosome mis‐segregation and the formation of cells with fragmented nuclei. Snap29 promotes accurate chromosome segregation by mediating the recruitment of Knl1 at the kinetochore and ensuring stable microtubule attachments. Correct Knl1 localization to kinetochore requires human or Drosophila Snap29, and is prevented by a Snap29 point mutant that blocks Snap29 release from SNARE fusion complexes. Such mutant causes ectopic Knl1 recruitment to trafficking compartments. We propose that part of the outer kinetochore is functionally similar to membrane fusion interfaces.
Collapse
Affiliation(s)
- Elena Morelli
- IFOM, The FIRC Institute of Molecular Oncology, Milan, Italy
| | | | | | | | - Emiliana Tognon
- IFOM, The FIRC Institute of Molecular Oncology, Milan, Italy
| | - Thomas Vaccari
- IFOM, The FIRC Institute of Molecular Oncology, Milan, Italy
| |
Collapse
|
6
|
Cucco F, Musio A. Genome stability: What we have learned from cohesinopathies. AMERICAN JOURNAL OF MEDICAL GENETICS. PART C, SEMINARS IN MEDICAL GENETICS 2016; 172:171-8. [PMID: 27091086 DOI: 10.1002/ajmg.c.31492] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Cohesin is a multiprotein complex involved in many DNA-related processes such as proper chromosome segregation, replication, transcription, and repair. Mutations in cohesin gene pathways are responsible for human diseases, collectively referred to as cohesinopathies. In addition, both cohesin gene expression dysregulation and mutations have been identified in cancer. Cohesinopathy cells are characterized by genome instability (GIN) visualized by a constellation of markers such as chromosome aneuploidies, chromosome aberrations, precocious sister chromatid separation, premature centromere separation, micronuclei formation, and sensitivity to genotoxic drugs. The emerging picture suggests that GIN observed in cohesinopathies may result from the synergistic effects of the multiple cohesin dysfunctions. © 2016 Wiley Periodicals, Inc.
Collapse
|
7
|
Zhang J, Lu K, Xiang Y, Islam M, Kotian S, Kais Z, Lee C, Arora M, Liu HW, Parvin JD, Huang K. Weighted frequent gene co-expression network mining to identify genes involved in genome stability. PLoS Comput Biol 2012; 8:e1002656. [PMID: 22956898 PMCID: PMC3431293 DOI: 10.1371/journal.pcbi.1002656] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2012] [Accepted: 07/09/2012] [Indexed: 12/20/2022] Open
Abstract
Gene co-expression network analysis is an effective method for predicting gene functions and disease biomarkers. However, few studies have systematically identified co-expressed genes involved in the molecular origin and development of various types of tumors. In this study, we used a network mining algorithm to identify tightly connected gene co-expression networks that are frequently present in microarray datasets from 33 types of cancer which were derived from 16 organs/tissues. We compared the results with networks found in multiple normal tissue types and discovered 18 tightly connected frequent networks in cancers, with highly enriched functions on cancer-related activities. Most networks identified also formed physically interacting networks. In contrast, only 6 networks were found in normal tissues, which were highly enriched for housekeeping functions. The largest cancer network contained many genes with genome stability maintenance functions. We tested 13 selected genes from this network for their involvement in genome maintenance using two cell-based assays. Among them, 10 were shown to be involved in either homology-directed DNA repair or centrosome duplication control including the well-known cancer marker MKI67. Our results suggest that the commonly recognized characteristics of cancers are supported by highly coordinated transcriptomic activities. This study also demonstrated that the co-expression network directed approach provides a powerful tool for understanding cancer physiology, predicting new gene functions, as well as providing new target candidates for cancer therapeutics.
Collapse
Affiliation(s)
- Jie Zhang
- Department of Biomedical Informatics, The Ohio State University, Columbus, Ohio, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Abstract
Genome instability is a hallmark of cancer cells and how it arises is still not completely understood. Correct chromosome segregation is a pre-requisite for preserving genome integrity. Cohesin helps to ensure faithful chromosome segregation during cell cycle, however, much evidence regarding its functions have come to light over the last few years and suggest that cohesin plays multiple roles in the maintenance of genome stability. Here we review our rapidly increasing knowledge on the involvement of cohesin pathway in genome stability and cancer.
Collapse
Affiliation(s)
- Linda Mannini
- Istituto di Ricerca Genetica e Biomedica, Consiglio Nazionale delle Richerche, Pisa, Italy
| | | |
Collapse
|
9
|
Chien R, Zeng W, Ball AR, Yokomori K. Cohesin: a critical chromatin organizer in mammalian gene regulation. Biochem Cell Biol 2011; 89:445-58. [PMID: 21851156 PMCID: PMC4056987 DOI: 10.1139/o11-039] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Cohesins are evolutionarily conserved essential multi-protein complexes that are important for higher-order chromatin organization. They play pivotal roles in the maintenance of genome integrity through mitotic chromosome regulation, DNA repair and replication, as well as gene regulation critical for proper development and cellular differentiation. In this review, we will discuss the multifaceted functions of mammalian cohesins and their apparent functional hierarchy in the cell, with particular focus on their actions in gene regulation and their relevance to human developmental disorders.
Collapse
Affiliation(s)
- Richard Chien
- Department of Biological Chemistry, School of Medicine, University of California, Irvine, California 92697-1700, USA
| | - Weihua Zeng
- Department of Biological Chemistry, School of Medicine, University of California, Irvine, California 92697-1700, USA
| | - Alexander R. Ball
- Department of Biological Chemistry, School of Medicine, University of California, Irvine, California 92697-1700, USA
| | - Kyoko Yokomori
- Department of Biological Chemistry, School of Medicine, University of California, Irvine, California 92697-1700, USA
| |
Collapse
|
10
|
Mannini L, Menga S, Musio A. The expanding universe of cohesin functions: a new genome stability caretaker involved in human disease and cancer. Hum Mutat 2010; 31:623-30. [PMID: 20513141 DOI: 10.1002/humu.21252] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Cohesin is responsible for sister chromatid cohesion, ensuring the correct chromosome segregation. Beyond this role, cohesin and regulatory cohesin genes seem to play a role in preserving genome stability and gene transcription regulation. DNA damage is thought to be a major culprit for many human diseases, including cancer. Our present knowledge of the molecular basis underlying genome instability is extremely limited. Mutations in cohesin genes cause human diseases such as Cornelia de Lange syndrome and Roberts syndrome/SC phocomelia, and all the cell lines derived from affected patients show genome instability. Cohesin mutations have also been identified in colorectal cancer. Here, we will discuss the human disorders caused by alterations of cohesin function, with emphasis on the emerging role of cohesin as a genome stability caretaker.
Collapse
Affiliation(s)
- Linda Mannini
- Istituto di Tecnologie Biomediche, Consiglio Nazionale delle Ricerche, Pisa, Italy
| | | | | |
Collapse
|
11
|
Heit R, Rattner JB, Chan GKT, Hendzel MJ. G2 histone methylation is required for the proper segregation of chromosomes. J Cell Sci 2009; 122:2957-68. [PMID: 19638412 DOI: 10.1242/jcs.045351] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Trimethylation of lysine 9 on histone H3 (H3K9me3) is known both to be necessary for proper chromosome segregation and to increase in late G2. We investigated the role of late G2 methylation, specifically in mitotic progression, by inhibiting methylation for 2 hours prior to mitosis using the general methylation inhibitor adenosine dialdehyde (AdOx). AdOx inhibits all methylation events within the cell but, by shortening the treatment length to 2 hours and studying mitotic cells, the only methylation events that are affected are those that occur in late G2. We discovered that methylation events in this time period are crucial for proper mitosis. Mis-segregation of chromosomes is observed with AdOx treatment. Through studies of histone modifications, we have found that inhibiting late G2 methylation affects trimethylation of H3K9 and H4K20. The mitotic checkpoint is active and many kinetochore proteins localize properly, however, pericentric chromatin in these cells is found to be less compact (dense). The reduced integrity of pericentric heterochromatin might be responsible for a noted loss of tension at the centromere in AdOx-treated cells and activation of the spindle assembly checkpoint. We postulate that late G2 methylation is necessary for proper pericentric heterochromatin formation. The results suggest that a reduction in heterochromatin integrity might interfere both with microtubule attachment to chromosomes and with the proper sensing of tension from correct microtubule-kinetochore connections, either of which will result in activation of the mitotic checkpoint.
Collapse
Affiliation(s)
- Ryan Heit
- Department of Oncology, Faculty of Medicine, University of Alberta, Edmonton, Canada
| | | | | | | |
Collapse
|
12
|
Dalal AB, Phadke SR. Twin pregnancy with Roberts syndrome in one fetus and trisomy 18 in the other. JOURNAL OF CLINICAL ULTRASOUND : JCU 2006; 34:146-9. [PMID: 16547991 DOI: 10.1002/jcu.20185] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
We report a case of a 26-year-old multigravida pregnant woman with a history of 3 stillbirths with hydrops fetalis who presented with 17 weeks menstrual age. Sonographic examination revealed twin gestation. Twin 1 showed subcutaneous edema, pleural effusion, and mesomelic limb shortening, suggestive of lethal skeletal dysplasia (Roberts syndrome). Twin 2 corresponded to 17 weeks menstrual age with no major malformations. Karyotyping of the fetuses showed normal karyotype in twin 1 and trisomy 18 in twin 2. Fetal autopsy confirmed the sonographic findings. The occurrence of trisomy 18 in the fetus may be due to chance, but it raises the possibility that the heterozygotes of Roberts syndrome may be at higher risk of nondisjunction and aneuploidy in the fetus. Furthermore, this case illustrates that karyotyping of both fetuses is warranted when 1 of the twins is found to have major malformations.
Collapse
Affiliation(s)
- Ashwin B Dalal
- Department of Medical Genetics, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, India
| | | |
Collapse
|
13
|
Weier JF, Weier HUG, Jung CJ, Gormley M, Zhou Y, Chu LW, Genbacev O, Wright AA, Fisher SJ. Human cytotrophoblasts acquire aneuploidies as they differentiate to an invasive phenotype. Dev Biol 2005; 279:420-32. [PMID: 15733669 DOI: 10.1016/j.ydbio.2004.12.035] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2004] [Revised: 12/07/2004] [Accepted: 12/08/2004] [Indexed: 02/06/2023]
Abstract
Through an unusual differentiation process, human trophoblast progenitors (cytotrophoblasts) give rise to tumor-like cells that invade the uterus. By an unknown mechanism, invasive cytotrophoblasts exhibit permanent cell cycle withdrawal. Here, we report molecular cytogenetic data showing that approximately 20 to 60% of these interphase cells had acquired aneusomies involving chromosomes X, Y, or 16. The incidence positively correlated with gestational age and differentiation to an invasive phenotype. Scoring 12 chromosomes in flow-sorted cytotrophoblasts showed that more than 95% of the cells were hyperdiploid. Thus, aneuploidy appears to be an important component of normal placentation, perhaps limiting the proliferative and invasive potential of cytotrophoblasts within the uterus.
Collapse
Affiliation(s)
- Jingly F Weier
- Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California, San Francisco, CA 94143-0720, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Matsumoto T, Yanagida M. The dream of every chromosome: equal segregation for a healthy life of the host. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2005; 570:281-310. [PMID: 18727505 DOI: 10.1007/1-4020-3764-3_10] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Affiliation(s)
- Tomohiro Matsumoto
- Department of Gene Mechanisms, Graduate School of Biostudies, Kyoto University, Sakyo-ku, Kyoto, Japan
| | | |
Collapse
|