1
|
Rawal K, Sinha R, Abbasi BA, Chaudhary A, Nath SK, Kumari P, Preeti P, Saraf D, Singh S, Mishra K, Gupta P, Mishra A, Sharma T, Gupta S, Singh P, Sood S, Subramani P, Dubey AK, Strych U, Hotez PJ, Bottazzi ME. Identification of vaccine targets in pathogens and design of a vaccine using computational approaches. Sci Rep 2021; 11:17626. [PMID: 34475453 PMCID: PMC8413327 DOI: 10.1038/s41598-021-96863-x] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 08/10/2021] [Indexed: 02/07/2023] Open
Abstract
Antigen identification is an important step in the vaccine development process. Computational approaches including deep learning systems can play an important role in the identification of vaccine targets using genomic and proteomic information. Here, we present a new computational system to discover and analyse novel vaccine targets leading to the design of a multi-epitope subunit vaccine candidate. The system incorporates reverse vaccinology and immuno-informatics tools to screen genomic and proteomic datasets of several pathogens such as Trypanosoma cruzi, Plasmodium falciparum, and Vibrio cholerae to identify potential vaccine candidates (PVC). Further, as a case study, we performed a detailed analysis of the genomic and proteomic dataset of T. cruzi (CL Brenner and Y strain) to shortlist eight proteins as possible vaccine antigen candidates using properties such as secretory/surface-exposed nature, low transmembrane helix (< 2), essentiality, virulence, antigenic, and non-homology with host/gut flora proteins. Subsequently, highly antigenic and immunogenic MHC class I, MHC class II and B cell epitopes were extracted from top-ranking vaccine targets. The designed vaccine construct containing 24 epitopes, 3 adjuvants, and 4 linkers was analysed for its physicochemical properties using different tools, including docking analysis. Immunological simulation studies suggested significant levels of T-helper, T-cytotoxic cells, and IgG1 will be elicited upon administration of such a putative multi-epitope vaccine construct. The vaccine construct is predicted to be soluble, stable, non-allergenic, non-toxic, and to offer cross-protection against related Trypanosoma species and strains. Further, studies are required to validate safety and immunogenicity of the vaccine.
Collapse
Affiliation(s)
- Kamal Rawal
- Centre for Computational Biology and Bioinformatics, Amity Institute of Biotechnology, Amity University Uttar Pradesh, Noida, India.
| | - Robin Sinha
- Centre for Computational Biology and Bioinformatics, Amity Institute of Biotechnology, Amity University Uttar Pradesh, Noida, India
| | - Bilal Ahmed Abbasi
- Centre for Computational Biology and Bioinformatics, Amity Institute of Biotechnology, Amity University Uttar Pradesh, Noida, India
| | - Amit Chaudhary
- Centre for Computational Biology and Bioinformatics, Amity Institute of Biotechnology, Amity University Uttar Pradesh, Noida, India
| | - Swarsat Kaushik Nath
- Centre for Computational Biology and Bioinformatics, Amity Institute of Biotechnology, Amity University Uttar Pradesh, Noida, India
| | - Priya Kumari
- Centre for Computational Biology and Bioinformatics, Amity Institute of Biotechnology, Amity University Uttar Pradesh, Noida, India
| | - P Preeti
- Centre for Computational Biology and Bioinformatics, Amity Institute of Biotechnology, Amity University Uttar Pradesh, Noida, India
| | - Devansh Saraf
- Centre for Computational Biology and Bioinformatics, Amity Institute of Biotechnology, Amity University Uttar Pradesh, Noida, India
| | - Shachee Singh
- Centre for Computational Biology and Bioinformatics, Amity Institute of Biotechnology, Amity University Uttar Pradesh, Noida, India
| | - Kartik Mishra
- Centre for Computational Biology and Bioinformatics, Amity Institute of Biotechnology, Amity University Uttar Pradesh, Noida, India
| | - Pranjay Gupta
- Centre for Computational Biology and Bioinformatics, Amity Institute of Biotechnology, Amity University Uttar Pradesh, Noida, India
| | - Astha Mishra
- Centre for Computational Biology and Bioinformatics, Amity Institute of Biotechnology, Amity University Uttar Pradesh, Noida, India
| | - Trapti Sharma
- Centre for Computational Biology and Bioinformatics, Amity Institute of Biotechnology, Amity University Uttar Pradesh, Noida, India
| | - Srijanee Gupta
- Centre for Computational Biology and Bioinformatics, Amity Institute of Biotechnology, Amity University Uttar Pradesh, Noida, India
| | - Prashant Singh
- Centre for Computational Biology and Bioinformatics, Amity Institute of Biotechnology, Amity University Uttar Pradesh, Noida, India
| | - Shriya Sood
- Centre for Computational Biology and Bioinformatics, Amity Institute of Biotechnology, Amity University Uttar Pradesh, Noida, India
| | - Preeti Subramani
- Centre for Computational Biology and Bioinformatics, Amity Institute of Biotechnology, Amity University Uttar Pradesh, Noida, India
| | - Aman Kumar Dubey
- Centre for Computational Biology and Bioinformatics, Amity Institute of Biotechnology, Amity University Uttar Pradesh, Noida, India
| | - Ulrich Strych
- Texas Children's Hospital Center for Vaccine Development, Departments of Pediatrics and Molecular Virology and Microbiology, National School of Tropical Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Peter J Hotez
- Texas Children's Hospital Center for Vaccine Development, Departments of Pediatrics and Molecular Virology and Microbiology, National School of Tropical Medicine, Baylor College of Medicine, Houston, TX, USA
- Department of Biology, Baylor University, Waco, TX, USA
| | - Maria Elena Bottazzi
- Texas Children's Hospital Center for Vaccine Development, Departments of Pediatrics and Molecular Virology and Microbiology, National School of Tropical Medicine, Baylor College of Medicine, Houston, TX, USA
- Department of Biology, Baylor University, Waco, TX, USA
| |
Collapse
|
2
|
Miao J, Fan Q, Cui L, Li J, Li J, Cui L. The malaria parasite Plasmodium falciparum histones: organization, expression, and acetylation. Gene 2006; 369:53-65. [PMID: 16410041 DOI: 10.1016/j.gene.2005.10.022] [Citation(s) in RCA: 140] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2005] [Revised: 10/08/2005] [Accepted: 10/11/2005] [Indexed: 10/25/2022]
Abstract
Histones are the building units of nucleosomes and play essential roles in DNA replication, repair and transcription. A comprehensive analysis of histone genes revealed that the Plasmodium falciparum genome encodes a canonical form of each core histone and four histone variants H2A.Z, H3.3, centromere-specific H3 (CenH3), and H2Bv. Mass spectrometry confirmed the synthesis of all histones except CenH3. Real-time reverse transcriptase-polymerase chain reaction and immunoblotting detected a dramatic increase in core histone gene expression during the late trophozoite stages, consistent with their role in replication-related nucleosome assembly. In contrast, the expression of variant histones decreased in mid- or late trophozoite stages. The N-terminal tails of histones participate in transcription regulation through covalent modifications, especially at the lysine residues. In accordance, mass spectrometry analysis revealed acetylation of lysines and methylation of lysines and arginines in the N-termini of H3, H3.3, and H4. Moreover, we identified a new pattern of lysine modifications of the H2A.Z variant. Using a panel of acetylation-specific antibodies, we found that K5, K8, and K12 of H4 were abundantly acetylated at a relatively steady level throughout the erythrocytic cycle. In comparison, the H3-K9 acetylation increased in late trophozoite and schizont stages, while H4-K16 acetylation peaked in mid-trophozoite stage. We have also shown that despite the sequence divergence in the PfH3 N-terminus from their mammalian homologues, the recombinant PfH3 was still efficiently acetylated by both recombinant and native PfGCN5 at K9 and K14. This study suggests that histone replacement and the dynamic histone modifications play important roles in regulating gene expression during erythrocytic development of the malaria parasite.
Collapse
Affiliation(s)
- Jun Miao
- Department of Entomology, Pennsylvania State University, 501 ASI Building, University Park, PA 16802, USA
| | | | | | | | | | | |
Collapse
|
3
|
Hackett JD, Scheetz TE, Yoon HS, Soares MB, Bonaldo MF, Casavant TL, Bhattacharya D. Insights into a dinoflagellate genome through expressed sequence tag analysis. BMC Genomics 2005; 6:80. [PMID: 15921535 PMCID: PMC1173104 DOI: 10.1186/1471-2164-6-80] [Citation(s) in RCA: 120] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2005] [Accepted: 05/29/2005] [Indexed: 11/10/2022] Open
Abstract
Background Dinoflagellates are important marine primary producers and grazers and cause toxic "red tides". These taxa are characterized by many unique features such as immense genomes, the absence of nucleosomes, and photosynthetic organelles (plastids) that have been gained and lost multiple times. We generated EST sequences from non-normalized and normalized cDNA libraries from a culture of the toxic species Alexandrium tamarense to elucidate dinoflagellate evolution. Previous analyses of these data have clarified plastid origin and here we study the gene content, annotate the ESTs, and analyze the genes that are putatively involved in DNA packaging. Results Approximately 20% of the 6,723 unique (11,171 total 3'-reads) ESTs data could be annotated using Blast searches against GenBank. Several putative dinoflagellate-specific mRNAs were identified, including one novel plastid protein. Dinoflagellate genes, similar to other eukaryotes, have a high GC-content that is reflected in the amino acid codon usage. Highly represented transcripts include histone-like (HLP) and luciferin binding proteins and several genes occur in families that encode nearly identical proteins. We also identified rare transcripts encoding a predicted protein highly similar to histone H2A.X. We speculate this histone may be retained for its role in DNA double-strand break repair. Conclusion This is the most extensive collection to date of ESTs from a toxic dinoflagellate. These data will be instrumental to future research to understand the unique and complex cell biology of these organisms and for potentially identifying the genes involved in toxin production.
Collapse
Affiliation(s)
- Jeremiah D Hackett
- Department of Biological Sciences and Roy J. Carver Center for Comparative Genomics, University of Iowa, Iowa City, IA 52242, USA
| | - Todd E Scheetz
- Department of Ophthalmology and Center for Bioinformatics and Computational Biology, University of Iowa, Iowa City, IA 52242, USA
| | - Hwan Su Yoon
- Department of Biological Sciences and Roy J. Carver Center for Comparative Genomics, University of Iowa, Iowa City, IA 52242, USA
| | - Marcelo B Soares
- Department of Pediatrics, University of Iowa, Iowa City, IA 52242, USA
- Departments of Biochemistry, Orthopaedics, Physiology, and Biophysics, University of Iowa, Iowa City, IA 52242, USA
| | - Maria F Bonaldo
- Department of Pediatrics, University of Iowa, Iowa City, IA 52242, USA
| | - Thomas L Casavant
- Department of Electrical and Computer Engineering, University of Iowa, Iowa City, IA 52242, USA
| | - Debashish Bhattacharya
- Department of Biological Sciences and Roy J. Carver Center for Comparative Genomics, University of Iowa, Iowa City, IA 52242, USA
| |
Collapse
|
4
|
Jalah R, Sarin R, Sud N, Alam MT, Parikh N, Das TK, Sharma YD. Identification, expression, localization and serological characterization of a tryptophan-rich antigen from the human malaria parasite Plasmodium vivax. Mol Biochem Parasitol 2005; 142:158-69. [PMID: 15869815 DOI: 10.1016/j.molbiopara.2005.01.020] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2004] [Revised: 01/11/2005] [Accepted: 01/26/2005] [Indexed: 11/26/2022]
Abstract
Plasmodium vivax is most common but non-cultivable human malaria parasite which is poorly characterized at the molecular level. Here, we describe the identification and characterization of a P. vivax Tryptophan-Rich Antigen (PvTRAg) which contains unusually high (8.28%) tryptophan residues and is expressed by all blood stages of the parasite. The pvtrag gene comprises a 978bp open reading frame interrupted by two introns. The first intron is located in the 5'-untranslated region while the second one is positioned 174bp downstream to the ATG codon. The encoded approximately 40kDa protein contains a transmembrane domain near the N-terminus followed by a tryptophan-rich domain with significantly high surface probability and antigenic index. It is localized in the parasite cytoplasm as well as in the cytoplasm of the parasitized erythrocyte. The purified E. coli expressed recombinant PvTRAg protein showed a very high seropositivity rate for the presence of antibodies amongst the P. vivax patients, indicating that the antigen generates significant humoral immune response during the natural course of P. vivax infection. Analysis of various field isolates revealed that the tryptophan-rich domain is highly conserved except for three-point mutations. The PvTRAg could be a potential vaccine candidate since similar tryptophan-rich antigens of P. yoelii have shown protection against malaria in murine model.
Collapse
Affiliation(s)
- Rashmi Jalah
- Department of Biotechnology, All India Institute of Medical Sciences, Ansari Nagar, New Delhi 110029, India
| | | | | | | | | | | | | |
Collapse
|