1
|
Taheri M, Hussen BM, Najafi S, Abak A, Ghafouri-Fard S, Samsami M, Baniahmad A. Molecular mechanisms of inhibitor of growth (ING) family members in health and malignancy. Cancer Cell Int 2022; 22:272. [PMID: 36056353 PMCID: PMC9438315 DOI: 10.1186/s12935-022-02693-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 08/22/2022] [Indexed: 11/10/2022] Open
Abstract
ING genes belong to family of tumor suppressor genes with regulatory functions on cell proliferation, apoptosis, and cellular senescence. These include a family of proteins with 5 members (ING1-5), which are downregulated in human malignancies and/or affected by pathogenic mutations. ING proteins are highly evolutionarily conserved proteins containing several domains through which bind to chromatin structures by exerting their effects as readers of histone modification marks, and also binding to proteins like p53 involved in biological processes such as cell cycle regulation. Further, they are known as subunits of histone acetylation as well as deacetylation complexes and so exert their regulatory roles through epigenetic mechanisms. Playing role in restriction of proliferative but also invasive potentials of normal cells, INGs are particularly involved in cancer development and progression. However, additional studies and experimental confirmation are required for these models. This paper highlights the potential impact that INGs may have on the development of human cancer and explores what new information has recently arise on the functions of ING genes.
Collapse
Affiliation(s)
- Mohammad Taheri
- Institute of Human Genetics, Jena University Hospital, Jena, Germany.,Urology and Nephrology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Bashdar Mahmud Hussen
- Department of Pharmacognosy, College of Pharmacy, Hawler Medical University, Kurdistan Region, Erbil, Iraq.,Center of Research and Strategic Studies, Lebanese French University, Erbil, Kurdistan Region, Iraq
| | - Sajad Najafi
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Atefe Abak
- Skull Base Research Center, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Soudeh Ghafouri-Fard
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Majid Samsami
- Cancer Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Aria Baniahmad
- Institute of Human Genetics, Jena University Hospital, Jena, Germany.
| |
Collapse
|
2
|
Martinez-Vargas YDC, Silva-Filho TJD, Oliveira DHIPD, Gonçalo RIC, Queiroz LMG. ING3 and ING4 immunoexpression and their relation to the development of benign odontogenic lesions. Braz Dent J 2021; 32:74-82. [PMID: 34787253 DOI: 10.1590/0103-6440202104279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 07/08/2021] [Indexed: 11/22/2022] Open
Abstract
The Inhibitor of Growth (ING) gene family is a group of tumor suppressor genes that play important roles in cell cycle control, senescence, DNA repair, cell proliferation, and apoptosis. However, inactivation and downregulation of these proteins have been related in some neoplasms. The present study aimed to evaluate the immunohistochemical profiles of ING3 and ING4 proteins in a series of benign epithelial odontogenic lesions. METHODS The sample comprised of 20 odontogenic keratocysts (OKC), 20 ameloblastomas (AM), and 15 adenomatoid odontogenic tumors (AOT) specimens. Nuclear and cytoplasmic immunolabeling of ING3 and ING4 were semi-quantitatively evaluated in epithelial cells of the odontogenic lesions, according to the percentage of immunolabelled cells in each case. Descriptive and statistics analysis were computed, and the p-value was set at 0.05. RESULTS No statistically significant differences were found in cytoplasmic and nuclear ING3 immunolabeling among the studied lesions. In contrast, AOTs presented higher cytoplasmic and nuclear ING4 labeling compared to AMs (cytoplasmic p-value = 0.01; nuclear p-value < 0.001) and OKCs (nuclear p-value = 0.007). CONCLUSION ING3 and ING4 protein downregulation may play an important role in the initiation and progression of more aggressive odontogenic lesions, such as AMs and OKCs.
Collapse
Affiliation(s)
| | | | | | - Rani Iani Costa Gonçalo
- Postgraduate Program in Oral Pathology, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| | | |
Collapse
|
3
|
A Novel Splice Variant of the Inhibitor of Growth 3 Lacks the Plant Homeodomain and Regulates Epithelial-Mesenchymal Transition in Prostate Cancer Cells. Biomolecules 2021; 11:biom11081152. [PMID: 34439818 PMCID: PMC8392754 DOI: 10.3390/biom11081152] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 07/28/2021] [Accepted: 07/29/2021] [Indexed: 12/14/2022] Open
Abstract
Inhibitor of growth 3 (ING3) is one of five members of the ING tumour suppressor family, characterized by a highly conserved plant homeodomain (PHD) as a reader of the histone mark H3K4me3. ING3 was reported to act as a tumour suppressor in many different cancer types to regulate apoptosis. On the other hand, ING3 levels positively correlate with poor survival prognosis of prostate cancer (PCa) patients. In PCa cells, ING3 acts rather as an androgen receptor (AR) co-activator and harbours oncogenic properties in PCa. Here, we show the identification of a novel ING3 splice variant in both the human PCa cell line LNCaP and in human PCa patient specimen. The novel ING3 splice variant lacks exon 11, ING3∆ex11, which results in deletion of the PHD, providing a unique opportunity to analyse functionally the PHD of ING3 by a natural splice variant. Functionally, overexpression of ING3Δex11 induced morphological changes of LNCaP-derived 3D spheroids with generation of lumen and pore-like structures within spheroids. Since these structures are an indicator of epithelial-mesenchymal transition (EMT), key regulatory factors and markers for EMT were analysed. The data suggest that in contrast to ING3, ING3Δex11 specifically modulates the expression of key EMT-regulating upstream transcription factors and induces the expression of EMT markers, indicating that the PHD of ING3 inhibits EMT. In line with this, ING3 knockdown also induced the expression of EMT markers, confirming the impact of ING3 on EMT regulation. Further, ING3 knockdown induced cellular senescence via a pathway leading to cell cycle arrest, indicating an oncogenic role for ING3 in PCa. Thus, the data suggest that the ING3Δex11 splice variant lacking functional PHD exhibits oncogenic characteristics through triggering EMT in PCa cells.
Collapse
|
4
|
ING4 Expression Landscape and Association With Clinicopathologic Characteristics in Breast Cancer. Clin Breast Cancer 2021; 21:e319-e331. [DOI: 10.1016/j.clbc.2020.11.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Revised: 11/09/2020] [Accepted: 11/12/2020] [Indexed: 12/17/2022]
|
5
|
Shatnawi A, Abu Rabe DI, Frigo DE. Roles of the tumor suppressor inhibitor of growth family member 4 (ING4) in cancer. Adv Cancer Res 2021; 152:225-262. [PMID: 34353439 DOI: 10.1016/bs.acr.2021.05.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Inhibitor of growth family member 4 (ING4) is best known as a tumor suppressor that is frequently downregulated, deleted, or mutated in many cancers. ING4 regulates a broad array of tumor-related processes including proliferation, apoptosis, migration, autophagy, invasion, angiogenesis, DNA repair and chromatin remodeling. ING4 alters local chromatin structure by functioning as an epigenetic reader of H3K4 trimethylation histone marks (H3K4Me3) and regulating gene transcription through directing histone acetyltransferase (HAT) and histone deacetylase (HDAC) protein complexes. ING4 may serve as a useful prognostic biomarker for many cancer types and help guide treatment decisions. This review provides an overview of ING4's central functions in gene expression and summarizes current literature on the role of ING4 in cancer and its possible use in therapy.
Collapse
Affiliation(s)
- Aymen Shatnawi
- Department of Pharmaceutical and Administrative Sciences, University of Charleston School of Pharmacy, Charleston, WV, United States.
| | - Dina I Abu Rabe
- Integrated Bioscience Program, North Carolina Central University, Durham, NC, United States
| | - Daniel E Frigo
- Department of Cancer Systems Imaging, University of Texas MD Anderson Cancer Center, Houston, TX, United States; Department of Genitourinary Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, United States
| |
Collapse
|
6
|
Singh M, Kumar V, Sehrawat N, Yadav M, Chaudhary M, Upadhyay SK, Kumar S, Sharma V, Kumar S, Dilbaghi N, Sharma AK. Current paradigms in epigenetic anticancer therapeutics and future challenges. Semin Cancer Biol 2021; 83:422-440. [PMID: 33766649 DOI: 10.1016/j.semcancer.2021.03.013] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 12/14/2020] [Accepted: 03/16/2021] [Indexed: 12/16/2022]
Abstract
Any alteration at the genetic or epigenetic level, may result in multiplex of diseases including tumorigenesis which ultimately results in the cancer development. Restoration of the normal epigenome by reversing the epigenetic alterations have been reported in tumors paving the way for development of an effective epigenetic treatment in cancer. However, delineating various epigenetic events has been a challenging task so far despite substantial progress in understanding DNA methylation and histone modifications during transcription of genes. Many inhibitors in the form of epigenetic drugs mostly targeting chromatin and histone modifying enzymes including DNA methyltransferase (DNMT) enzyme inhibitors and a histone deacetylases (HDACs) inhibitor, have been in use subsequent to the approval by FDA for cancer treatment. Similarly, other inhibitory drugs, such as FK228, suberoylanilide hydroxamic acid (SAHA) and MS-275, have been successfully tested in clinical studies. Despite all these advancements, still we see a hazy view as far as a promising epigenetic anticancer therapy is concerned. The challenges are to have more specific and effective inhibitors with negligible side effects. Moreover, the alterations seen in tumors are not well understood for which one has to gain deeper insight into the tumor pathology as well. Current review focusses on such epigenetic alterations occurring in cancer and the effective strategies to utilize such alterations for potential therapeutic use and treatment in cancer.
Collapse
Affiliation(s)
- Manoj Singh
- Department of Biotechnology, Maharishi Markandeshwar (Deemed to be University), Mullana-Ambala, 133207, Haryana, India
| | - Vikas Kumar
- Department of Biotechnology, Maharishi Markandeshwar (Deemed to be University), Mullana-Ambala, 133207, Haryana, India
| | - Nirmala Sehrawat
- Department of Biotechnology, Maharishi Markandeshwar (Deemed to be University), Mullana-Ambala, 133207, Haryana, India
| | - Mukesh Yadav
- Department of Biotechnology, Maharishi Markandeshwar (Deemed to be University), Mullana-Ambala, 133207, Haryana, India
| | - Mayank Chaudhary
- Department of Biotechnology, Maharishi Markandeshwar (Deemed to be University), Mullana-Ambala, 133207, Haryana, India
| | - Sushil K Upadhyay
- Department of Biotechnology, Maharishi Markandeshwar (Deemed to be University), Mullana-Ambala, 133207, Haryana, India
| | - Sunil Kumar
- Department of Biotechnology, Maharishi Markandeshwar (Deemed to be University), Mullana-Ambala, 133207, Haryana, India
| | - Varruchi Sharma
- Department of Biotechnology, Sri Guru Gobind Singh College Sector-26, Chandigarh, UT, 160019, India
| | - Sandeep Kumar
- Department of Bio& Nanotechnology, Guru Jambheshwar University of Science & Technology, Hisar, Haryana, 125001, India
| | - Neeraj Dilbaghi
- Department of Bio& Nanotechnology, Guru Jambheshwar University of Science & Technology, Hisar, Haryana, 125001, India
| | - Anil K Sharma
- Department of Biotechnology, Maharishi Markandeshwar (Deemed to be University), Mullana-Ambala, 133207, Haryana, India.
| |
Collapse
|
7
|
Ma T, Guo R, Wang X, Shen WT, Zhu M, Jin YN, Xu HP. Lentiviral vector with a radiation-inducible promoter, carrying the ING4 gene, mediates radiosensitization controlled by radiotherapy in cervical cancer cells. Oncol Lett 2020; 21:67. [PMID: 33365078 PMCID: PMC7716713 DOI: 10.3892/ol.2020.12328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Accepted: 10/19/2020] [Indexed: 12/24/2022] Open
Abstract
The presence of hypoxia in solid tumors is considered one of the major factors that contribute to radiation resistance. The aim of the present study was to establish a therapeutic system, which can be controlled by radiation itself, to enhance radiosensitivity. For this purpose, a lentiviral gene therapy vector containing the human inhibitor of growth 4 (ING4) and its upstream promoter, human early growth response factor-1 (EGR1), which possesses the radiation-inducible characteristics to activate the transcription of its downstream genes, was constructed. Downstream fluorescence proteins were investigated to ensure that the EGR1 promoter was induced by irradiation. Furthermore, ING4 open reading frame (ORF) expression was detected by western blotting. The cell cycle was analyzed by fluorescence-activated cell sorting analysis 48 h after the cells were exposed to X-rays ranging between 0 and 8 Gy. In cells stably and transiently transfected with reporter plasmids, the EGR1-driver gene was sensitive to ionizing irradiation. Furthermore, irradiation-induced ING4 gene expression was observed. The enhanced ING4 expression increased the number of cells in the G2/M phase and decreased the proportion of cells in the G1/S phase. Therefore, ING4 expression inhibited cell proliferation and was associated with less colonies being formed. Furthermore, ING4 suppressed hypoxia-inducible factor 1α expression under hypoxic conditions and promoted cell apoptosis. Overall, these results revealed that combining the EGR1 promoter and ING4 ORF using a lentivirus system may be a promising therapeutic strategy with which to enhance radiosensitivity controlled by radiation. However, further studies using in vivo models are required to confirm these findings.
Collapse
Affiliation(s)
- Tao Ma
- Department of Radiation Oncology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200025, P.R. China
| | - Rui Guo
- Department of Nuclear Medicine, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200025, P.R. China
| | - Xi Wang
- Department of Neurology, Hackensack Meridian Health JFK Medical Center, Edison, NJ 08820, USA
| | - Wen-Tong Shen
- Department of Radiation Oncology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200025, P.R. China
| | - Min Zhu
- Department of Radiation Oncology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200025, P.R. China
| | - Ye-Ning Jin
- Department of Radiation Oncology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200025, P.R. China
| | - Hao-Ping Xu
- Department of Radiation Oncology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200025, P.R. China
| |
Collapse
|
8
|
Tang X, Ding Y, Wang X, Wang X, Zhao L, Bi H. miR-650 promotes non-small cell lung cancer cell proliferation and invasion by targeting ING4 through Wnt-1/β-catenin pathway. Oncol Lett 2019; 18:4621-4628. [PMID: 31611970 PMCID: PMC6781663 DOI: 10.3892/ol.2019.10805] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Accepted: 07/30/2019] [Indexed: 12/14/2022] Open
Abstract
Non-small cell lung cancer (NSCLC) is the most frequent cancer worldwide with a poor 5-year survival. miR-650 acts as an oncogene and regulates tumor progress in various cancers. Molecular mechanisms of miR-650 in NSCLC cell proliferation and invasion was studied. The mRNA levels of miR-650 and special genes were calculated using RT-qPCR. MTT and transwell assays were applied to measure the proliferative and invasive ability. Kaplan-Meier method was used to assess the survival of NSCLC patients. miR-650 was upregulated in NSCLC and upregulation of miR-650 was associated with a poor overall survival of NSCLC, while the results of ING4 demonstrated the opposite results. miR-650 promoted proliferation and invasion through Wnt-1/β-catenin pathway by targeting inhibitor of growth 4 (ING4) in A549 cells. ING4 was a direct target gene of miR-650 and the expression of ING4 was mediated by exogenous altering the expression of miR-650. Remarkably, alterations of ING4 expression eliminated the functions of miR-650 on the proliferation and metastasis of NSCLC. miR-650 enhanced A549 cell proliferation and invasion through Wnt-1/β-catenin pathway by directly targeting the 3'-UTR of ING4 mRNA. The newly identified miR-650/ING4 axis provides a novel insight into the pathogenesis of NSCLC.
Collapse
Affiliation(s)
- Xiangqin Tang
- Department of Oncology, Jining No. 1 People's Hospital, Jining, Shandong 272011, P.R. China
| | - Yanjun Ding
- Department of General Surgery, People's Hospital of Chiping, Chiping, Shandong 252100, P.R. China
| | - Xiaoqing Wang
- First Ward, Department of Neurology, The Affiliated Central Hospital of Qingdao University, Qingdao, Shandong 266000, P.R. China
| | - Xiuzhen Wang
- Department of Clinical Nutrition, People's Hospital of Zhangqiu Area, Jinan, Shandong 250200, P.R. China
| | - Lin Zhao
- Department of Respiratory Medicine, People's Hospital of Rizhao, Rizhao, Shandong 276826, P.R. China
| | - Hongmei Bi
- Department of Respiratory Medicine, The Third People's Hospital of Qingdao, Qingdao, Shandong 266041, P.R. China
| |
Collapse
|
9
|
The essential role of tumor suppressor gene ING4 in various human cancers and non-neoplastic disorders. Biosci Rep 2019; 39:BSR20180773. [PMID: 30643005 PMCID: PMC6356015 DOI: 10.1042/bsr20180773] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Revised: 12/19/2018] [Accepted: 01/13/2019] [Indexed: 12/21/2022] Open
Abstract
Inhibitor of growth 4 (ING4), a member of the ING family discovered in 2003, has been shown to act as a tumor suppressor and is frequently down-regulated in various human cancers. Numerous published in vivo and in vitro studies have shown that ING4 is responsible for important cancer hallmarks such as pathologic cell cycle arrest, apoptosis, autophagy, contact inhibition, and hypoxic adaptation, and also affects tumor angiogenesis, invasion, and metastasis. These characteristics are typically associated with regulation through chromatin acetylation by binding histone H3 trimethylated at lysine 4 (H3K4me3) and through transcriptional activity of transcription factor P53 and NF-κB. In addition, emerging evidence has indicated that abnormalities in ING4 expression and function play key roles in non-neoplastic disorders. Here, we provide an overview of ING4-modulated chromosome remodeling and transcriptional function, as well as the functional consequences of different genetic variants. We also present the current understanding concerning the role of ING4 in the development of neoplastic and non-neoplastic diseases. These studies offer inspiration for pursuing novel therapeutics for various cancers.
Collapse
|
10
|
Regulat-INGs in tumors and diseases: Focus on ncRNAs. Cancer Lett 2019; 447:66-74. [PMID: 30673590 DOI: 10.1016/j.canlet.2019.01.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 12/21/2018] [Accepted: 01/08/2019] [Indexed: 12/11/2022]
Abstract
ING family genes (Inhibitor of Growth) are tumor suppressor genes that play a vital role in cell homeostasis. It has been shown that their expression is lost or diminished in many cancers and other diseases. The main mechanisms by which they are regulated in oncogenesis have not yet been fully elucidated. The involvement of non-coding RNAs (ncRNAs) and in particular microRNAs (miRNAs) in post-transcriptional gene regulation is well established. miRNAs are short sequences (18-25 nucleotides) that can bind to the 3 'UTR sequence of the targeted messenger RNA (mRNA), leading to its degradation or translational repression. Interactions between the ING family and miRNAs have been described in some cancers but also in other diseases. The involvement of miRNAs in ING family regulation opens up new fields of investigation, particularly for targeted therapies. In this review, we will summarize the regulatory mechanisms at the RNA and protein level of the ING family and focus on the interactions with ncRNAs.
Collapse
|
11
|
Ren Y, Zhao S, Chen H, Fu YM, Zhao B. Association between the expression of inhibitor of growth family member 4 and the progression of clear cell renal carcinoma. Oncol Lett 2017; 14:2453-2457. [PMID: 28781682 DOI: 10.3892/ol.2017.6450] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Accepted: 04/21/2017] [Indexed: 12/23/2022] Open
Abstract
Inhibitor of growth family member 4 (ING4) is a candidate tumor suppressor that serves important roles in tumor growth and angiogenesis. In the present study ING4 expression was assessed in clear cell renal carcinoma (CCRC) tissues and its association with the progression of CCRC was determined. The expression of ING4 in 125 patients with CCRC was analyzed using reverse transcription-quantitative polymerase chain reaction (RT-qPCR), western blot analysis and immunohistochemical methods. A total of 40 adjacent normal renal tissues were used as control samples. The results identified that ING4 expression was positive in 100% of normal renal tissues, but in only 82.3% CCRC samples. RT-qPCR and western blotting results demonstrated that expression levels of ING4 mRNA and protein were significantly decreased in CCRC compared with in normal tissues (P<0.0001). ING4 expression was not associated with sex, age or tumor volume (P>0.05), but was associated with the nuclear grade of renal cancer (P<0.0001), the clinical stage of CCRC (P<0.0001) and lymphatic metastasis (P<0.0001). The results of the present study indicated that dysregulation of ING4 expression may be involved in the initiation and progression of CCRC.
Collapse
Affiliation(s)
- Yuxin Ren
- Department of Oncology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Song Zhao
- Department of General Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - He Chen
- Department of Pathology, Harbin Medical University, Harbin, Heilongjiang 150086, P.R. China
| | - Ying-Mei Fu
- Department of Pharmacology, Harbin Medical University, Harbin, Heilongjiang 150086, P.R. China
| | - Bai Zhao
- Department of Urology Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150086, P.R. China
| |
Collapse
|
12
|
Lango-Chavarría M, Chimal-Ramírez GK, Ruiz-Tachiquín ME, Espinoza-Sánchez NA, Suárez-Arriaga MC, Fuentes-Pananá EM. A 22q11.2 amplification in the region encoding microRNA-650 correlates with the epithelial to mesenchymal transition in breast cancer primary cultures of Mexican patients. Int J Oncol 2017; 50:432-440. [PMID: 28101578 PMCID: PMC5238778 DOI: 10.3892/ijo.2017.3842] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Accepted: 12/29/2016] [Indexed: 01/11/2023] Open
Abstract
Breast cancer ranks first in incidence and mortality in working age women. Cancer initiation and progression relies on accumulation of genetic and epigenetic aberrations that alter cellular processes, among them, epithelial to mesenchymal transition (EMT) denotes particularly aggressive neoplasias given its capacity to invade and metastasize. Several microRNAs (miRNA) have been found able to regulate gene expression at the core of EMT. In this study, the Affymetrix CytoScan HD array was used to analyze three different primary tumor cell isolates from Mexican breast cancer patients. We found an amplification in band 22q11.2 shared by the three samples, in the region that encodes miRNA-650. Overexpression of this miRNA has been associated with downregulation of tumor suppressors ING4 and NDRG2, which have been implicated in cancer progression. Using the Pathway Linker platform the ING4 and NDRG2 interaction networks showed a significant association with signaling pathways commonly deregulated in cancer. Also, several studies support their participation in the EMT. Supporting the latter, we found that the three primary isolates were E-cadherin negative, vimentin positive, presented a cancer stem cell-like phenotype CD44+CD24−/low and were invasive in Transwell invasion assays. This evidence suggests that the gain of region 22q11.2 contributes to trigger EMT. This is the first evidence linking miR-650 and breast cancer.
Collapse
Affiliation(s)
- M Lango-Chavarría
- Research Unit on Virology and Cancer, Children's Hospital of Mexico 'Federico Gómez', C.P. 06720 Mexico City, Mexico
| | - G K Chimal-Ramírez
- Research Unit on Virology and Cancer, Children's Hospital of Mexico 'Federico Gómez', C.P. 06720 Mexico City, Mexico
| | - M E Ruiz-Tachiquín
- Medical Research Unit on Human Genetics, Pediatric's Hospital, Mexican Institute of Social Security XXI Century, Del. Cuauhtemoc, C.P. 06720 Mexico City, Mexico
| | - N A Espinoza-Sánchez
- Research Unit on Virology and Cancer, Children's Hospital of Mexico 'Federico Gómez', C.P. 06720 Mexico City, Mexico
| | - M C Suárez-Arriaga
- Research Unit on Virology and Cancer, Children's Hospital of Mexico 'Federico Gómez', C.P. 06720 Mexico City, Mexico
| | - E M Fuentes-Pananá
- Research Unit on Virology and Cancer, Children's Hospital of Mexico 'Federico Gómez', C.P. 06720 Mexico City, Mexico
| |
Collapse
|
13
|
Li ZY, Li QZ, Chen L, Chen BD, Wang B, Zhang XJ, Li WP. Histone Deacetylase Inhibitor RGFP109 Overcomes Temozolomide Resistance by Blocking NF-κB-Dependent Transcription in Glioblastoma Cell Lines. Neurochem Res 2016; 41:3192-3205. [PMID: 27632183 DOI: 10.1007/s11064-016-2043-5] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Revised: 08/16/2016] [Accepted: 08/22/2016] [Indexed: 02/05/2023]
Abstract
Glioblastoma (GBM) is the most frequent and aggressive tumour in the central nervous system. Many studies have demonstrated that upregulation of the NF-κB onco-pathway is accompanied by the acquisition of Temozolomide (TMZ) resistance in GBM cells. Here, we show that RGFP109, a selective histone deacetylase (HDAC1 and HDAC3) inhibitor, overcomes TMZ resistance and downregulates the expression of NF-κB-regulated pro-survival genes in a TMZ-resistant (TR) GBM cell line. RGFP109 did not alter the phosphorylation levels of NF-κB/p65 or inhibitory κBα (IκBα). Immunofluorescence microscopy showed that RGFP109 does not block the nuclear translocation of NF-κB/p65. However, co-immunoprecipitation assays revealed that RGFP109 induces the hyperacetylation of NF-κB/p65 and histones, and blocks interactions between NF-κB/p65 and its coactivators, p300 and p300/CBP-associated factor (PCAF). These results indicate that RGFP109-mediated post-translational nuclear acetylation may be involved in the regulation of NF-κB. Electrophoretic mobility shift assays revealed that RGFP109 reduces NF-κB/p65 binding to κB-DNA and decreased the transcriptional level of κB-mediated genes, suggesting that RGFP109-induced hyperacetylation leads to attenuated transcription of the κB gene. In addition, RGFP109 elevates the expression of inhibitor of growth 4 (ING4), which is typically downregulated in GBM cells. Importantly, we found that RGFP109 enhances ING4 recognition and binding to NF-κB/p65, which may be positively correlated with reduced interactions between NF-κB/p65 and p300/PCAF, thereby effecting transcription of the κB gene. Finally, we show that knockdown of ING4 with plasmids containing pcDNA3.1-ING4 shRNA abolished the effect of RGFP109. Therefore, ING4 may act as a corepressor and facilitate RGFP109-triggered suppression of the NF-κB pathway. Taken together, our data show that RGFP109, an HDAC inhibitor, in combination with TMZ may be a therapeutic candidate for patients with temozolomide-resistant GBM.
Collapse
Affiliation(s)
- Zong-Yang Li
- Brain Center, Department of Neurosurgery, Shenzhen Key Laboratory of Neurosurgery, Shenzhen Second People's Hospital, The Clinical College of Anhui Medical University, Shenzhen University 1st Affiliated Hospital, 3002# Sungang Road, Futian district, Shenzhen, 518035, China
| | - Qing-Zhong Li
- Brain Center, Department of Neurosurgery, Shenzhen Key Laboratory of Neurosurgery, Shenzhen Second People's Hospital, The Clinical College of Anhui Medical University, Shenzhen University 1st Affiliated Hospital, 3002# Sungang Road, Futian district, Shenzhen, 518035, China
- Shantou University Medical College, 22# Xinling Road, Shantou, Guangdong, China
| | - Lei Chen
- Brain Center, Department of Neurosurgery, Shenzhen Key Laboratory of Neurosurgery, Shenzhen Second People's Hospital, The Clinical College of Anhui Medical University, Shenzhen University 1st Affiliated Hospital, 3002# Sungang Road, Futian district, Shenzhen, 518035, China
| | - Bao-Dong Chen
- Brain Center, Department of Neurosurgery, Shenzhen Key Laboratory of Neurosurgery, Shenzhen Second People's Hospital, The Clinical College of Anhui Medical University, Shenzhen University 1st Affiliated Hospital, 3002# Sungang Road, Futian district, Shenzhen, 518035, China
| | - Bo Wang
- Brain Center, Department of Neurosurgery, Shenzhen Key Laboratory of Neurosurgery, Shenzhen Second People's Hospital, The Clinical College of Anhui Medical University, Shenzhen University 1st Affiliated Hospital, 3002# Sungang Road, Futian district, Shenzhen, 518035, China
| | - Xie-Jun Zhang
- Brain Center, Department of Neurosurgery, Shenzhen Key Laboratory of Neurosurgery, Shenzhen Second People's Hospital, The Clinical College of Anhui Medical University, Shenzhen University 1st Affiliated Hospital, 3002# Sungang Road, Futian district, Shenzhen, 518035, China
| | - Wei-Ping Li
- Brain Center, Department of Neurosurgery, Shenzhen Key Laboratory of Neurosurgery, Shenzhen Second People's Hospital, The Clinical College of Anhui Medical University, Shenzhen University 1st Affiliated Hospital, 3002# Sungang Road, Futian district, Shenzhen, 518035, China.
- Shantou University Medical College, 22# Xinling Road, Shantou, Guangdong, China.
| |
Collapse
|
14
|
Zhang R, Jin J, Shi J, Hou Y. INGs are potential drug targets for cancer. J Cancer Res Clin Oncol 2016; 143:189-197. [PMID: 27544390 DOI: 10.1007/s00432-016-2219-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Accepted: 08/09/2016] [Indexed: 12/11/2022]
Abstract
PURPOSE The inhibitor of growth (ING) family consists of ING1, ING2, ING3, ING4 and ING5, which function as the type II tumor suppressors. INGs regulate cell proliferation, senescence, apoptosis, differentiation, angiogenesis, DNA repair, metastasis, and invasion by multiple pathways. In addition, INGs increase cancer cell sensitivity for chemotherapy and radiotherapy, while clinical observations show that INGs are frequently lost in some types of cancers. The aim of the study was to summarize the recent progress regarding INGs regulating tumor progression. METHODS The literatures of INGs regulating tumor progression were searched and assayed. RESULTS The regulating signaling pathways of ING1, ING2, ING3 or ING4 on tumor progression were shown. The mechanisms of INGs on tumor suppression were also assayed. CONCLUSIONS This review better summarized the signaling mechanism of INGs on tumor suppression, which provides a candidate therapy strategy for cancers.
Collapse
Affiliation(s)
- Runyun Zhang
- Department of Oncology, Affiliated Wujin People's Hospital, Jiangsu University, Changzhou, 212017, People's Republic of China.,Institute of Life Sciences, Jiangsu University, Zhenjiang, 212013, People's Republic of China
| | - Jianhua Jin
- Department of Oncology, Affiliated Wujin People's Hospital, Jiangsu University, Changzhou, 212017, People's Republic of China
| | - Juanjuan Shi
- Institute of Life Sciences, Jiangsu University, Zhenjiang, 212013, People's Republic of China.
| | - Yongzhong Hou
- Department of Oncology, Affiliated Wujin People's Hospital, Jiangsu University, Changzhou, 212017, People's Republic of China. .,Institute of Life Sciences, Jiangsu University, Zhenjiang, 212013, People's Republic of China.
| |
Collapse
|
15
|
Rakshit N, Yang S, Zhou W, Xu Y, Deng C, Yang J, Yu H, Wei W. Adenovirus-mediated co-expression of ING4 and PTEN cooperatively enhances their antitumor activity in human hepatocellular carcinoma cells. Acta Biochim Biophys Sin (Shanghai) 2016; 48:704-13. [PMID: 27421660 DOI: 10.1093/abbs/gmw062] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Accepted: 05/24/2016] [Indexed: 11/13/2022] Open
Abstract
Both inhibitor of growth 4 (ING4) and phosphatase and tensin homolog deleted on chromosome 10 (PTEN) are well known as tumor suppressors that are closely related to tumor occurrence and progression. It was reported that ING4 and PTEN showed synergistic antitumor activities in nasopharyngeal carcinoma cells. The two tumor suppressors demonstrated synergistic effect on growth inhibition and apoptosis activation. In this study, we investigated their therapeutic potential in hepatocellular carcinoma (HCC) cells. Recombinant adenoviruses co-expressing ING4 and PTEN (Ad-ING4-PTEN) were constructed, and the antitumor effect on SMMC-7721 and HepG2 HCC cells was evaluated. Ad-ING4-PTEN cooperatively inhibited cell growth, stimulated apoptosis, and suppressed invasion in both HCC cells, and regulated cell cycle in SMMC-7721. Further studies showed that the combination of ING4 and PTEN by Ad-ING4-PTEN cooperatively enhanced the alteration of the expression of cell cycle-related proteins (p53, p21, and cyclin D1) and apoptotic factors (Bad, Bcl-2, Bcl-XL, and Bax), which are involved in the regulation of cell cycle and the activation of apoptotic pathways, leading to the synergistic antitumor effect. These results indicate that the combination of ING4 and PTEN may provide an effective therapeutic strategy for HCC.
Collapse
Affiliation(s)
- Nargis Rakshit
- Department of Cell Biology, School of Medicine, Soochow University, Suzhou 215123, China
| | - Sijun Yang
- School of Life Science, Shangrao Normal University, Shangrao 334001, China
| | - Wei Zhou
- Department of Cell Biology, School of Medicine, Soochow University, Suzhou 215123, China
| | - Yi Xu
- Department of Cell Biology, School of Medicine, Soochow University, Suzhou 215123, China
| | - Chenghui Deng
- Department of Cell Biology, School of Medicine, Soochow University, Suzhou 215123, China
| | - Jiecheng Yang
- Department of Cell Biology, School of Medicine, Soochow University, Suzhou 215123, China
| | - Huijun Yu
- Department of Cell Biology, School of Medicine, Soochow University, Suzhou 215123, China
| | - Wenxiang Wei
- Department of Cell Biology, School of Medicine, Soochow University, Suzhou 215123, China
| |
Collapse
|
16
|
Ren X, Liu H, Zhang M, Wang M, Ma S. Co-expression of ING4 and P53 enhances hypopharyngeal cancer chemosensitivity to cisplatin in vivo. Mol Med Rep 2016; 14:2431-8. [PMID: 27484725 PMCID: PMC4991689 DOI: 10.3892/mmr.2016.5552] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Accepted: 06/14/2016] [Indexed: 01/09/2023] Open
Abstract
Hypopharyngeal cancer is a distinct type of malignant head and neck tumor, which exhibits low sensitivity to anti-cancer drugs. The importance of developing methods for reducing chemotherapy resistance, and improving and enhancing prognosis has previously been emphasized and is considered a challenge for effective clinical treatment of hypopharyngeal cancer. The current study investigated the effects of co-expression of inhibitor of growth protein 4 (ING4) and P53, a tumor suppressor gene, on chemosensitivity to cisplatin in human hypopharyngeal cancer xenografts in vivo, and the potential molecular mechanisms involved. A tumor model was established by injecting athymic nude mice with FADU human hypopharyngeal cancer cells. Five days after intratumoral and peritumoral injections of an empty adenoviral vector (Ad), Ad-ING4-P53, cisplatin, or a combination of Ad-ING4-P53 and cisplatin (Ad-ING4-P53 + cisplatin) every other day for 5 days, the mice were euthanized and their tumors, livers, and kidneys were removed. The tumor weights were used to calculate the inhibition rate, and the expression levels of ING4 and P53 were detected by reverse transcription-polymerase chain reaction. Additionally, apoptotic cells were detected using terminal deoxynucleotidyl transferase dUTP nick end labeling, and immunohistochemistry determined the levels ING4, P53, B-cell lymphoma-2 (Bcl-2) and Bcl-2 associated X protein (Bax) protein expression. The results demonstrated increased expression of ING4 and P53 in the Ad-ING4-P53 groups compared with PBS and Ad groups, indicating successful introduction of the genes into the tumor cells. Notably, the Ad-ING4-P53 + cisplatin group exhibited a higher inhibition rate compared with the four other groups. The results of immunohistochemistry analysis demonstrated that Bax expression was increased and Bcl-2 was decreased in the Ad-ING4-P53 + cisplatin group. This suggested that the enhanced cisplatin chemosensitivity with Ad-ING4-P53 gene therapy in hypopharyngeal cancer xenografts may be associated with apoptosis induction through upregulation of Bax expression and downregulation of Bcl-2. The results of the present study indicated that gene therapy combined with cisplatin treatment may be a promising treatment for human hypopharyngeal cancer.
Collapse
Affiliation(s)
- Xin Ren
- Department of Otolaryngology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui 233030, P.R. China
| | - Hao Liu
- Faculty of Pharmacy, Bengbu Medical College, Bengbu, Anhui 233030, P.R. China
| | - Mingjie Zhang
- Department of Otolaryngology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui 233030, P.R. China
| | - Mengjun Wang
- Department of Otolaryngology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui 233030, P.R. China
| | - Shiyin Ma
- Department of Otolaryngology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui 233030, P.R. China
| |
Collapse
|
17
|
Pan X, Wang R, Bian H, De W, Zhang P, Wei C, Wang Z. Overexpression of Inhibitor of Growth 4 Enhances Radiosensitivity in Non-Small Cell Lung Cancer Cell Line SPC-A1. Technol Cancer Res Treat 2016; 16:533-545. [PMID: 27381846 DOI: 10.1177/1533034616656315] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Inhibitor of growth 4 is a member of the inhibitor of growth family proteins, which is involved in cell apoptosis, migration, invasion, and cell cycle progress. In this study, we investigated the inhibitor of growth 4 level in non-small cell lung cancer tissues and explored the antitumor activity of inhibitor of growth 4 in vitro and in vivo using non-small cell lung cancer cell line SPC-A1 and its underlying molecular mechanisms. We also explored its role on the radiosensitivity in SPC-A1 cells. The level of inhibitor of growth 4 protein was significantly decreased in 28 cases of non-small cell lung cancer tissues in comparison with corresponding noncancerous lung epithelial tissues. Upregulation of inhibitor of growth 4 by plasmid pcDNA3.1-ING4 delivery could suppress proliferation and increase apoptosis of SPC-A1 cells both in vitro and in vivo. Additionally, we found that overexpression of inhibitor of growth 4 in SPC-A1 cell line could lead to a higher Bcl-2/Bax ratio, which might be an important factor in the apoptosis regulation. Furthermore, overexpression of inhibitor of growth 4 enhanced the radiosensitivity of SPC-A1 cells to irradiation. Inhibitor of growth 4 upregulation plus radiotherapy induced synergistic tumor suppression in SPC-A1 xenografts implanted in athymic nude mice. Thus, the restoration of inhibitor of growth 4 function might provide a potential strategy for non-small cell lung cancer radiosensitization.
Collapse
Affiliation(s)
- Xuan Pan
- 1 Department of Medical Oncology, Nanjing Medical University Affiliated Cancer Hospital of Jiangsu Province, Cancer Institution of Jiangsu Province, Nanjing, China
- 2 Department of Oncology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Rui Wang
- 3 Department of Medical Oncology, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, China
| | - Haibo Bian
- 2 Department of Oncology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Wei De
- 4 Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing, China
| | - Ping Zhang
- 5 Department of Pathology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Chenchen Wei
- 2 Department of Oncology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Zhaoxia Wang
- 2 Department of Oncology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
18
|
Ma Y, Cheng X, Wang F, Pan J, Liu J, Chen H, Wang Y, Cai L. ING4 Inhibits Proliferation and Induces Apoptosis in Human Melanoma A375 Cells via the Fas/Caspase-8 Apoptosis Pathway. Dermatology 2016; 232:265-72. [DOI: 10.1159/000444050] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Accepted: 01/06/2016] [Indexed: 11/19/2022] Open
|
19
|
Yuan S, Jin J, Shi J, Hou Y. Inhibitor of growth-4 is a potential target for cancer therapy. Tumour Biol 2016; 37:4275-9. [PMID: 26803518 DOI: 10.1007/s13277-016-4842-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2015] [Accepted: 01/12/2016] [Indexed: 12/11/2022] Open
Abstract
The inhibitor of growth-4 (ING-4) belongs to the inhibitor of growth (ING) family that is a type II tumor suppressor gene including five members (ING1-5). As a tumor suppressor, ING4 inhibits tumor growth, invasion, and metastasis by multiple signaling pathways. In addition to that, ING4 can facilitate cancer cell sensitivity to chemotherapy and radiotherapy. Although ING4 loss is observed for many types of cancers, increasing evidences show that ING4 can be used for gene therapy. In this review, the recent progress of ING4 regulating tumorigenesis is discussed.
Collapse
Affiliation(s)
- Shuping Yuan
- Department of Oncology, Affiliated Wujin People's Hospital, Jiangsu University, Changzhou, 212017, People's Republic of China.,Institute of Life Sciences, Jiangsu University, Zhenjiang, 212013, People's Republic of China
| | - Jianhua Jin
- Department of Oncology, Affiliated Wujin People's Hospital, Jiangsu University, Changzhou, 212017, People's Republic of China
| | - Juanjuan Shi
- Institute of Life Sciences, Jiangsu University, Zhenjiang, 212013, People's Republic of China.
| | - Yongzhong Hou
- Department of Oncology, Affiliated Wujin People's Hospital, Jiangsu University, Changzhou, 212017, People's Republic of China. .,Institute of Life Sciences, Jiangsu University, Zhenjiang, 212013, People's Republic of China.
| |
Collapse
|
20
|
Wang Y, Wang T, Han Y, Wu H, Zhao W, Tong D, Wei L, Zhong Z, An R, Wang Y. Reduced ING4 Expression Is Associated with the Malignancy of Human Bladder. Urol Int 2015; 94:464-71. [DOI: 10.1159/000364832] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2014] [Accepted: 05/25/2014] [Indexed: 11/19/2022]
Abstract
Introduction: Inhibitor of growth 4 (ING4) is a tumor suppressor. However the role of ING4 in human bladder malignancy is unknown. In this study, ING4 expression in human bladder cancer and its potential effects were studied. Materials and Methods: ING4 expression in 47 human bladder cancer tissues and paired adjacent normal tissues was detected by Western blotting, quantitative reverse transcription-polymerase chain reaction, and immunohistochemistry. The migration and cell cycle progression of SV-HUC-1 and T24 cells with aberrant ING4 expression were examined. Results: ING4 protein and mRNA were significantly decreased in bladder cancer tissues. ING4 protein level was significantly lower in the group of patients over 50 years of age. ING4 knockdown caused more rapid cell migration and increased the population of SV-HUC-1 and T24 cells in the G2-M phase. Conclusion: Our data suggest a close connection between aberrant ING4 expression and the carcinogenesis of human bladder cells. ING4 may be a potential target for bladder cancer chemotherapy.
Collapse
|
21
|
Bertonha FB, Barros Filho MDC, Kuasne H, Dos Reis PP, da Costa Prando E, Muñoz JJAM, Roffé M, Hajj GNM, Kowalski LP, Rainho CA, Rogatto SR. PHF21B as a candidate tumor suppressor gene in head and neck squamous cell carcinomas. Mol Oncol 2015; 9:450-62. [PMID: 25454821 PMCID: PMC5528662 DOI: 10.1016/j.molonc.2014.09.009] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Revised: 09/22/2014] [Accepted: 09/23/2014] [Indexed: 01/12/2023] Open
Abstract
A significant association between DNA losses on 22q13.31 and head and neck squamous cell carcinomas (HNSCC) was previously reported by our group. Our data indicated that PHF21B gene, mapped on 22q13.31 and encoding a protein with function of chromatin-mediated transcriptional regulation, might be a putative tumor suppressor gene. To test this hypothesis, gene copy number was assessed in 75 HNSCC and 49 matched peripheral blood samples. PHF21B losses were detected in 43 tumors and were significantly associated with patients with familial history of cancer (P < 0.0001); i.e., 36/43 cases showed a positive family history of cancer and 22/36 had first-degree relatives with cancer (P = 0.049). In attempt to investigate other mechanisms for PHF21B loss of function, DNA sequencing was performed and no mutations were detected. We next evaluated the gene expression levels after inhibition of DNA methylation in nine HNSCC and breast carcinoma cell lines. Additionally, PHF21B expression levels were evaluated in colon cancer HCT116 cells as well as in its counterpart DKO (double knockout of DNMT1 and DNMT3B). The higher expression levels of PHF21B gene detected in DKO cells were inversely correlated with the DNA methylation. Further, DNA methylation in the specific promoter-associated CpG Island was investigated. Interestingly, gene hypermethylation was detected in 13/37 tumors: 5/13 HNSCC cases had family history of cancer in first-degree relatives and 8/13 showed both, DNA methylation and PHF21B losses in the tumor sample. One patient had PHF21B loss in the peripheral blood cells and PHF21B methylation in the tumor sample. Additionally, overexpression of PHF21B in cell lines drastically reduces clonogenic and migratory abilities. These data suggest that PHF21B is a novel tumor suppressor gene that can be inactivated by genetic and epigenetic mechanisms in the human cancer.
Collapse
MESH Headings
- Adult
- Aged
- Aged, 80 and over
- Carcinoma, Squamous Cell/genetics
- Carcinoma, Squamous Cell/metabolism
- Carcinoma, Squamous Cell/pathology
- Cell Line, Tumor
- Chromosomes, Human, Pair 22/genetics
- Chromosomes, Human, Pair 22/metabolism
- DNA Methylation
- DNA, Neoplasm/genetics
- DNA, Neoplasm/metabolism
- Epigenesis, Genetic
- Female
- Gene Expression Regulation
- Gene Knockdown Techniques
- Head and Neck Neoplasms/genetics
- Head and Neck Neoplasms/metabolism
- Head and Neck Neoplasms/pathology
- Humans
- Male
- Middle Aged
- Retrospective Studies
- Tumor Suppressor Proteins/biosynthesis
- Tumor Suppressor Proteins/genetics
Collapse
Affiliation(s)
- Fernanda Bernardi Bertonha
- International Center of Research and Training (CIPE), A. C. Camargo Cancer Center, Sao Paulo, SP 01.508-010, Brazil.
| | | | - Hellen Kuasne
- International Center of Research and Training (CIPE), A. C. Camargo Cancer Center, Sao Paulo, SP 01.508-010, Brazil.
| | - Patricia Pintor Dos Reis
- Department of Surgery and Orthopedics, Faculty of Medicine, UNESP - Sao Paulo State University, Botucatu, SP 18.618-970, Brazil.
| | - Erika da Costa Prando
- Department of Genetics, Institute of Biosciences, UNESP - Sao Paulo State University, Botucatu, SP 18.618-970, Brazil.
| | | | - Martín Roffé
- International Center of Research and Training (CIPE), A. C. Camargo Cancer Center, Sao Paulo, SP 01.508-010, Brazil.
| | - Glaucia Noeli Maroso Hajj
- International Center of Research and Training (CIPE), A. C. Camargo Cancer Center, Sao Paulo, SP 01.508-010, Brazil.
| | - Luiz Paulo Kowalski
- Department of Head and Neck Surgery and Otorhinolaryngology, A. C. Camargo Cancer Center, Sao Paulo, SP 01.508-010, Brazil; National Institute of Science and Technology in Oncogenomics (INCITO), Sao Paulo, SP 01.509-010, Brazil.
| | - Claudia Aparecida Rainho
- Department of Genetics, Institute of Biosciences, UNESP - Sao Paulo State University, Botucatu, SP 18.618-970, Brazil.
| | - Silvia Regina Rogatto
- International Center of Research and Training (CIPE), A. C. Camargo Cancer Center, Sao Paulo, SP 01.508-010, Brazil; Department of Head and Neck Surgery and Otorhinolaryngology, A. C. Camargo Cancer Center, Sao Paulo, SP 01.508-010, Brazil; Department of Urology, Faculty of Medicine, UNESP - Sao Paulo State University, Botucatu, SP 18.618-970, Brazil.
| |
Collapse
|
22
|
Guérillon C, Bigot N, Pedeux R. The ING tumor suppressor genes: Status in human tumors. Cancer Lett 2014; 345:1-16. [DOI: 10.1016/j.canlet.2013.11.016] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2013] [Revised: 11/27/2013] [Accepted: 11/29/2013] [Indexed: 12/18/2022]
|
23
|
Keep-ING balance: tumor suppression by epigenetic regulation. FEBS Lett 2014; 588:2728-42. [PMID: 24632289 DOI: 10.1016/j.febslet.2014.03.011] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2014] [Accepted: 03/06/2014] [Indexed: 12/26/2022]
Abstract
Cancer cells accumulate genetic and epigenetic changes that alter gene expression to drive tumorigenesis. Epigenetic silencing of tumor suppressor, cell cycle, differentiation and DNA repair genes contributes to neoplastic transformation. The ING (inhibitor of growth) proteins (ING1-ING5) have emerged as a versatile family of growth regulators, phospholipid effectors, histone mark sensors and core components of HDAC1/2 - and several HAT chromatin-modifying complexes. This review will describe the characteristic pathways by which ING family proteins differentially affect the Hallmarks of Cancer and highlight the various epigenetic mechanisms by which they regulate gene expression. Finally, we will discuss their potentials as biomarkers and therapeutic targets in epigenetic treatment strategies.
Collapse
|
24
|
Abstract
Cancer is a disease that results from the successive accumulation of genetic and epigenetic alterations. Despite intense study, many unanswered questions about the nature of the contribution of epigenetic changes to carcinogenesis remain. In this review, we describe principles of epigenetics as they relate to our current understanding of carcinogenesis. There are a number of in vivo models of specific pathways of carcinogenesis that are very useful for the characterization of epigenetic mechanisms that link environmental exposures or genetic susceptibility and cancer progression. Because epigenetic alterations are thought to be reversible, they offer great promise for treatment of cancer. The use of animal models to evaluate the effects of decitabine and zebularine has elucidated the mechanisms of action and indicated the potential for these types of treatment. Ultimately, the greatest challenge lies in the integration of laboratory and epidemiologic data to best prevent and treat this deadly disease.
Collapse
Affiliation(s)
| | - Shami Virani
- Department of Environmental Health Sciences, University of Michigan School of Public Health, Ann Arbor 48109, USA
| | | | | | | |
Collapse
|
25
|
Low ING4 protein expression detected by paraffin-section immunohistochemistry is associated with poor prognosis in untreated patients with gastrointestinal stromal tumors. Gastric Cancer 2014; 17:87-96. [PMID: 23504291 DOI: 10.1007/s10120-013-0248-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2012] [Accepted: 02/19/2013] [Indexed: 02/07/2023]
Abstract
BACKGROUND Inhibitor of growth 4 (ING4) has deserved attention as a tumor suppressor gene in many malignant tumors. In our study, we investigated ING4 immunoexpression in gastrointestinal stromal tumors (GISTs) and its prognostic value. METHOD The expression of ING4 and Ki67 was investigated in 41 samples of various risk gastrointestinal stromal tumors by immunohistochemical technique. The associations of ING4 expression and clinicopathological parameters, and prognosis of the patients, were analyzed by multivariate Cox regression analysis. RESULTS ING4 expression showed a decreased trend from lower-risk to high-risk gastrointestinal stromal tumors, and an opposite trend for Ki67 expression. In lower-risk tumors, it was found the expression level of ING4 was 78.95 % ± 27.90 % and that of Ki67 was 4.42 % ± 3.75 %. However, in high-risk tumors, the expression level of ING4 was 9.23 % ± 7.66 % and that of Ki67 was 18.50 % ± 9.09 %. There was a strongly negative correlation between the expression levels of ING4 and Ki67. A significant difference was observed in the expression of ING4 between invasion and non-invasion (p < 0.001). The expression of ING4 was markedly correlated with tumor size (p < 0.001), mitotic index (p < 0.001), tumor necrosis (p = 0.021), invasion (p < 0.001), recurrence and metastasis (p = 0.021), and mortality (p < 0.001). CONCLUSION The low expression level of ING4 protein was correlated with high-risk GISTs. ING4 might be involved in the progression of GISTs and inhibit its invasion. ING4 might be one of the prognostic indicators in GISTs.
Collapse
|
26
|
ING4 regulates JWA in angiogenesis and their prognostic value in melanoma patients. Br J Cancer 2013; 109:2842-52. [PMID: 24157826 PMCID: PMC3844917 DOI: 10.1038/bjc.2013.670] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Revised: 08/27/2013] [Accepted: 09/30/2013] [Indexed: 12/27/2022] Open
Abstract
Background: We previously showed that inhibitor of growth family member 4 (ING4) inhibits melanoma angiogenesis, and JWA suppresses the metastasis of melanoma cells. As angiogenesis is essential for tumour metastasis, further investigation of the function of ING4 and JWA in melanoma angiogenesis is needed, and their prognostic value are of great interest. Methods: Western blot, tube-formation assays and luciferase assays were used to investigate the correlation between ING4 and JWA in melanoma angiogenesis. JWA and integrin-linked kinase (ILK) expression was determined on a tissue microarray constructed from 175 biopsies. Results: ING4 promoted JWA expression by activating JWA promoter. Furthermore, the regulation of growth and tube formation of endothelial cells by ING4 was partially JWA dependent. Also, ING4 inhibited the ILK-induced angiogenesis signalling pathway via JWA. Moreover, reduced JWA, or increased ILK, expression was closely associated with 5-year disease-specific survival of melanoma patients (P=0.001 and 0.007, respectively). There was also a positive correlation between ING4 and JWA yet a negative correlation between ING4 and ILK. Importantly, their concomitant expressions were significantly related to 5-year survival of melanoma patients (P=0.002 and 0.003, respectively). Conclusion: JWA has an important role in ING4-regulated melanoma angiogenesis, and ING4/JWA/ILK are promising prognostic markers and may be used as anti-angiogenic therapeutic targets for melanoma.
Collapse
|
27
|
Li S, Fan T, Liu H, Chen J, Qin C, Ren X. Tumor suppressor ING4 overexpression contributes to proliferation and invasion inhibition in gastric carcinoma by suppressing the NF-κB signaling pathway. Mol Biol Rep 2013; 40:5723-32. [PMID: 24057236 DOI: 10.1007/s11033-013-2675-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2013] [Accepted: 09/14/2013] [Indexed: 12/26/2022]
Abstract
There is growing evidence that inhibitor of growth 4 (ING4) plays a pivotal role in development and progression of multiple different tumors; however, its precise function in gastric carcinoma remains to be elucidated. In the present study, we investigated ING4 level in gastric carcinoma tissues and cells, and preliminarily elucidated the role of ING4 in the proliferation and invasion of gastric carcinoma. The results demonstrated that expressions of ING4 mRNA and protein in gastric carcinoma tissues and cells were significantly lower than those in normal tissues and cells (P < 0.05). ING4 level in gastric carcinoma cells stably expressing ING4 was markedly higher than those in untreated group and empty vector pcDNA3.1 group (P < 0.05). Elevated ING4 level resulted in the inhibition of proliferation and invasion in three of gastric carcinoma cell lines MKN-28, SGC-7901 and MKN-45. Most notably, increased ING4 level evidently evoked the down-regulation of p65, p-IκBα, MMP-9 and uPA proteins and the up-regulation of IκBα protein. Our results presented herein suggest that ING4 level elevation mediated proliferation and invasion inhibition may be tightly associated with the suppression of NF-κB signaling pathway.
Collapse
Affiliation(s)
- Shijie Li
- Department of General Surgery, Huaihe Hospital of Henan University, No.8 Baogong Lake North Road, Kaifeng, 475000, Henan, People's Republic of China
| | | | | | | | | | | |
Collapse
|
28
|
MAO ZONGLEI, HE SONGBING, SHENG WEIHUA, DONG XIAOQIANG, YANG JICHENG. Adenovirus-mediated ING4 expression reduces multidrug resistance of human gastric carcinoma cells in vitro and in vivo. Oncol Rep 2013; 30:2187-94. [DOI: 10.3892/or.2013.2671] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2013] [Accepted: 08/11/2013] [Indexed: 11/06/2022] Open
|
29
|
Chromosomal imbalances exclusively detected in invasive front area are associated with poor outcome in laryngeal carcinomas from different anatomical sites. Tumour Biol 2013; 34:3015-26. [PMID: 23749487 DOI: 10.1007/s13277-013-0866-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2013] [Accepted: 05/13/2013] [Indexed: 10/26/2022] Open
Abstract
Laryngeal squamous cell carcinoma (LSCC) is a malignant neoplasm exhibiting aggressive phenotype, high recurrence rate, and risk of developing second primary tumors. Current evidence suggests that cells in the invasive front of carcinomas have different molecular profiles compared to those in superficial areas. This study aimed to identify candidate genes in the invasive front and superficial cells from laryngeal carcinomas that would be useful as molecular markers. Invasive front and tumor surface cells of 32 LSCC were evaluated by high-resolution comparative genomic hybridization. Both CCND1 copy number gains and cyclin D1 protein expression were evaluated to confirm gains of 11q13.3. Losses of 3q26.2-q29 and 18q23 were confirmed by loss of heterozygosity analysis. The most frequent chromosomal alterations observed only in invasive front cells involved gains of 1p, 4q, and 9p and losses of 3p, 11p, 12p, 13q, 17q, 18p, 19q, 20q, 21q, and Xp. Gains of 11q13 were detected in both components from glottis and supraglottis but only in invasive front cells from transglottic tumors. Fluorescence in situ hybridization confirmed gains of CCND1/CPE11 in a subset of cases. In supraglottic tumors, cyclin D1 positivity was associated with distant metastasis (P = 0.0018) and with decreased disease-free survival (P = 0.042). Loss of heterozygosity at 3q26.2 and 18q23 were associated with lymph node involvement (P = 0.055) and worsened prognosis, respectively. In conclusion, this study revealed regions that could be targeted in the search for molecular markers in LSCC. Cyclin D1 may be useful as a prognostic marker in supraglottic tumors.
Collapse
|
30
|
Hou Y, Zhang Z, Xu Q, Wang H, Xu Y, Chen K. Inhibitor of growth 4 induces NFκB/p65 ubiquitin-dependent degradation. Oncogene 2013; 33:1997-2003. [DOI: 10.1038/onc.2013.135] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2012] [Revised: 03/11/2013] [Accepted: 03/14/2013] [Indexed: 12/21/2022]
|
31
|
RegulatING chromatin regulators: post-translational modification of the ING family of epigenetic regulators. Biochem J 2013; 450:433-42. [DOI: 10.1042/bj20121632] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The five human ING genes encode at least 15 splicing isoforms, most of which affect cell growth, differentiation and apoptosis through their ability to alter gene expression by epigenetic mechanisms. Since their discovery in 1996, ING proteins have been classified as type II tumour suppressors on the basis of reports describing their down-regulation and mislocalization in a variety of cancer types. In addition to their regulation by transcriptional mechanisms, understanding the range of PTMs (post-translational modifications) of INGs is important in understanding how ING functions are fine-tuned in the physiological setting and how they add to the repertoire of activities affected by the INGs. In the present paper we review the different PTMs that have been reported to occur on INGs. We discuss the PTMs that modulate ING function under normal conditions and in response to a variety of stresses. We also describe the ING PTMs that have been identified by several unbiased MS-based PTM enrichment techniques and subsequent proteomic analysis. Among the ING PTMs identified to date, a subset has been characterized for their biological significance and have been shown to affect processes including subcellular localization, interaction with enzymatic complexes and ING protein half-life. The present review aims to highlight the emerging role of PTMs in regulating ING function and to suggest additional pathways and functions where PTMs may effect ING function.
Collapse
|
32
|
Izumi K, Conlin LK, Berrodin D, Fincher C, Wilkens A, Haldeman-Englert C, Saitta SC, Zackai EH, Spinner NB, Krantz ID. Duplication 12p and Pallister-Killian syndrome: A case report and review of the literature toward defining a Pallister-Killian syndrome minimal critical region. Am J Med Genet A 2012; 158A:3033-45. [DOI: 10.1002/ajmg.a.35500] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2012] [Accepted: 04/21/2012] [Indexed: 11/10/2022]
|
33
|
Negative regulation of NF-κB by the ING4 tumor suppressor in breast cancer. PLoS One 2012; 7:e46823. [PMID: 23056468 PMCID: PMC3464231 DOI: 10.1371/journal.pone.0046823] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2012] [Accepted: 09/05/2012] [Indexed: 12/27/2022] Open
Abstract
Nuclear Factor kappa B (NF-κB) is a key mediator of normal immune response but contributes to aggressive cancer cell phenotypes when aberrantly activated. Here we present evidence that the Inhibitor of Growth 4 (ING4) tumor suppressor negatively regulates NF-κB in breast cancer. We surveyed primary breast tumor samples for ING4 protein expression using tissue microarrays and a newly generated antibody. We found that 34% of tumors expressed undetectable to low levels of the ING4 protein (n = 227). Tumors with low ING4 expression were frequently large in size, high grade, and lymph node positive, suggesting that down-regulation of ING4 may contribute to breast cancer progression. In the same tumor set, we found that low ING4 expression correlated with high levels of nuclear phosphorylated p65/RelA (p-p65), an activated form of NF-κB (p = 0.018). Fifty seven percent of ING4-low/p-p65-high tumors were lymph node-positive, indicating a high metastatic tendency of these tumors. Conversely, ectopic expression of ING4 inhibited p65/RelA phosphorylation in T47D and MCF7 breast cancer cells. In addition, ING4 suppressed PMA-induced cell invasion and NF-κB-target gene expression in T47D cells, indicating that ING4 inhibited NF-κB activity in breast cancer cells. Supportive of the ING4 function in the regulation of NF-κB-target gene expression, we found that ING4 expression levels inversely correlated with the expression of NF-κB-target genes in primary breast tumors by analyzing public gene expression datasets. Moreover, low ING4 expression or high expression of the gene signature composed of a subset of ING4-repressed NF-κB-target genes was associated with reduced disease-free survival in breast cancer patients. Taken together, we conclude that ING4 negatively regulates NF-κB in breast cancer. Consequently, down-regulation of ING4 leads to activation of NF-κB, contributing to tumor progression and reduced disease-free patient survival in breast cancer.
Collapse
|
34
|
Zhang L, Wang Y, Zhang F, Wang Y, Zhang Q. Correlation between tumor suppressor inhibitor of growth family member 4 expression and microvessel density in breast cancer. Hum Pathol 2012; 43:1611-7. [DOI: 10.1016/j.humpath.2011.11.018] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2011] [Revised: 11/17/2011] [Accepted: 11/18/2011] [Indexed: 10/28/2022]
|
35
|
ING4 is negatively correlated with microvessel density in colon cancer. Tumour Biol 2012; 33:2357-64. [PMID: 23055189 DOI: 10.1007/s13277-012-0498-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2012] [Accepted: 08/16/2012] [Indexed: 10/27/2022] Open
Abstract
ING4 is a novel tumor suppressor which is downregulated in a number of cancers. In this study, we investigated the role of ING4 in tumor angiogenesis in colorectal carcinoma (CRC) patients. Semi-quantitative RT-PCR, western blots, and immunohistochemistry were used to determine ING4 mRNA and protein expression in CRC and normal tissue from 60 CRC specimens and 30 colonic adenoma specimens. The correlation between ING4 expression and clinical stage, histological grade as well as lymph node metastasis was evaluated. Immunohistochemistry was performed to explore the correlation between ING4 expression and microvessel density (MVD) in CRC. CRC tissue had significantly lower levels of ING4 mRNA and protein compared to colonic adenoma and normal intestinal tissue. Immunostaining showed ING4 expression in 38 (63.3 %), 30 (100 %), and 60 (100 %) cases of normal colonic mucosa, adenoma, and normal intestinal mucosal tissue, respectively. Lower ING4 levels correlated with higher clinical stage and histological grade. ING4 mRNA and protein levels were significantly lower in CRC patients with lymph node metastasis compared to patients without lymph node metastasis (0.41 ± 0.30 vs. 0.91 ± 0.29 and 0.60 ± 0.21 vs. 0.87 ± 0.27, respectively; p < 0.001). Importantly, ING4 mRNA and protein levels were negatively correlated with MVD in CRC patients (p < 0.001). Our data suggest that ING4 levels are a potential biomarker of CRC progression and that ING4 may inhibit tumor growth by modulating angiogenesis in CRC.
Collapse
|
36
|
Jafarnejad SM, Li G. Regulation of p53 by ING family members in suppression of tumor initiation and progression. Cancer Metastasis Rev 2012; 31:55-73. [PMID: 22095030 DOI: 10.1007/s10555-011-9329-5] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The INhibitor of Growth (ING) family is an evolutionarily conserved set of proteins, implicated in suppression of initiation and progression of cancers in various tissues. They promote cell cycle arrest, cellular senescence and apoptosis, participate in stress responses, regulate DNA replication and DNA damage responses, and inhibit cancer cell migration, invasion, and angiogenesis of the tumors. At the molecular level, ING proteins are believed to participate in chromatin remodeling and transcriptional regulation of their target genes. However, the best known function of ING proteins is their cooperation with p53 tumor suppressor protein in tumor suppression. All major isoforms of ING family members can promote the transactivition of p53 and the majority of them are shown to directly interact with p53. In addition, ING proteins are thought to interact with and modulate the function of auxiliary members of p53 pathway, such as MDM2, ARF , p300, and p21, indicating their widespread involvement in the regulation and function of this prominent tumor suppressor pathway. It seems that p53 pathway is the main mechanism by which ING proteins exert their functions. Nevertheless, regulation of other pathways which are not relevant to p53, yet important for tumorigenesis such as TGF-β and NF-κB, by ING proteins is also observed. This review summarizes the current understanding of the mutual interactions and cooperation between different members of ING family with p53 pathway and implications of this cooperation in the suppression of cancer initiation and progression.
Collapse
Affiliation(s)
- Seyed Mehdi Jafarnejad
- Department of Dermatology and Skin Science, University of British Columbia, Vancouver, BC, Canada
| | | |
Collapse
|
37
|
Enhanced radiosensitivity of non-small-cell lung cancer (NSCLC) by adenovirus-mediated ING4 gene therapy. Cancer Gene Ther 2012; 19:697-706. [DOI: 10.1038/cgt.2012.50] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
38
|
Zeng ZL, Li FJ, Gao F, Sun DS, Yao L. Upregulation of miR-650 is correlated with down-regulation of ING4 and progression of hepatocellular carcinoma. J Surg Oncol 2012; 107:105-10. [PMID: 22767438 DOI: 10.1002/jso.23210] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2012] [Accepted: 06/11/2012] [Indexed: 12/12/2022]
Abstract
BACKGROUND In the last decade, studies in hepatocellular carcinoma (HCC) demonstrate dysregulation of miRNAs expression. For instance, miR-650 has been implicated in gastric and colorectal cancer tumorigenicity; however, the role of miR-650 remains unknown in HCC. METHODS In this study, we performed a comprehensive analysis to examine the miR-650 expression level in 248 HCC and 120 paracarcinomatous liver (PCL) tissues. The correlations between miR-650 expression level and the clinicopathological characteristics (HCC tumorigenicity) were evaluated. The role of miR-650 played in HCC was investigated by Q-PCR, western blot, and MTT. RESULTS We found that miR-650 expression was significantly increased in HCC patients and significantly associated with the patients' age (P = 0.0019), differentiation capability (P = 0.0108), and also tumor stage (P = 0.0069). Moreover, we compared the expression level of both ING4 and miR-650 in 122 HCC patients by western blot and real-time PCR. Statistical result showed a significant negative correlation between them (r(s) = -0.2011, P = 0.0264). Transfection and MTT test suggested that miR-650 decreased the expression of ING4 and stimulate liver cells proliferation significantly. CONCLUSION These data suggested that miR-650 is correlated with the pathogenesis of HCC and is involved in the HCC tumorigenesis process by inhibiting the expression of ING4.
Collapse
Affiliation(s)
- Zhao-Lin Zeng
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | | | | | | | | |
Collapse
|
39
|
Colacino JA, Arthur AE, Dolinoy DC, Sartor MA, Duffy SA, Chepeha DB, Bradford CR, Walline HM, McHugh JB, D'Silva N, Carey TE, Wolf GT, Taylor JMG, Peterson KE, Rozek LS. Pretreatment dietary intake is associated with tumor suppressor DNA methylation in head and neck squamous cell carcinomas. Epigenetics 2012; 7:883-91. [PMID: 22722388 PMCID: PMC3427284 DOI: 10.4161/epi.21038] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Diet is associated with cancer prognosis, including head and neck cancer (HNC), and has been hypothesized to influence epigenetic state by determining the availability of functional groups involved in the modification of DNA and histone proteins. The goal of this study was to describe the association between pretreatment diet and HNC tumor DNA methylation. Information on usual pretreatment food and nutrient intake was estimated via food frequency questionnaire (FFQ) on 49 HNC cases. Tumor DNA methylation patterns were assessed using the Illumina Goldengate Methylation Cancer Panel. First, a methylation score, the sum of individual hypermethylated tumor suppressor associated CpG sites, was calculated and associated with dietary intake of micronutrients involved in one-carbon metabolism and antioxidant activity, and food groups abundant in these nutrients. Second, gene specific analyses using linear modeling with empirical Bayesian variance estimation were conducted to identify if methylation at individual CpG sites was associated with diet. All models were controlled for age, sex, smoking, alcohol and HPV status. Individuals reporting in the highest quartile of folate, vitamin B12 and vitamin A intake, compared with those in the lowest quartile, showed significantly less tumor suppressor gene methylation, as did patients reporting the highest cruciferous vegetable intake. Gene specific analyses identified differential associations between DNA methylation and vitamin B12 and vitamin A intake when stratifying by HPV status. These preliminary results suggest that intake of folate, vitamin A and vitamin B12 may be associated with the tumor DNA methylation profile in HNC and enhance tumor suppression.
Collapse
Affiliation(s)
- Justin A Colacino
- Department of Environmental Health Sciences, University of Michigan School of Public Health, Ann Arbor, MI, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Wei Q, He W, Lu Y, Yao J, Cao X. Effect of the tumor suppressor gene ING4 on the proliferation of MCF-7 human breast cancer cells. Oncol Lett 2012; 4:438-442. [PMID: 22970041 DOI: 10.3892/ol.2012.744] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2012] [Accepted: 05/28/2012] [Indexed: 01/15/2023] Open
Abstract
Inhibitor of growth 4 (ING4) is a member of the ING family and acts as a tumor suppressor protein. To investigate the impact of ING4 on breast cancer proliferation, the present study examined the antitumor effects caused by upregulation in the expression of ING4 and its possible mechanism of effect in MCF-7 cells. A plasmid-based expression system encoding the ING4 gene was used to construct a stable cell line and overexpress ING4 in MCF-7 cells. Real-time PCR and western blot analysis were used to detect the mRNA and protein expression levels of ING4, respectively. Cell growth was examined by methylthiazolyltetrazolium (MTT) assay. Cell cycle distribution and cell apoptosis were measured by flow cytometry. The expression of p21, p53 and bax genes were tested by real-time PCR and western blot analysis. The stably transfected cell lines pcDNA3.1(+)/ING4 (with the ING4 gene) and pcDNA3.1(+) (an empty vector) were established. The expression levels of ING4 mRNA and protein in the stable cell line expressing pcDNA3.1(+)/ING4 were significantly higher than those of the two control cell lines. The cell proliferation of stably transfected cells was inhibited, and the inhibitory rate was 62.58±2.93%. Based on the changes in cell cycle distribution in stably transfected cells compared with two control cell lines, a number of cells were blocked in the G0/G1 phase 67.82±3.78% (P<0.05). In addition, the apoptotic rate was significantly higher, at 31.51±3.02% (P<0.05). Real-time PCR revealed that p21 and bax mRNA expression were increased (P<0.01), but the expression of p53 did not change significantly (P>0.05) in the stably transfected cell lines. Western blot analysis results of p21, bax and p53 were in accordance with real-time PCR results. ING4 upregulation may inhibit breast cancer cell proliferation and accelerate the process of apoptosis. It is suggested that ING4 plays a significant role in the suppression of breast cancer progression.
Collapse
Affiliation(s)
- Qinjun Wei
- Department of Biotechnology, Nanjing Medical University, Nanjing 210029, P.R. China
| | | | | | | | | |
Collapse
|
41
|
Expression of inhibitor of growth 4 by HSV1716 improves oncolytic potency and enhances efficacy. Cancer Gene Ther 2012; 19:499-507. [PMID: 22595793 DOI: 10.1038/cgt.2012.24] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
We have isolated and characterized a novel variant of the replication-competent oncolytic HSV1716 that expresses inhibitor of growth 4 (Ing4) (HSV1716Ing4). We demonstrate that Ing4 expression enhances progeny output during HSV1716 infection of human tumor cells both in vitro and in vivo, thereby significantly augmenting its oncolytic potency. In tissue culture, compared with HSV1716, HSV1716Ing4 produced significantly higher numbers of infectious progeny in human squamous cell carcinoma (SCC), breast, ovarian, prostate and colorectal cancer cell lines. Immediate-early expression of Ing4 was crucial for this effect and an intact Ing4 was required as there was no enhanced progeny production with HSV1716 variants that expressed Ing4 mutants lacking the C-terminal plant homeodomain domain or conserved nuclear localization signals. In mouse xenograft models of SCC, ovarian and breast cancer, HSV1716Ing4 was significantly more efficacious than HSV1716 with at least 1000-fold more infectious virus found in tumors after HSV1716Ing4 treatment compared with tumors from HSV1716 treatment. Using a sensitive herpes simplex virus type 1 (HSV-1) PCR, virus DNA was only detected in tumors and was not detected in the DNA extracted from any organs of the injected mice demonstrating that, like HSV1716, HSV1716Ing4 replication is exclusively restricted to tumor cells. Our results suggest that the potential for enhanced tumor destruction by oncolytic HSV expressing Ing4 merits clinical investigation.
Collapse
|
42
|
Lu M, Chen F, Wang Q, Wang K, Pan Q, Zhang X. Downregulation of inhibitor of growth 3 is correlated with tumorigenesis and progression of hepatocellular carcinoma. Oncol Lett 2012; 4:47-52. [PMID: 22807958 DOI: 10.3892/ol.2012.685] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2012] [Accepted: 03/30/2012] [Indexed: 11/06/2022] Open
Abstract
ING3, a member of the inhibitor of growth (ING) family, has been reported to be involved in transcription modulation, cell cycle control and the induction of apoptosis. Previous studies have demonstrated that the expression of ING3 decreased in melanoma and head and neck squamous cell carcinoma (HNSCC). The aim of this study was to investigate the role of ING3 in hepatocellular carcinoma (HCC) tumorigenesis and progression. The correlation between ING3 expression and clinicopathological variables of HCC was analyzed. Using the real-time reverse transcription-polymerase chain reaction (RT-PCR), it was found that ING3 was downregulated in HCC tissues compared with adjacent non-cancerous tissues (p<0.05). The immunohistochemical staining of tissue microarray data indicated a significant reduction of ING3 expression in 57.14% of HCC cases (64/112). In addition, the downregulation of ING3 was associated with the tumor differentiation stage. Most HCC samples of Edmondson-Steiner grades II to III exhibited inhibition of ING3 expression. The overexpression of ING3 in HCC cells was found to suppress cell proliferation, colony formation and cell migration, suggesting that ING3 acts as a tumor suppressor in HCC cells. Taken together, the data revealed that ING3 may serve as a suppression factor during tumorigenesis and progression of HCC.
Collapse
Affiliation(s)
- Meiling Lu
- The Central Laboratory, People's 10th Hospital, Shanghai 200072
| | | | | | | | | | | |
Collapse
|
43
|
Synergistic antitumor effect of adenovirus-mediated hING4 gene therapy and 125I radiation therapy on pancreatic cancer. Cancer Lett 2012; 316:211-8. [DOI: 10.1016/j.canlet.2011.11.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2011] [Revised: 10/31/2011] [Accepted: 11/01/2011] [Indexed: 02/05/2023]
|
44
|
Liu Y, Yu L, Wang Y, Zhang Y, Wang Y, Zhang G. Expression of tumor suppressor gene ING4 in ovarian carcinoma is correlated with microvessel density. J Cancer Res Clin Oncol 2012; 138:647-55. [PMID: 22228137 DOI: 10.1007/s00432-011-1099-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2011] [Accepted: 11/08/2011] [Indexed: 01/19/2023]
Abstract
PURPOSE Angiogenesis, estimated by microvessel density (MVD), has been shown to predict poor progression-free survival in women with advanced epithelial ovarian cancer. Inhibitor of growth (ING) family proteins inhibit angiogenesis in a number of cancers. We evaluated the role of ING4 in regulation of angiogenesis in patients with epithelial ovarian cancer. METHODS Semi-quantitative RT-PCR was used to determine ING4 mRNA levels in 40 ovarian cancer patients and 40 normal controls. Also, we used immunohistochemistry to evaluate (1) ING4 protein expression levels and (2) the level of MVD by staining CD34, a microvessel marker, in these patients. Through statistical analysis, the possible correlation between the ING4 expression and angiogenesis was explored. RESULTS ING4 mRNA and protein were significantly downregulated in all ovarian cancer patients compared to normal controls (P < 0.001). Endometrioid carcinoma tissue had significantly lower ING4 levels compared to serous or mucinous ovarian cancer. ING4 expression correlated negatively with stage and histological grade of ovarian cancers. MVD correlated negatively with ING4 protein and mRNA levels (ρ = -0.865; P < 0.001 and ρ = -0.724; P < 0.001, respectively). CONCLUSIONS Loss of ING4 may promote microvessel formation and plays a role in facilitating the development of ovarian cancer. Although the specific mechanisms are not yet understood, our data suggest that ING4 may be a promising target for the treatment for ovarian cancer.
Collapse
Affiliation(s)
- Yinglan Liu
- Department of Obstetrics and Gynecology, First Affiliated Hospital of Harbin Medical University, Harbin, China
| | | | | | | | | | | |
Collapse
|
45
|
Xie Y, Lv H, Sheng W, Miao J, Xiang J, Yang J. Synergistic Tumor Suppression by Adenovirus-Mediated Inhibitor of Growth 4 and Interleukin-24 Gene Cotransfer in Hepatocarcinoma Cells. Cancer Biother Radiopharm 2011; 26:681-95. [DOI: 10.1089/cbr.2011.1047] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Affiliation(s)
- Yufeng Xie
- Cell and Molecular Biology Institute, College of Medicine, Soochow University, Suzhou, China
- Department of Oncology and Immunology, University of Saskatchewan, Saskatoon, Canada
| | - Haitao Lv
- Department of Internal Medicine, Children's Hospital Affiliated to Soochow University, Suzhou, China
| | - Weihua Sheng
- Cell and Molecular Biology Institute, College of Medicine, Soochow University, Suzhou, China
| | - Jingcheng Miao
- Cell and Molecular Biology Institute, College of Medicine, Soochow University, Suzhou, China
| | - Jim Xiang
- Department of Oncology and Immunology, University of Saskatchewan, Saskatoon, Canada
| | - Jicheng Yang
- Cell and Molecular Biology Institute, College of Medicine, Soochow University, Suzhou, China
| |
Collapse
|
46
|
Katase N, Lefeuvre M, Gunduz M, Gunduz E, Beder LB, Grenman R, Fujii M, Tamamura R, Tsujigiwa H, Nagatsuka H. Absence of Dickkopf (Dkk)-3 protein expression is correlated with longer disease-free survival and lower incidence of metastasis in head and neck squamous cell carcinoma. Oncol Lett 2011; 3:273-280. [PMID: 22740894 DOI: 10.3892/ol.2011.473] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2011] [Accepted: 11/02/2011] [Indexed: 11/05/2022] Open
Abstract
Head and neck squamous cell carcinoma (HNSCC) is one of the most frequently occurring types of cancer worldwide. We focused on the fact that the aberrant function of Wnt/β-catenin signaling is a frequent event in malignancies. Dickkopf (Dkk)-3 is a major negative regulator of Wnt/β-catenin signaling, which is a known tumor suppressor and is down-regulated in various types of cancer. However, the expression profile of the Dkk-3 protein in HNSCC has not yet been reported. The present study was conducted to investigate Dkk-3 protein expression in 90 cases of HNSCC tissue samples and HNSCC-derived cell lines. In contrast to findings available on other types of cancer, the Western blot analysis revealed that HNSCC cell lines expressed the Dkk-3 protein. In immunohistochemistry, 76 cases (84.4%) out of 90 tissue samples were Dkk-3-positive, whereas only 14 cases (15.6%) were negative. Notably, survival analysis showed that the Dkk-3 (-) group exhibited significantly longer disease-free survival (p=0.038), metastasis-free survival (p=0.013) and longer overall survival (p=0.155). The results showed that the Dkk-3 protein was dominantly expressed and may be involved in carcinogenesis and metastasis in HNSCC. Moreover, the findings suggest that the function of Dkk-3 differs depending on the tissue of origin, and that it may exert an oncogenic function in HNSCC.
Collapse
Affiliation(s)
- Naoki Katase
- Department of Oral Pathology and Medicine, Graduate school of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Dickkopf (Dkk)-3 and β-catenin expressions increased in the transition from normal oral mucosal to oral squamous cell carcinoma. J Mol Histol 2011; 42:499-504. [DOI: 10.1007/s10735-011-9357-z] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2011] [Accepted: 09/09/2011] [Indexed: 01/30/2023]
|
48
|
Bebek G, Orloff M, Eng C. Microenvironmental genomic alterations reveal signaling networks for head and neck squamous cell carcinoma. J Clin Bioinforma 2011; 1:21. [PMID: 21884569 PMCID: PMC3170587 DOI: 10.1186/2043-9113-1-21] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2011] [Accepted: 08/02/2011] [Indexed: 01/04/2023] Open
Abstract
Background Advanced stage head and neck squamous cell carcinoma (HNSCC) is an aggressive cancer with low survival rates. Loss-of-heterozygosity/allelic imbalance (LOH/AI) analysis has been widely used to identify genomic alterations in solid tumors and the tumor microenvironment (stroma). We hypothesize that these identified alterations can point to signaling networks functioning in HNSCC epithelial-tumor and surrounding stroma (tumor microenvironment). Results Under the assumption that genes in proximity to identified LOH/AI regions are correlated with the tumorigenic phenotype, we mined publicly available biological information to identify pathway segments (signaling proteins connected to each other in a network) and identify the role of tumor microenvironment in HNSCC. Across both neoplastic epithelial cells and the surrounding stromal cells, genetic alterations in HNSCC were successfully identified, and 75 markers were observed to have significantly different LOH/AI frequencies in these compartments (p < 0.026). We applied a network identification approach to the genes in proximity to these 75 markers in cancer epithelium and stroma in order to identify biological networks that can describe functional associations amongst these marker-associated genes. Conclusions We verified the involvement of T-cell receptor signaling pathways in HNSCC as well as associated oncogenes such as LCK and PLCB1, and tumor suppressors such as STAT5A, PTPN6, PARK2. We identified expression levels of genes within significant LOH/AI regions specific to stroma networks that correlate with better outcome in radiation therapy. By integrating various levels of high-throughput data, we were able to precisely focus on specific proteins and genes that are germane to HNSCC.
Collapse
Affiliation(s)
- Gurkan Bebek
- Genomic Medicine Institute, Cleveland Clinic, 9500 Euclid Avenue, Mailstop NE-50 Cleveland, OH 44195, USA.
| | | | | |
Collapse
|
49
|
Angiogenesis and multiple myeloma. CANCER MICROENVIRONMENT 2011; 4:325-37. [PMID: 21735169 DOI: 10.1007/s12307-011-0072-9] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2011] [Accepted: 06/23/2011] [Indexed: 01/13/2023]
Abstract
The bone marrow microenvironment in multiple myeloma is characterized by an increased microvessel density. The production of pro-angiogenic molecules is increased and the production of angiogenic inhibitors is suppressed, leading to an "angiogenic switch". Here we present an overview of the role of angiogenesis in multiple myeloma, the pro-angiogenic factors produced by myeloma cells and the microenvironment, and the mechanisms involved in the myeloma-induced angiogenic switch. Current data suggest that the increased bone marrow angiogenesis in multiple myeloma is due to the aberrant expression of angiogenic factors by myeloma cells, the subsequent increase in pro-angiogenic activity of normal plasma cells as a result of myeloma cell angiogenic activity, and the increased number of plasma cells overall. Hypoxia also contributes to the angiogenic properties of the myeloma marrow microenvironment. The transcription factor hypoxia-inducible factor-1α is overexpressed by myeloma cells and affects their transcriptional and angiogenic profiles. In addition, potential roles of the tumor suppressor gene inhibitor of growth family member 4 and homeobox B7 have also been recently highlighted as repressors of angiogenesis and pro-angiogenic related genes, respectively. This complex pathogenetic model of myeloma-induced angiogenesis suggests that several pro-angiogenic molecules and related genes in myeloma cells and the microenvironment are potential therapeutic targets.
Collapse
|
50
|
Li XH, Kikuchi K, Zheng Y, Noguchi A, Takahashi H, Nishida T, Masuda S, Yang XH, Takano Y. Downregulation and translocation of nuclear ING4 is correlated with tumorigenesis and progression of head and neck squamous cell carcinoma. Oral Oncol 2011; 47:217-23. [PMID: 21310648 DOI: 10.1016/j.oraloncology.2011.01.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2010] [Revised: 12/28/2010] [Accepted: 01/11/2011] [Indexed: 11/28/2022]
Abstract
ING4 (inhibitor of growth gene 4) is a new member of the ING gene family and is implicated in chromatin remodeling and repression of cell growth. In order to explore the roles of ING4 in head and neck squamous cell carcinoma (HNSCC), ING4 expression was assessed in 214 cases of HNSCC by immunohistochemistry using tissue microarray, and in three oral SCC cell lines by immunohistochemistry and Western blotting. Expression of ING4 was also compared to clinicopathological variables, TUNEL assay staining, and the expression of several tumorigenic markers. We found nuclear expression of ING4 was gradually decreased from non-cancerous epithelium and dysplasia to HNSCC and was negatively correlated with a poorly-differentiated status, T staging, and TNM staging in HNSCC. In contrast, cytoplasmic expression of ING4 was significantly increased in HNSCC and was significantly associated with lymph node metastasis and 14-3-3η expression. In addition, nuclear expression of ING4 was positively correlated with p21 and p300 expression and with the apoptotic index. These results suggest that the decreases in nuclear ING4 may play important roles in tumorigenesis, progression and tumor differentiation in HNSCC. Increases in cytoplasmic ING4 may be due to 14-3-3η binding and may also be involved in malignant progression. Nuclear ING4 may modulate the transactivation of target genes, promoting apoptosis and cell cycle arrest through interactions with p300 and p21.
Collapse
Affiliation(s)
- Xiao-han Li
- Kanagawa Cancer Center Research Institute, 1-1-2 Nakao, Asahi-ku, Yokohama 241-0815, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|