1
|
Yang ZY, Zhao C, Liu SL, Pan LJ, Zhu YD, Zhao JW, Wang HK, Ye YY, Qiang J, Shi LQ, Mei JW, Xie Y, Gong W, Shu YJ, Dong P, Xiang SS. NONO promotes gallbladder cancer cell proliferation by enhancing oncogenic RNA splicing of DLG1 through interaction with IGF2BP3/RBM14. Cancer Lett 2024; 587:216703. [PMID: 38341127 DOI: 10.1016/j.canlet.2024.216703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/29/2024] [Accepted: 02/01/2024] [Indexed: 02/12/2024]
Abstract
Gallbladder cancer (GBC) is a highly malignant and rapidly progressing tumor of the human biliary system, and there is an urgent need to develop new therapeutic targets and modalities. Non-POU domain-containing octamer-binding protein (NONO) is an RNA-binding protein involved in the regulation of transcription, mRNA splicing, and DNA repair. NONO expression is elevated in multiple tumors and can act as an oncogene to promote tumor progression. Here, we found that NONO was highly expressed in GBC and promoted tumor cells growth. The dysregulation of RNA splicing is a molecular feature of almost all tumor types. Accordingly, mRNA-seq and RIP-seq analysis showed that NONO promoted exon6 skipping in DLG1, forming two isomers (DLG1-FL and DLG1-S). Furthermore, lower Percent-Spliced-In (PSI) values of DLG1 were detected in tumor tissue relative to the paraneoplastic tissue, and were associated with poor patient prognosis. Moreover, DLG1-S and DLG1-FL act as tumor promoters and tumor suppressors, respectively, by regulating the YAP1/JUN pathway. N6-methyladenosine (m6A) is the most common and abundant RNA modification involved in alternative splicing processes. We identified an m6A reader, IGF2BP3, which synergizes with NONO to promote exon6 skipping in DLG1 in an m6A-dependent manner. Furthermore, IP/MS results showed that RBM14 was bound to NONO and interfered with NONO-mediated exon6 skipping of DLG1. In addition, IGF2BP3 disrupted the binding of RBM14 to NONO. Overall, our data elucidate the molecular mechanism by which NONO promotes DLG1 exon skipping, providing a basis for new therapeutic targets in GBC treatment.
Collapse
Affiliation(s)
- Zi-Yi Yang
- Laboratory of General Surgery and Department of General Surgery, Xinhua Hospital Affiliated with Shanghai Jiao Tong University School of Medicine, No. 1665 Kongjiang Road, Shanghai, 200092, China; Shanghai Key Laboratory of Biliary Tract Disease Research, No. 1665 Kongjiang Road, Shanghai, 200092, China.
| | - Cheng Zhao
- Laboratory of General Surgery and Department of General Surgery, Xinhua Hospital Affiliated with Shanghai Jiao Tong University School of Medicine, No. 1665 Kongjiang Road, Shanghai, 200092, China; Shanghai Key Laboratory of Biliary Tract Disease Research, No. 1665 Kongjiang Road, Shanghai, 200092, China.
| | - Shi-Lei Liu
- Laboratory of General Surgery and Department of General Surgery, Xinhua Hospital Affiliated with Shanghai Jiao Tong University School of Medicine, No. 1665 Kongjiang Road, Shanghai, 200092, China; Shanghai Key Laboratory of Biliary Tract Disease Research, No. 1665 Kongjiang Road, Shanghai, 200092, China.
| | - Li-Jia Pan
- Laboratory of General Surgery and Department of General Surgery, Xinhua Hospital Affiliated with Shanghai Jiao Tong University School of Medicine, No. 1665 Kongjiang Road, Shanghai, 200092, China; Shanghai Key Laboratory of Biliary Tract Disease Research, No. 1665 Kongjiang Road, Shanghai, 200092, China.
| | - Yi-di Zhu
- Laboratory of General Surgery and Department of General Surgery, Xinhua Hospital Affiliated with Shanghai Jiao Tong University School of Medicine, No. 1665 Kongjiang Road, Shanghai, 200092, China; Shanghai Key Laboratory of Biliary Tract Disease Research, No. 1665 Kongjiang Road, Shanghai, 200092, China.
| | - Jing-Wei Zhao
- Laboratory of General Surgery and Department of General Surgery, Xinhua Hospital Affiliated with Shanghai Jiao Tong University School of Medicine, No. 1665 Kongjiang Road, Shanghai, 200092, China; Shanghai Key Laboratory of Biliary Tract Disease Research, No. 1665 Kongjiang Road, Shanghai, 200092, China.
| | - Hua-Kai Wang
- Laboratory of General Surgery and Department of General Surgery, Xinhua Hospital Affiliated with Shanghai Jiao Tong University School of Medicine, No. 1665 Kongjiang Road, Shanghai, 200092, China; Shanghai Key Laboratory of Biliary Tract Disease Research, No. 1665 Kongjiang Road, Shanghai, 200092, China.
| | - Yuan-Yuan Ye
- Laboratory of General Surgery and Department of General Surgery, Xinhua Hospital Affiliated with Shanghai Jiao Tong University School of Medicine, No. 1665 Kongjiang Road, Shanghai, 200092, China; Shanghai Key Laboratory of Biliary Tract Disease Research, No. 1665 Kongjiang Road, Shanghai, 200092, China.
| | - Jing Qiang
- Laboratory of General Surgery and Department of General Surgery, Xinhua Hospital Affiliated with Shanghai Jiao Tong University School of Medicine, No. 1665 Kongjiang Road, Shanghai, 200092, China; Shanghai Key Laboratory of Biliary Tract Disease Research, No. 1665 Kongjiang Road, Shanghai, 200092, China.
| | - Liu-Qing Shi
- Laboratory of General Surgery and Department of General Surgery, Xinhua Hospital Affiliated with Shanghai Jiao Tong University School of Medicine, No. 1665 Kongjiang Road, Shanghai, 200092, China; Shanghai Key Laboratory of Biliary Tract Disease Research, No. 1665 Kongjiang Road, Shanghai, 200092, China.
| | - Jia-Wei Mei
- Laboratory of General Surgery and Department of General Surgery, Xinhua Hospital Affiliated with Shanghai Jiao Tong University School of Medicine, No. 1665 Kongjiang Road, Shanghai, 200092, China; Shanghai Key Laboratory of Biliary Tract Disease Research, No. 1665 Kongjiang Road, Shanghai, 200092, China.
| | - Yang Xie
- Department of Gastroenterology, Xinhua Hospital Affiliated with Shanghai Jiao Tong University School of Medicine, No. 1665 Kongjiang Road, Shanghai, 200092, China.
| | - Wei Gong
- Laboratory of General Surgery and Department of General Surgery, Xinhua Hospital Affiliated with Shanghai Jiao Tong University School of Medicine, No. 1665 Kongjiang Road, Shanghai, 200092, China; Shanghai Key Laboratory of Biliary Tract Disease Research, No. 1665 Kongjiang Road, Shanghai, 200092, China.
| | - Yi-Jun Shu
- Laboratory of General Surgery and Department of General Surgery, Xinhua Hospital Affiliated with Shanghai Jiao Tong University School of Medicine, No. 1665 Kongjiang Road, Shanghai, 200092, China; Shanghai Key Laboratory of Biliary Tract Disease Research, No. 1665 Kongjiang Road, Shanghai, 200092, China.
| | - Ping Dong
- Laboratory of General Surgery and Department of General Surgery, Xinhua Hospital Affiliated with Shanghai Jiao Tong University School of Medicine, No. 1665 Kongjiang Road, Shanghai, 200092, China; Shanghai Key Laboratory of Biliary Tract Disease Research, No. 1665 Kongjiang Road, Shanghai, 200092, China.
| | - Shan-Shan Xiang
- Laboratory of General Surgery and Department of General Surgery, Xinhua Hospital Affiliated with Shanghai Jiao Tong University School of Medicine, No. 1665 Kongjiang Road, Shanghai, 200092, China; Shanghai Key Laboratory of Biliary Tract Disease Research, No. 1665 Kongjiang Road, Shanghai, 200092, China.
| |
Collapse
|
2
|
Werren EA, LaForce GR, Srivastava A, Perillo DR, Li S, Johnson K, Baris S, Berger B, Regan SL, Pfennig CD, de Munnik S, Pfundt R, Hebbar M, Jimenez-Heredia R, Karakoc-Aydiner E, Ozen A, Dmytrus J, Krolo A, Corning K, Prijoles EJ, Louie RJ, Lebel RR, Le TL, Amiel J, Gordon CT, Boztug K, Girisha KM, Shukla A, Bielas SL, Schaffer AE. TREX tetramer disruption alters RNA processing necessary for corticogenesis in THOC6 Intellectual Disability Syndrome. Nat Commun 2024; 15:1640. [PMID: 38388531 PMCID: PMC10884030 DOI: 10.1038/s41467-024-45948-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Accepted: 02/07/2024] [Indexed: 02/24/2024] Open
Abstract
THOC6 variants are the genetic basis of autosomal recessive THOC6 Intellectual Disability Syndrome (TIDS). THOC6 is critical for mammalian Transcription Export complex (TREX) tetramer formation, which is composed of four six-subunit THO monomers. The TREX tetramer facilitates mammalian RNA processing, in addition to the nuclear mRNA export functions of the TREX dimer conserved through yeast. Human and mouse TIDS model systems revealed novel THOC6-dependent, species-specific TREX tetramer functions. Germline biallelic Thoc6 loss-of-function (LOF) variants result in mouse embryonic lethality. Biallelic THOC6 LOF variants reduce the binding affinity of ALYREF to THOC5 without affecting the protein expression of TREX members, implicating impaired TREX tetramer formation. Defects in RNA nuclear export functions were not detected in biallelic THOC6 LOF human neural cells. Instead, mis-splicing was detected in human and mouse neural tissue, revealing novel THOC6-mediated TREX coordination of mRNA processing. We demonstrate that THOC6 is required for key signaling pathways known to regulate the transition from proliferative to neurogenic divisions during human corticogenesis. Together, these findings implicate altered RNA processing in the developmental biology of TIDS neuropathology.
Collapse
Affiliation(s)
- Elizabeth A Werren
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
- Advanced Precision Medicine Laboratory, The Jackson Laboratory for Genomic Medicine, Farmington, CT, 06032, USA
| | - Geneva R LaForce
- Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA
| | - Anshika Srivastava
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
- Department of Medical Genetics, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, Uttar Pradesh, 226014, India
| | - Delia R Perillo
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - Shaokun Li
- Advanced Precision Medicine Laboratory, The Jackson Laboratory for Genomic Medicine, Farmington, CT, 06032, USA
| | - Katherine Johnson
- Advanced Precision Medicine Laboratory, The Jackson Laboratory for Genomic Medicine, Farmington, CT, 06032, USA
| | - Safa Baris
- Division of Pediatric Allergy and Immunology, School of Medicine, Marmara University, Istanbul Jeffrey Modell Diagnostic and Research Center for Primary Immunodeficiencies, The Isil Berat Barlan Center for Translational Medicine, Istanbul, 34722, Turkey
| | - Brandon Berger
- Advanced Precision Medicine Laboratory, The Jackson Laboratory for Genomic Medicine, Farmington, CT, 06032, USA
| | - Samantha L Regan
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - Christian D Pfennig
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - Sonja de Munnik
- Department of Human Genetics, Radboud University Medical Centre Nijmegen, Nijmegen, 6524, the Netherlands
| | - Rolph Pfundt
- Department of Human Genetics, Radboud University Medical Centre Nijmegen, Nijmegen, 6524, the Netherlands
| | - Malavika Hebbar
- Division of Genetic Medicine, Department of Pediatrics, University of Washington, 98195, Seattle, WA, USA
| | - Raúl Jimenez-Heredia
- Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases, Vienna, 1090, Austria
| | - Elif Karakoc-Aydiner
- Division of Pediatric Allergy and Immunology, School of Medicine, Marmara University, Istanbul Jeffrey Modell Diagnostic and Research Center for Primary Immunodeficiencies, The Isil Berat Barlan Center for Translational Medicine, Istanbul, 34722, Turkey
| | - Ahmet Ozen
- Division of Pediatric Allergy and Immunology, School of Medicine, Marmara University, Istanbul Jeffrey Modell Diagnostic and Research Center for Primary Immunodeficiencies, The Isil Berat Barlan Center for Translational Medicine, Istanbul, 34722, Turkey
| | - Jasmin Dmytrus
- Research Centre for Molecular Medicine of the Austrian Academy of Sciences, Vienna, 1090, Austria
| | - Ana Krolo
- Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases, Vienna, 1090, Austria
| | - Ken Corning
- Greenwood Genetic Center, Greenwood, SC, 29646, USA
| | - E J Prijoles
- Greenwood Genetic Center, Greenwood, SC, 29646, USA
| | | | - Robert Roger Lebel
- Section of Medical Genetics, SUNY Upstate Medical University, Syracuse, NY, 13210, USA
| | - Thuy-Linh Le
- Imagine Institute, INSERM U1163, Paris Cité University, Paris, 75015, France
| | - Jeanne Amiel
- Imagine Institute, INSERM U1163, Paris Cité University, Paris, 75015, France
- Service de Médecine Génomique des Maladies Rares, Hôpital Necker-Enfants Malades, AP-HP, Paris, 75015, France
| | | | - Kaan Boztug
- Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases, Vienna, 1090, Austria
- Research Centre for Molecular Medicine of the Austrian Academy of Sciences, Vienna, 1090, Austria
- Department of Pediatrics and Adolescent Medicine, Medical University of Vienna, Vienna, 1090, Austria
- St. Anna Children's Hospital and Children's Cancer Research Institute, Department of Pediatrics, Medical University of Vienna, Vienna, 1090, Austria
| | - Katta M Girisha
- Department of Medical Genetics, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, 576104, India
| | - Anju Shukla
- Department of Medical Genetics, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, 576104, India
| | - Stephanie L Bielas
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI, 48109, USA.
- Department of Pediatrics, University of Michigan Medical School, Ann Arbor, MI, 48109, USA.
| | - Ashleigh E Schaffer
- Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA.
| |
Collapse
|
3
|
Nikom D, Zheng S. Alternative splicing in neurodegenerative disease and the promise of RNA therapies. Nat Rev Neurosci 2023; 24:457-473. [PMID: 37336982 DOI: 10.1038/s41583-023-00717-6] [Citation(s) in RCA: 32] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/02/2023] [Indexed: 06/21/2023]
Abstract
Alternative splicing generates a myriad of RNA products and protein isoforms of different functions from a single gene. Dysregulated alternative splicing has emerged as a new mechanism broadly implicated in the pathogenesis of neurodegenerative diseases such as Alzheimer disease, amyotrophic lateral sclerosis, frontotemporal dementia, Parkinson disease and repeat expansion diseases. Understanding the mechanisms and functional outcomes of abnormal splicing in neurological disorders is vital in developing effective therapies to treat mis-splicing pathology. In this Review, we discuss emerging research and evidence of the roles of alternative splicing defects in major neurodegenerative diseases and summarize the latest advances in RNA-based therapeutic strategies to target these disorders.
Collapse
Affiliation(s)
- David Nikom
- Neuroscience Graduate Program, University of California, Riverside, Riverside, CA, USA
- Center for RNA Biology and Medicine, University of California, Riverside, Riverside, CA, USA
| | - Sika Zheng
- Neuroscience Graduate Program, University of California, Riverside, Riverside, CA, USA.
- Center for RNA Biology and Medicine, University of California, Riverside, Riverside, CA, USA.
- Division of Biomedical Sciences, University of California, Riverside, Riverside, CA, USA.
| |
Collapse
|
4
|
Reese F, Williams B, Balderrama-Gutierrez G, Wyman D, Çelik MH, Rebboah E, Rezaie N, Trout D, Razavi-Mohseni M, Jiang Y, Borsari B, Morabito S, Liang HY, McGill CJ, Rahmanian S, Sakr J, Jiang S, Zeng W, Carvalho K, Weimer AK, Dionne LA, McShane A, Bedi K, Elhajjajy SI, Upchurch S, Jou J, Youngworth I, Gabdank I, Sud P, Jolanki O, Strattan JS, Kagda MS, Snyder MP, Hitz BC, Moore JE, Weng Z, Bennett D, Reinholdt L, Ljungman M, Beer MA, Gerstein MB, Pachter L, Guigó R, Wold BJ, Mortazavi A. The ENCODE4 long-read RNA-seq collection reveals distinct classes of transcript structure diversity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.15.540865. [PMID: 37292896 PMCID: PMC10245583 DOI: 10.1101/2023.05.15.540865] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The majority of mammalian genes encode multiple transcript isoforms that result from differential promoter use, changes in exonic splicing, and alternative 3' end choice. Detecting and quantifying transcript isoforms across tissues, cell types, and species has been extremely challenging because transcripts are much longer than the short reads normally used for RNA-seq. By contrast, long-read RNA-seq (LR-RNA-seq) gives the complete structure of most transcripts. We sequenced 264 LR-RNA-seq PacBio libraries totaling over 1 billion circular consensus reads (CCS) for 81 unique human and mouse samples. We detect at least one full-length transcript from 87.7% of annotated human protein coding genes and a total of 200,000 full-length transcripts, 40% of which have novel exon junction chains. To capture and compute on the three sources of transcript structure diversity, we introduce a gene and transcript annotation framework that uses triplets representing the transcript start site, exon junction chain, and transcript end site of each transcript. Using triplets in a simplex representation demonstrates how promoter selection, splice pattern, and 3' processing are deployed across human tissues, with nearly half of multi-transcript protein coding genes showing a clear bias toward one of the three diversity mechanisms. Evaluated across samples, the predominantly expressed transcript changes for 74% of protein coding genes. In evolution, the human and mouse transcriptomes are globally similar in types of transcript structure diversity, yet among individual orthologous gene pairs, more than half (57.8%) show substantial differences in mechanism of diversification in matching tissues. This initial large-scale survey of human and mouse long-read transcriptomes provides a foundation for further analyses of alternative transcript usage, and is complemented by short-read and microRNA data on the same samples and by epigenome data elsewhere in the ENCODE4 collection.
Collapse
Affiliation(s)
- Fairlie Reese
- Developmental and Cell Biology, University of California, Irvine, Irvine, USA
- Center for Complex Biological Systems, University of California, Irvine, Irvine, USA
| | - Brian Williams
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, USA
| | - Gabriela Balderrama-Gutierrez
- Developmental and Cell Biology, University of California, Irvine, Irvine, USA
- Center for Complex Biological Systems, University of California, Irvine, Irvine, USA
| | - Dana Wyman
- Center for Complex Biological Systems, University of California, Irvine, Irvine, USA
| | - Muhammed Hasan Çelik
- Center for Complex Biological Systems, University of California, Irvine, Irvine, USA
| | - Elisabeth Rebboah
- Center for Complex Biological Systems, University of California, Irvine, Irvine, USA
| | - Narges Rezaie
- Center for Complex Biological Systems, University of California, Irvine, Irvine, USA
| | - Diane Trout
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, USA
| | - Milad Razavi-Mohseni
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, USA
- McKusick-Nathans Department of Genetic Medicine, Johns Hopkins University, Baltimore, USA
| | - Yunzhe Jiang
- Program in Computational Biology and Bioinformatics, Yale University, New Haven, USA
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, USA
| | - Beatrice Borsari
- Program in Computational Biology and Bioinformatics, Yale University, New Haven, USA
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, USA
- Centre for Genomic Regulation, The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Samuel Morabito
- Center for Complex Biological Systems, University of California, Irvine, Irvine, USA
| | - Heidi Yahan Liang
- Center for Complex Biological Systems, University of California, Irvine, Irvine, USA
| | - Cassandra J McGill
- Developmental and Cell Biology, University of California, Irvine, Irvine, USA
- Center for Complex Biological Systems, University of California, Irvine, Irvine, USA
| | - Sorena Rahmanian
- Center for Complex Biological Systems, University of California, Irvine, Irvine, USA
| | - Jasmine Sakr
- Center for Complex Biological Systems, University of California, Irvine, Irvine, USA
- Department of Pharmaceutical Sciences, University of California, Irvine, Irvine, USA
| | - Shan Jiang
- Developmental and Cell Biology, University of California, Irvine, Irvine, USA
- Center for Complex Biological Systems, University of California, Irvine, Irvine, USA
| | - Weihua Zeng
- Developmental and Cell Biology, University of California, Irvine, Irvine, USA
- Center for Complex Biological Systems, University of California, Irvine, Irvine, USA
| | - Klebea Carvalho
- Center for Complex Biological Systems, University of California, Irvine, Irvine, USA
| | - Annika K Weimer
- Department of Genetics, Stanford University School of Medicine, Palo Alto, USA
| | - Louise A Dionne
- The Jackson Laboratory, The Jackson Laboratory, Bar Harbor, USA
| | - Ariel McShane
- Cellular and Molecular Biology Program, University of Michigan, Ann Arbor, USA
- Department of Radiation Oncology, University of Michigan, Ann Arbor, USA
| | - Karan Bedi
- Department of Biostatistics, University of Michigan, Ann Arbor, USA
- Center for RNA Biomedicine and Rogel Cancer Center, University of Michigan, Ann Arbor, USA
| | - Shaimae I Elhajjajy
- Program in Bioinformatics and Integrative Biology, University of Massachusetts Chan Medical School, Worcester, USA
| | - Sean Upchurch
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, USA
| | - Jennifer Jou
- Department of Genetics, Stanford University School of Medicine, Palo Alto, USA
| | - Ingrid Youngworth
- Department of Genetics, Stanford University School of Medicine, Palo Alto, USA
| | - Idan Gabdank
- Department of Genetics, Stanford University School of Medicine, Palo Alto, USA
| | - Paul Sud
- Department of Genetics, Stanford University School of Medicine, Palo Alto, USA
| | - Otto Jolanki
- Department of Genetics, Stanford University School of Medicine, Palo Alto, USA
| | - J Seth Strattan
- Department of Genetics, Stanford University School of Medicine, Palo Alto, USA
| | - Meenakshi S Kagda
- Department of Genetics, Stanford University School of Medicine, Palo Alto, USA
| | - Michael P Snyder
- Department of Genetics, Stanford University School of Medicine, Palo Alto, USA
| | - Ben C Hitz
- Department of Genetics, Stanford University School of Medicine, Palo Alto, USA
| | - Jill E Moore
- Program in Bioinformatics and Integrative Biology, University of Massachusetts Chan Medical School, Worcester, USA
| | - Zhiping Weng
- Program in Bioinformatics and Integrative Biology, University of Massachusetts Chan Medical School, Worcester, USA
| | - David Bennett
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, USA
- Department of Neurological Sciences, Rush University Medical Center, Chicago, USA
| | - Laura Reinholdt
- The Jackson Laboratory, The Jackson Laboratory, Bar Harbor, USA
| | - Mats Ljungman
- Center for RNA Biomedicine and Rogel Cancer Center, University of Michigan, Ann Arbor, USA
- Departments of Radiation Oncology and Environmental Health Sciences, University of Michigan, Ann Arbor, USA
| | - Michael A Beer
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, USA
- McKusick-Nathans Department of Genetic Medicine, Johns Hopkins University, Baltimore, USA
| | - Mark B Gerstein
- Program in Computational Biology and Bioinformatics, Yale University, New Haven, USA
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, USA
- Section on Biomedical Informatics and Data Science, Yale University, New Haven, USA
- Department of Statistics and Data Science, Yale University, New Haven, USA
- Department of Computer Science, Yale University, New Haven, USA
| | - Lior Pachter
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, USA
- Department of Computing and Mathematical Sciences, California Institute of Technology, Pasadena, USA
| | - Roderic Guigó
- Centre for Genomic Regulation, The Barcelona Institute of Science and Technology, Barcelona, Spain
- Department of Medicine and Life Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| | - Barbara J Wold
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, USA
| | - Ali Mortazavi
- Developmental and Cell Biology, University of California, Irvine, Irvine, USA
- Center for Complex Biological Systems, University of California, Irvine, Irvine, USA
| |
Collapse
|
5
|
Sexually dimorphic expression and regulatory sequence of dnali1 in the olive flounder Paralichthys olivaceus. Mol Biol Rep 2021; 48:3529-3540. [PMID: 33877529 DOI: 10.1007/s11033-021-06342-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 04/07/2021] [Indexed: 10/21/2022]
Abstract
Dynein axonemal light intermediate chain 1 (dnali1) is an important part of axonemal dyneins and plays an important role in the growth and development of animals. However, there is little information about dnali1 in fish. Herein, we cloned dnali1 gene from the genome of olive flounder (Paralichthys olivaceus), a commercially important maricultured fish in China, Japan, and Korea, and analyzed its expression patterns in different gender fish. The flounder dnali1 DNA sequence contained a 771 bp open reading frame (ORF), two different sizes of 5' untranslated region (5'UTR), and a 1499 bp 3' untranslated region (3'UTR). Two duplicated 922 nt fragments were found in dnali1 mRNA. The first fragment contained the downstream coding region and the front portion of 3'UTR, and the second fragment was entirely located in 3'UTR. Multiple alignments indicated that the flounder Dnali1 protein contained the putative conserved coiled-coil domain. Its expression showed sexually dimorphic with predominant expression in the flounder testis, and lower expression in other tissues. The gene with the longer 5'UTR was specifically expressed in the testis. The highest expression level in the testis was detected at stages IV and V. Transient expression analysis showed that the 922 bp repeated sequence 3'UTR of dnali1 down-regulated the expression of GFP at the early stage in zebrafish. The flounder dnali1 might play an important role in the testis, especially in the period of spermatogenesis, and the 5'UTR and the repetitive sequences in 3'UTR might contain some regulatory elements for the cilia.
Collapse
|
6
|
Biamonti G, Amato A, Belloni E, Di Matteo A, Infantino L, Pradella D, Ghigna C. Alternative splicing in Alzheimer's disease. Aging Clin Exp Res 2021; 33:747-758. [PMID: 31583531 DOI: 10.1007/s40520-019-01360-x] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Accepted: 09/19/2019] [Indexed: 12/25/2022]
Abstract
Alzheimer's disease (AD) is the most frequent neurodegenerative disorder in the elderly, occurring in approximately 20% of people older than 80. The molecular causes of AD are still poorly understood. However, recent studies have shown that Alternative Splicing (AS) is involved in the gene expression reprogramming associated with the functional changes observed in AD patients. In particular, mutations in cis-acting regulatory sequences as well as alterations in the activity and sub-cellular localization of trans-acting splicing factors and components of the spliceosome machinery are associated with splicing abnormalities in AD tissues, which may influence the onset and progression of the disease. In this review, we discuss the current molecular understanding of how alterations in the AS process contribute to AD pathogenesis. Finally, recent therapeutic approaches targeting aberrant AS regulation in AD are also reviewed.
Collapse
Affiliation(s)
- Giuseppe Biamonti
- Istituto di Genetica Molecolare "Luigi Luca Cavalli-Sforza", Consiglio Nazionale delle Ricerche (IGM-CNR), via Abbiategrasso, 207, 27100, Pavia, Italy.
| | - Angela Amato
- Istituto di Genetica Molecolare "Luigi Luca Cavalli-Sforza", Consiglio Nazionale delle Ricerche (IGM-CNR), via Abbiategrasso, 207, 27100, Pavia, Italy
| | - Elisa Belloni
- Istituto di Genetica Molecolare "Luigi Luca Cavalli-Sforza", Consiglio Nazionale delle Ricerche (IGM-CNR), via Abbiategrasso, 207, 27100, Pavia, Italy
| | - Anna Di Matteo
- Istituto di Genetica Molecolare "Luigi Luca Cavalli-Sforza", Consiglio Nazionale delle Ricerche (IGM-CNR), via Abbiategrasso, 207, 27100, Pavia, Italy
| | - Lucia Infantino
- Istituto di Genetica Molecolare "Luigi Luca Cavalli-Sforza", Consiglio Nazionale delle Ricerche (IGM-CNR), via Abbiategrasso, 207, 27100, Pavia, Italy
| | - Davide Pradella
- Istituto di Genetica Molecolare "Luigi Luca Cavalli-Sforza", Consiglio Nazionale delle Ricerche (IGM-CNR), via Abbiategrasso, 207, 27100, Pavia, Italy
| | - Claudia Ghigna
- Istituto di Genetica Molecolare "Luigi Luca Cavalli-Sforza", Consiglio Nazionale delle Ricerche (IGM-CNR), via Abbiategrasso, 207, 27100, Pavia, Italy
| |
Collapse
|
7
|
Yan Z, Shen Z, Li Z, Chao Q, Kong L, Gao ZF, Li QW, Zheng HY, Zhao CF, Lu CM, Wang YW, Wang BC. Genome-wide transcriptome and proteome profiles indicate an active role of alternative splicing during de-etiolation of maize seedlings. PLANTA 2020; 252:60. [PMID: 32964359 DOI: 10.1007/s00425-020-03464-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 09/12/2020] [Indexed: 06/11/2023]
Abstract
AS events affect genes encoding protein domain composition and make the single gene produce more proteins with a certain number of genes to satisfy the establishment of photosynthesis during de-etiolation. The drastic switch from skotomorphogenic to photomorphogenic development is an excellent system to elucidate rapid developmental responses to environmental stimuli in plants. To decipher the effects of different light wavelengths on de-etiolation, we illuminated etiolated maize seedlings with blue, red, blue-red mixed and white light, respectively. We found that blue light alone has the strongest effect on photomorphogenesis and that this effect can be attributed to the higher number and expression levels of photosynthesis and chlorosynthesis proteins. Deep sequencing-based transcriptome analysis revealed gene expression changes under different light treatments and a genome-wide alteration in alternative splicing (AS) profiles. We discovered 41,188 novel transcript isoforms for annotated genes, which increases the percentage of multi-exon genes with AS to 63% in maize. We provide peptide support for all defined types of AS, especially retained introns. Further in silico prediction revealed that 58.2% of retained introns have changes in domains compared with their most similar annotated protein isoform. This suggests that AS acts as a protein function switch allowing rapid light response through the addition or removal of functional domains. The richness of novel transcripts and protein isoforms also demonstrates the potential and importance of integrating proteomics into genome annotation in maize.
Collapse
Affiliation(s)
- Zhen Yan
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, No. 20 Nanxincun, Xiangshan, Beijing, 100093, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Zhuo Shen
- Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangdong Key Laboratory for New Technology Research of Vegetables, Guangzhou, 510640, China
| | - Zhe Li
- Precision Scientific (Beijing) Co., Ltd., Beijing, 100085, China
| | - Qing Chao
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, No. 20 Nanxincun, Xiangshan, Beijing, 100093, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
- The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100039, China
| | - Lei Kong
- State Key Laboratory of Protein and Plant Gene Research, Center for Bioinformatics, College of Life Sciences, Peking University, Beijing, 100871, China
| | - Zhi-Fang Gao
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, No. 20 Nanxincun, Xiangshan, Beijing, 100093, China
| | - Qing-Wei Li
- Beijing Botanical Garden, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Hai-Yan Zheng
- Center for Advanced Biotechnology and Medicine, Biological Mass Spectrometry Facility, Rutgers University, Piscataway, NJ, 08855, USA
| | - Cai-Feng Zhao
- Center for Advanced Biotechnology and Medicine, Biological Mass Spectrometry Facility, Rutgers University, Piscataway, NJ, 08855, USA
| | - Cong-Ming Lu
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, 271018, Shandong, China
| | - Ying-Wei Wang
- Beijing Botanical Garden, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China.
| | - Bai-Chen Wang
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, No. 20 Nanxincun, Xiangshan, Beijing, 100093, China.
- University of Chinese Academy of Sciences, 100049, Beijing, China.
- The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100039, China.
| |
Collapse
|
8
|
Santantonio N, Jannink JL, Sorrells M. Homeologous Epistasis in Wheat: The Search for an Immortal Hybrid. Genetics 2019; 211:1105-1122. [PMID: 30679260 PMCID: PMC6404247 DOI: 10.1534/genetics.118.301851] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Accepted: 01/16/2019] [Indexed: 11/18/2022] Open
Abstract
Hybridization between related species results in the formation of an allopolyploid with multiple subgenomes. These subgenomes will each contain complete, yet evolutionarily divergent, sets of genes. Like a diploid hybrid, allopolyploids will have two versions, or homeoalleles, for every gene. Partial functional redundancy between homeologous genes should result in a deviation from additivity. These epistatic interactions between homeoalleles are analogous to dominance effects, but are fixed across subgenomes through self pollination. An allopolyploid can be viewed as an immortalized hybrid, with the opportunity to select and fix favorable homeoallelic interactions within inbred varieties. We present a subfunctionalization epistasis model to estimate the degree of functional redundancy between homeoallelic loci and a statistical framework to determine their importance within a population. We provide an example using the homeologous dwarfing genes of allohexaploid wheat, Rht-1, and search for genome-wide patterns indicative of homeoallelic subfunctionalization in a breeding population. Using the IWGSC RefSeq v1.0 sequence, 23,796 homeoallelic gene sets were identified and anchored to the nearest DNA marker to form 10,172 homeologous marker sets. Interaction predictors constructed from products of marker scores were used to fit the homeologous main and interaction effects, as well as estimate whole genome genetic values. Some traits displayed a pattern indicative of homeoallelic subfunctionalization, while other traits showed a less clear pattern or were not affected. Using genomic prediction accuracy to evaluate importance of marker interactions, we show that homeologous interactions explain a portion of the nonadditive genetic signal, but are less important than other epistatic interactions.
Collapse
Affiliation(s)
- Nicholas Santantonio
- Cornell University, Plant Breeding and Genetics Section, School of Integrated Plant Sciences, College of Agriculture and Life Sciences, Ithaca, New York 14853
| | - Jean-Luc Jannink
- Cornell University, Plant Breeding and Genetics Section, School of Integrated Plant Sciences, College of Agriculture and Life Sciences, Ithaca, New York 14853
- United States Department of Agriculture-Agricultural Research Service (USDA-ARS), Robert W. Holley Center for Agriculture and Health, Ithaca, New York 14853
| | - Mark Sorrells
- Cornell University, Plant Breeding and Genetics Section, School of Integrated Plant Sciences, College of Agriculture and Life Sciences, Ithaca, New York 14853
| |
Collapse
|
9
|
Song QA, Catlin NS, Brad Barbazuk W, Li S. Computational analysis of alternative splicing in plant genomes. Gene 2019; 685:186-195. [PMID: 30321657 DOI: 10.1016/j.gene.2018.10.026] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Revised: 09/16/2018] [Accepted: 10/11/2018] [Indexed: 12/11/2022]
Abstract
Computational analyses play crucial roles in characterizing splicing isoforms in plant genomes. In this review, we provide a survey of computational tools used in recently published, genome-scale splicing analyses in plants. We summarize the commonly used software and pipelines for read mapping, isoform reconstruction, isoform quantification, and differential expression analysis. We also discuss methods for analyzing long reads and the strategies to combine long and short reads in identifying splicing isoforms. We review several tools for characterizing local splicing events, splicing graphs, coding potential, and visualizing splicing isoforms. We further discuss the procedures for identifying conserved splicing isoforms across plant species. Finally, we discuss the outlook of integrating other genomic data with splicing analyses to identify regulatory mechanisms of AS on genome-wide scale.
Collapse
Affiliation(s)
- Qi A Song
- Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, United States of America
| | - Nathan S Catlin
- Department of Biology, University of Florida, Gainesville, FL 32611, United States of America
| | - W Brad Barbazuk
- Department of Biology, University of Florida, Gainesville, FL 32611, United States of America; Genetics Institute, University of Florida, Gainesville, FL 32611, United States of America
| | - Song Li
- School of Plant and Environmental Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, United States of America.
| |
Collapse
|
10
|
A Tri-Nucleotide Pattern in a 3' UTR Segment Affects The Activity of a Human Glucocorticoid Receptor Isoform. Shock 2018; 47:148-157. [PMID: 27660999 DOI: 10.1097/shk.0000000000000750] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
We previously identified a truncated human glucocorticoid receptor (hGR) isoform of 118 amino acids, hGR-S1(-349A), that despite lacking the major functional domains, was more hyperactive after glucocorticoid treatment than the full-length receptor. Furthermore, its 3' untranslated region (UTR) was required. To dissect the underlying mechanisms for hyperactivity, a series of hGR isoforms with consecutive deletions in the 3' UTR were created to test their transactivation potential using reporter assays. The hGR-S1(-349A) isoform retaining 1303 bp of 3' UTR displayed unusually high activity with or without glucocorticoid stimulation. Unexpectedly, a complete loss of significant activity was observed with isoforms retaining 1293 bp or 1263 bp of 3' UTR. Analysis of the 20 bp region neighboring the 1293 bp site showed a pattern: 3'UTR termination at every third base pair in this region resulted in a loss of transactivation potential while the other sites retained hyperactivity with or without glucocorticoid stimulation. Variations in the activity of an hGR isoform, due to changes in the 3' UTR sequence configuration, may provide an important link in explaining inconsistent responses to glucocorticoid treatment in individuals and ultimately enable tailored, patient-specific care. Furthermore, understanding the mechanisms underlying the cyclic hyperactivity/loss of activity phenomenon may be a step toward identifying a novel mechanism of gene regulation.
Collapse
|
11
|
Zhang C, Yang H, Yang H. Evolutionary Character of Alternative Splicing in Plants. Bioinform Biol Insights 2016; 9:47-52. [PMID: 26819552 PMCID: PMC4721685 DOI: 10.4137/bbi.s33716] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Revised: 10/19/2015] [Accepted: 10/24/2015] [Indexed: 12/21/2022] Open
Abstract
Alternative splicing (AS) is one of the most important ways to enhance the functional diversity of genes. Huge amounts of data have been produced by microarray, expressed sequence tag, and RNA-seq, and plenty of methods have been developed specifically for this task. The most frequently asked questions in previous research were as follows. What is the content rate of AS genes among the whole gene set? How many AS types are presented in the genome, and which type is dominant? How about the conservation ability of AS among different species? Which kinds of isoforms from some genes have the environmental response to help individual adaptation? Based on this background, we collected analysis results from 17 species to try to map out the landscape of AS studies in plants. We have noted the shortages of previous results, and we appeal to all scientists working in the AS field to make a standard protocol so that analyses between different projects are comparable.
Collapse
Affiliation(s)
- Chengjun Zhang
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, People's Republic of China
| | - Hong Yang
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, People's Republic of China
| | - Huizhao Yang
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, People's Republic of China
| |
Collapse
|
12
|
The pseudogene TUSC2P promotes TUSC2 function by binding multiple microRNAs. Nat Commun 2015; 5:2914. [PMID: 24394498 PMCID: PMC3896787 DOI: 10.1038/ncomms3914] [Citation(s) in RCA: 88] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2013] [Accepted: 11/11/2013] [Indexed: 01/16/2023] Open
Abstract
Various non-coding regions of the genome, once presumed to be ‘junk’ DNA, have recently been found to be transcriptionally active. In particular, pseudogenes are now known to have important biological roles. Here we report that transcripts of the two tumour suppressor candidate-2 pseudogenes (TUSC2P), found on chromosomes X and Y, are homologous to the 3′-UTR of their corresponding protein coding transcript, TUSC2. TUSC2P and the TUSC2 3′-UTR share many common miRNA-binding sites, including miR-17, miR-93, miR-299-3p, miR-520a, miR-608 and miR-661. We find that ectopic expression of TUSC2P and the TUSC2 3′-UTR inhibits cell proliferation, survival, migration, invasion and colony formation, and increases tumour cell death. By interacting with endogenous miRNAs, TUSC2P and TUSC2 3′-UTR arrest the functions of these miRNAs, resulting in increased translation of TUSC2. The TUSC2P and TUSC2 3′-UTR could thus be used as combinatorial miRNA inhibitors and might have clinical applications. Non-coding RNAs have recently emerged as crucial regulators of gene expression. Here Rutnam et al. identify a pseudogene complementary to the 3′-UTR of the TUSC2 tumour suppressor that regulates TUSC2 levels by acting as a decoy for endogenous microRNAs and thereby inhibits tumorigenesis.
Collapse
|
13
|
Kanitz A, Gypas F, Gruber AJ, Gruber AR, Martin G, Zavolan M. Comparative assessment of methods for the computational inference of transcript isoform abundance from RNA-seq data. Genome Biol 2015. [PMID: 26201343 PMCID: PMC4511015 DOI: 10.1186/s13059-015-0702-5] [Citation(s) in RCA: 99] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Background Understanding the regulation of gene expression, including transcription start site usage, alternative splicing, and polyadenylation, requires accurate quantification of expression levels down to the level of individual transcript isoforms. To comparatively evaluate the accuracy of the many methods that have been proposed for estimating transcript isoform abundance from RNA sequencing data, we have used both synthetic data as well as an independent experimental method for quantifying the abundance of transcript ends at the genome-wide level. Results We found that many tools have good accuracy and yield better estimates of gene-level expression compared to commonly used count-based approaches, but they vary widely in memory and runtime requirements. Nucleotide composition and intron/exon structure have comparatively little influence on the accuracy of expression estimates, which correlates most strongly with transcript/gene expression levels. To facilitate the reproduction and further extension of our study, we provide datasets, source code, and an online analysis tool on a companion website, where developers can upload expression estimates obtained with their own tool to compare them to those inferred by the methods assessed here. Conclusions As many methods for quantifying isoform abundance with comparable accuracy are available, a user’s choice will likely be determined by factors such as the memory and runtime requirements, as well as the availability of methods for downstream analyses. Sequencing-based methods to quantify the abundance of specific transcript regions could complement validation schemes based on synthetic data and quantitative PCR in future or ongoing assessments of RNA-seq analysis methods. Electronic supplementary material The online version of this article (doi:10.1186/s13059-015-0702-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Alexander Kanitz
- Biozentrum, University of Basel and Swiss Institute of Bioinformatics, Basel, Switzerland.
| | - Foivos Gypas
- Biozentrum, University of Basel and Swiss Institute of Bioinformatics, Basel, Switzerland.
| | - Andreas J Gruber
- Biozentrum, University of Basel and Swiss Institute of Bioinformatics, Basel, Switzerland.
| | - Andreas R Gruber
- Biozentrum, University of Basel and Swiss Institute of Bioinformatics, Basel, Switzerland.
| | - Georges Martin
- Biozentrum, University of Basel and Swiss Institute of Bioinformatics, Basel, Switzerland.
| | - Mihaela Zavolan
- Biozentrum, University of Basel and Swiss Institute of Bioinformatics, Basel, Switzerland.
| |
Collapse
|
14
|
Mao R, Raj Kumar PK, Guo C, Zhang Y, Liang C. Comparative analyses between retained introns and constitutively spliced introns in Arabidopsis thaliana using random forest and support vector machine. PLoS One 2014; 9:e104049. [PMID: 25110928 PMCID: PMC4128822 DOI: 10.1371/journal.pone.0104049] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2014] [Accepted: 07/06/2014] [Indexed: 01/04/2023] Open
Abstract
One of the important modes of pre-mRNA post-transcriptional modification is alternative splicing. Alternative splicing allows creation of many distinct mature mRNA transcripts from a single gene by utilizing different splice sites. In plants like Arabidopsis thaliana, the most common type of alternative splicing is intron retention. Many studies in the past focus on positional distribution of retained introns (RIs) among different genic regions and their expression regulations, while little systematic classification of RIs from constitutively spliced introns (CSIs) has been conducted using machine learning approaches. We used random forest and support vector machine (SVM) with radial basis kernel function (RBF) to differentiate these two types of introns in Arabidopsis. By comparing coordinates of introns of all annotated mRNAs from TAIR10, we obtained our high-quality experimental data. To distinguish RIs from CSIs, We investigated the unique characteristics of RIs in comparison with CSIs and finally extracted 37 quantitative features: local and global nucleotide sequence features of introns, frequent motifs, the signal strength of splice sites, and the similarity between sequences of introns and their flanking regions. We demonstrated that our proposed feature extraction approach was more accurate in effectively classifying RIs from CSIs in comparison with other four approaches. The optimal penalty parameter C and the RBF kernel parameter in SVM were set based on particle swarm optimization algorithm (PSOSVM). Our classification performance showed F-Measure of 80.8% (random forest) and 77.4% (PSOSVM). Not only the basic sequence features and positional distribution characteristics of RIs were obtained, but also putative regulatory motifs in intron splicing were predicted based on our feature extraction approach. Clearly, our study will facilitate a better understanding of underlying mechanisms involved in intron retention.
Collapse
Affiliation(s)
- Rui Mao
- College of Mechanical and Electronic Engineering, Northwest A&F University, Yangling, Shaanxi, China
- College of Information Engineering, Northwest A&F University, Yangling, Shaanxi, China
- Department of Biology, Miami University, Oxford, Ohio, United States of America
| | | | - Cheng Guo
- Department of Biology, Miami University, Oxford, Ohio, United States of America
| | - Yang Zhang
- College of Mechanical and Electronic Engineering, Northwest A&F University, Yangling, Shaanxi, China
- College of Information Engineering, Northwest A&F University, Yangling, Shaanxi, China
- * E-mail: (YZ); (CL)
| | - Chun Liang
- Department of Biology, Miami University, Oxford, Ohio, United States of America
- Department of Computer Sciences and Software Engineering, Miami University, Oxford, Ohio, United States of America
- * E-mail: (YZ); (CL)
| |
Collapse
|
15
|
Panahi B, Abbaszadeh B, Taghizadeghan M, Ebrahimie E. Genome-wide survey of Alternative Splicing in Sorghum Bicolor. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2014; 20:323-329. [PMID: 25049459 PMCID: PMC4101146 DOI: 10.1007/s12298-014-0245-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2014] [Accepted: 06/09/2014] [Indexed: 05/29/2023]
Abstract
Sorghum bicolor is a member of grass family which is an attractive model plant for genome study due to interesting genome features like low genome size. In this research, we performed comprehensive investigation of Alternative Splicing and ontology aspects of genes those have undergone these events in sorghum bicolor. We used homology based alignments between gene rich transcripts, represented by tentative consensus (TC) transcript sequences, and genomic scaffolds to deduce the structure of genes and identify alternatively spliced transcripts in sorghum. Using homology mapping of assembled expressed sequence tags with genomics data, we identified 2,137 Alternative Splicing events in S. bicolor. Our study showed that complex events and intron retention are the main types of Alternative Splicing events in S. bicolor and highlights the prevalence of splicing site recognition for definition of introns in this plant. Annotations of the alternatively spliced genes revealed that they represent diverse biological process and molecular functions, suggesting a fundamental role for Alternative Splicing in affecting the development and physiology of S. bicolor.
Collapse
Affiliation(s)
- Bahman Panahi
- />Department of Biotechnology and Plant Breeding, University of Tabriz, Tabriz, Iran
| | - Bahram Abbaszadeh
- />Meshgin shahr Branch, Islamic Azad University, Meshgin Shahr, Iran
| | - Mehdi Taghizadeghan
- />Department of Biotechnology and Plant Breeding, University of Tabriz, Tabriz, Iran
| | - Esmaeil Ebrahimie
- />School of Molecular and Biomedical Science, The University of Adelaide, Adelaide, Australia
| |
Collapse
|
16
|
Gotoh O, Morita M, Nelson DR. Assessment and refinement of eukaryotic gene structure prediction with gene-structure-aware multiple protein sequence alignment. BMC Bioinformatics 2014; 15:189. [PMID: 24927652 PMCID: PMC4065584 DOI: 10.1186/1471-2105-15-189] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2014] [Accepted: 06/09/2014] [Indexed: 03/29/2024] Open
Abstract
Background Accurate computational identification of eukaryotic gene organization is a long-standing problem. Despite the fundamental importance of precise annotation of genes encoded in newly sequenced genomes, the accuracy of predicted gene structures has not been critically evaluated, mostly due to the scarcity of proper assessment methods. Results We present a gene-structure-aware multiple sequence alignment method for gene prediction using amino acid sequences translated from homologous genes from many genomes. The approach provides rich information concerning the reliability of each predicted gene structure. We have also devised an iterative method that attempts to improve the structures of suspiciously predicted genes based on a spliced alignment algorithm using consensus sequences or reliable homologs as templates. Application of our methods to cytochrome P450 and ribosomal proteins from 47 plant genomes indicated that 50 ~ 60 % of the annotated gene structures are likely to contain some defects. Whereas more than half of the defect-containing genes may be intrinsically broken, i.e. they are pseudogenes or gene fragments, located in unfinished sequencing areas, or corresponding to non-productive isoforms, the defects found in a majority of the remaining gene candidates can be remedied by our iterative refinement method. Conclusions Refinement of eukaryotic gene structures mediated by gene-structure-aware multiple protein sequence alignment is a useful strategy to dramatically improve the overall prediction quality of a set of homologous genes. Our method will be applicable to various families of protein-coding genes if their domain structures are evolutionarily stable. It is also feasible to apply our method to gene families from all kingdoms of life, not just plants.
Collapse
Affiliation(s)
- Osamu Gotoh
- Computational Biology Research Center (CBRC), National Institute of Advanced Industrial Science and Technology (AIST), Koto-ku, Tokyo 135-0064, Japan.
| | | | | |
Collapse
|
17
|
Zhang C, Gschwend AR, Ouyang Y, Long M. Evolution of gene structural complexity: an alternative-splicing-based model accounts for intron-containing retrogenes. PLANT PHYSIOLOGY 2014; 165:412-23. [PMID: 24520158 PMCID: PMC4012599 DOI: 10.1104/pp.113.231696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
The structure of eukaryotic genes evolves extensively by intron loss or gain. Previous studies have revealed two models for gene structure evolution through the loss of introns: RNA-based gene conversion, dubbed the Fink model and retroposition model. However, retrogenes that experienced both intron loss and intron-retaining events have been ignored; evolutionary processes responsible for the variation in complex exon-intron structure were unknown. We detected hundreds of retroduplication-derived genes in human (Homo sapiens), fly (Drosophila melanogaster), rice (Oryza sativa), and Arabidopsis (Arabidopsis thaliana) and categorized them either as duplicated genes that have all introns lost or as duplicated genes that have at least lost one and retained one intron compared with the parental copy (intron-retaining [IR] type). Our new model attributes intron retention alternative splicing to the generation of these IR-type gene pairs. We presented 25 parental genes that have an intron retention isoform and have retained introns in the same locations in the IR-type duplicate genes, which directly support our hypothesis. Our alternative-splicing-based model in conjunction with the retroposition and Fink models can explain the IR-type gene observed. We discovered a greater percentage of IR-type genes in plants than in animals, which may be due to the abundance of intron retention cases in plants. Given the prevalence of intron retention in plants, this new model gives a support that plant genomes have very complex gene structures.
Collapse
|
18
|
Abstract
Recent studies of the anticoagulant activities of the tissue factor (TF) pathway inhibitor (TFPI) isoforms, TFPIα and TFPIβ, have provided new insight into the biochemical and physiological mechanisms that underlie bleeding and clotting disorders. TFPIα and TFPIβ have tissue-specific expression patterns and anticoagulant activities. An alternative splicing event in the 5' untranslated region allows for translational regulation of TFPIβ expression. TFPIα has 3 Kunitz-type inhibitor domains (K1, K2, K3) and a basic C terminus, whereas TFPIβ has the K1 and K2 domains attached to a glycosylphosphatidyl inositol-anchored C terminus. TFPIα is the only isoform present in platelets, whereas endothelial cells produce both isoforms, secreting TFPIα and expressing TFPIβ on the cell surface. TFPIα and TFPIβ inhibit both TF-factor VIIa-dependent factor Xa (FXa) generation and free FXa. Protein S enhances FXa inhibition by TFPIα. TFPIα produces isoform-specific inhibition of prothrombinase during the initiation of coagulation, an anticoagulant activity that requires an exosite interaction between its basic C terminus and an acidic region in the factor Va B domain. Platelet TFPIα may be optimally localized to dampen initial thrombin generation. Similarly, endothelial TFPIβ may be optimally localized to inhibit processes that occur when endothelial TF is present, such as during the inflammatory response.
Collapse
|
19
|
Kassiopeia: a database and web application for the analysis of mutually exclusive exomes of eukaryotes. BMC Genomics 2014; 15:115. [PMID: 24507667 PMCID: PMC3923563 DOI: 10.1186/1471-2164-15-115] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2013] [Accepted: 01/29/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Alternative splicing is an important process in higher eukaryotes that allows obtaining several transcripts from one gene. A specific case of alternative splicing is mutually exclusive splicing, in which exactly one exon out of a cluster of neighbouring exons is spliced into the mature transcript. Recently, a new algorithm for the prediction of these exons has been developed based on the preconditions that the exons of the cluster have similar lengths, sequence homology, and conserved splice sites, and that they are translated in the same reading frame. DESCRIPTION In this contribution we introduce Kassiopeia, a database and web application for the generation, storage, and presentation of genome-wide analyses of mutually exclusive exomes. Currently, Kassiopeia provides access to the mutually exclusive exomes of twelve Drosophila species, the thale cress Arabidopsis thaliana, the flatworm Caenorhabditis elegans, and human. Mutually exclusive spliced exons (MXEs) were predicted based on gene reconstructions from Scipio. Based on the standard prediction values, with which 83.5% of the annotated MXEs of Drosophila melanogaster were reconstructed, the exomes contain surprisingly more MXEs than previously supposed and identified. The user can search Kassiopeia using BLAST or browse the genes of each species optionally adjusting the parameters used for the prediction to reveal more divergent or only very similar exon candidates. CONCLUSIONS We developed a pipeline to predict MXEs in the genomes of several model organisms and a web interface, Kassiopeia, for their visualization. For each gene Kassiopeia provides a comprehensive gene structure scheme, the sequences and predicted secondary structures of the MXEs, and, if available, further evidence for MXE candidates from cDNA/EST data, predictions of MXEs in homologous genes of closely related species, and RNA secondary structure predictions. Kassiopeia can be accessed at http://www.motorprotein.de/kassiopeia.
Collapse
|
20
|
Ellery PER, Maroney SA, Martinez ND, Wickens MP, Mast AE. Translation of human tissue factor pathway inhibitor-β mRNA is controlled by alternative splicing within the 5' untranslated region. Arterioscler Thromb Vasc Biol 2013; 34:187-95. [PMID: 24233486 DOI: 10.1161/atvbaha.113.302660] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVE Tissue factor pathway inhibitor (TFPI) blocks the initiation of coagulation by inhibiting TF-activated factor VII, activated factor X, and early prothrombinase. Humans produce two 3' splice variants, TFPIα and TFPIβ, which are differentially expressed in endothelial cells and platelets and possess distinct structural features affecting their inhibitory function. TFPI also undergoes alternative splicing of exon 2 within its 5' untranslated region. The role of exon 2 splicing in translational regulation of human TFPI isoform expression is investigated. APPROACH AND RESULTS Exon 2 splicing occurs in TFPIα and TFPIβ transcripts. Human tissue mRNA analysis uncovered a wide variability of exon 2 expression. Polysome analysis revealed a repressive effect of exon 2 on TFPIβ translation but not on TFPIα. Luciferase reporter assays further exposed strong translational repression of TFPIβ (90%) but not TFPIα. Use of a Morpholino to remove exon 2 from TFPI mRNA increased cell surface expression of endogenous TFPIβ. Exon 2 also repressed luciferase production (80% to 90%) when paired with the β-actin 3' untranslated region, suggesting that it is a general translational negative element whose effects are overcome by the TFPIα 3' untranslated region. CONCLUSIONS Exon 2 is a molecular switch that prevents translation of TFPIβ. This is the first demonstration of a 5' untranslated region alternative splicing event that alters translation of isoforms produced via independent 3' splicing events within the same gene. Therefore, it represents a previously unrecognized mechanism for translational control of protein expression. Differential expression of exon 2 denotes a mechanism to provide temporal and tissue-specific regulation of TFPIβ-mediated anticoagulant activity.
Collapse
Affiliation(s)
- Paul E R Ellery
- From the Blood Research Institute, Blood Center of Wisconsin, Milwaukee (P.E.R.E., S.A.M., N.D.M., A.E.M.); Department of Biochemistry, University of Wisconsin-Madison (M.P.W.); and Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee (A.E.M.)
| | | | | | | | | |
Collapse
|
21
|
Alternative 5' untranslated regions are involved in expression regulation of human heme oxygenase-1. PLoS One 2013; 8:e77224. [PMID: 24098580 PMCID: PMC3788786 DOI: 10.1371/journal.pone.0077224] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2013] [Accepted: 09/02/2013] [Indexed: 01/19/2023] Open
Abstract
The single nucleotide polymorphism rs2071746 and a (GT)n microsatellite within the human gene encoding heme oxygenase-1 (HMOX1) are associated with incidence or outcome in a variety of diseases. Most of these associations involve either release of heme or oxidative stress. Both polymorphisms are localized in the promoter region, but previously reported correlations with heme oxygenase-1 expression remain not coherent. This ambiguity suggests a more complex organization of the 5’ gene region which we sought to investigate more fully. We evaluated the 5‘ end of HMOX1 and found a novel first exon 1a placing the two previously reported polymorphisms in intronic or exonic positions within the 5’ untranslated region respectively. Expression of exon 1a can be induced in HepG2 hepatoma cells by hemin and is a repressor of heme oxygenase-1 translation as shown by luciferase reporter assays. Moreover, minigene approaches revealed that the quantitative outcome of alternative splicing within the 5’ untranslated region is affected by the (GT)n microsatellite. This data supporting an extended HMOX1 gene model and provide further insights into expression regulation of heme oxygenase-1. Alternative splicing within the HMOX1 5' untranslated region contributes to translational regulation and is a mechanistic feature involved in the interplay between genetic variations, heme oxygenase-1 expression and disease outcome.
Collapse
|
22
|
Alternative splicing of mutually exclusive exons—A review. Biosystems 2013; 114:31-8. [DOI: 10.1016/j.biosystems.2013.07.003] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2013] [Accepted: 07/03/2013] [Indexed: 12/16/2022]
|
23
|
Leviatan N, Alkan N, Leshkowitz D, Fluhr R. Genome-wide survey of cold stress regulated alternative splicing in Arabidopsis thaliana with tiling microarray. PLoS One 2013; 8:e66511. [PMID: 23776682 PMCID: PMC3679080 DOI: 10.1371/journal.pone.0066511] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2012] [Accepted: 05/10/2013] [Indexed: 11/19/2022] Open
Abstract
Alternative splicing plays a major role in expanding the potential informational content of eukaryotic genomes. It is an important post-transcriptional regulatory mechanism that can increase protein diversity and affect mRNA stability. Alternative splicing is often regulated in a tissue-specific and stress-responsive manner. Cold stress, which adversely affects plant growth and development, regulates the transcription and splicing of plant splicing factors. This can affect the pre-mRNA processing of many genes. To identify cold regulated alternative splicing we applied Affymetrix Arabidopsis tiling arrays to survey the transcriptome under cold treatment conditions. A novel algorithm was used for detection of statistically relevant changes in intron expression within a transcript between control and cold growth conditions. A reverse transcription polymerase chain reaction (RT-PCR) analysis of a number of randomly selected genes confirmed the changes in splicing patterns under cold stress predicted by tiling array. Our analysis revealed new types of cold responsive genes. While their expression level remains relatively unchanged under cold stress their splicing pattern shows detectable changes in the relative abundance of isoforms. The majority of cold regulated alternative splicing introduced a premature termination codon (PTC) into the transcripts creating potential targets for degradation by the nonsense mediated mRNA decay (NMD) process. A number of these genes were analyzed in NMD-defective mutants by RT-PCR and shown to evade NMD. This may result in new and truncated proteins with altered functions or dominant negative effects. The results indicate that cold affects both quantitative and qualitative aspects of gene expression.
Collapse
Affiliation(s)
- Noam Leviatan
- Department of Plant Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Noam Alkan
- Department of Plant Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Dena Leshkowitz
- Bioinformatics Unit, Biological Services Department, Weizmann Institute of Science, Rehovot, Israel
| | - Robert Fluhr
- Department of Plant Sciences, Weizmann Institute of Science, Rehovot, Israel
- * E-mail:
| |
Collapse
|
24
|
Carvalho RF, Feijão CV, Duque P. On the physiological significance of alternative splicing events in higher plants. PROTOPLASMA 2013; 250:639-50. [PMID: 22961303 DOI: 10.1007/s00709-012-0448-9] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2012] [Accepted: 08/16/2012] [Indexed: 05/05/2023]
Abstract
Alternative splicing, which generates multiple transcripts from the same gene and potentially different protein isoforms, is a key posttranscriptional regulatory mechanism for expanding proteomic diversity and functional complexity in higher eukaryotes. The most recent estimates, based on whole transcriptome sequencing, indicate that about 95 % of human and 60 % of Arabidopsis multi-exon genes undergo alternative splicing, suggesting important roles for this mechanism in biological processes. However, while the misregulation of alternative splicing has been associated with many human diseases, its biological relevance in plant systems is just beginning to unfold. We review here the few plant genes for which the production of multiple splice isoforms has been reported to have a clear in vivo functional impact. These case studies implicate alternative splicing in the control of a wide range of physiological and developmental processes, including photosynthetic and starch metabolism, hormone signaling, seed germination, root growth and flowering, as well as in biotic and abiotic stress responses. Future functional characterization of alternative splicing events and identification of the transcripts targeted by major regulators of this versatile means of modulating gene expression should uncover the breadth of its physiological significance in higher plants.
Collapse
Affiliation(s)
- Raquel F Carvalho
- Instituto Gulbenkian de Ciência, Rua da Quinta Grande 6, 2780-156, Oeiras, Portugal
| | | | | |
Collapse
|
25
|
Hassan MA, Melo MB, Haas B, Jensen KDC, Saeij JPJ. De novo reconstruction of the Toxoplasma gondii transcriptome improves on the current genome annotation and reveals alternatively spliced transcripts and putative long non-coding RNAs. BMC Genomics 2012; 13:696. [PMID: 23231500 PMCID: PMC3543268 DOI: 10.1186/1471-2164-13-696] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2012] [Accepted: 12/04/2012] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND Accurate gene model predictions and annotation of alternative splicing events are imperative for genomic studies in organisms that contain genes with multiple exons. Currently most gene models for the intracellular parasite, Toxoplasma gondii, are based on computer model predictions without cDNA sequence verification. Additionally, the nature and extent of alternative splicing in Toxoplasma gondii is unknown. In this study, we used de novo transcript assembly and the published type II (ME49) genomic sequence to quantify the extent of alternative splicing in Toxoplasma and to improve the current Toxoplasma gene annotations. RESULTS We used high-throughput RNA-sequencing data to assemble full-length transcripts, independently of a reference genome, followed by gene annotation based on the ME49 genome. We assembled 13,533 transcripts overlapping with known ME49 genes in ToxoDB and then used this set to; a) improve the annotation in the untranslated regions of ToxoDB genes, b) identify novel exons within protein-coding ToxoDB genes, and c) report on 50 previously unidentified alternatively spliced transcripts. Additionally, we assembled a set of 2,930 transcripts not overlapping with any known ME49 genes in ToxoDB. From this set, we have identified 118 new ME49 genes, 18 novel Toxoplasma genes, and putative non-coding RNAs. CONCLUSION RNA-seq data and de novo transcript assembly provide a robust way to update incompletely annotated genomes, like the Toxoplasma genome. We have used RNA-seq to improve the annotation of several Toxoplasma genes, identify alternatively spliced genes, novel genes, novel exons, and putative non-coding RNAs.
Collapse
Affiliation(s)
- Musa A Hassan
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | | | | | | | | |
Collapse
|
26
|
Seemann SE, Sunkin SM, Hawrylycz MJ, Ruzzo WL, Gorodkin J. Transcripts with in silico predicted RNA structure are enriched everywhere in the mouse brain. BMC Genomics 2012; 13:214. [PMID: 22651826 PMCID: PMC3464589 DOI: 10.1186/1471-2164-13-214] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2011] [Accepted: 05/31/2012] [Indexed: 01/24/2023] Open
Abstract
Background Post-transcriptional control of gene expression is mostly conducted by specific elements in untranslated regions (UTRs) of mRNAs, in collaboration with specific binding proteins and RNAs. In several well characterized cases, these RNA elements are known to form stable secondary structures. RNA secondary structures also may have major functional implications for long noncoding RNAs (lncRNAs). Recent transcriptional data has indicated the importance of lncRNAs in brain development and function. However, no methodical efforts to investigate this have been undertaken. Here, we aim to systematically analyze the potential for RNA structure in brain-expressed transcripts. Results By comprehensive spatial expression analysis of the adult mouse in situ hybridization data of the Allen Mouse Brain Atlas, we show that transcripts (coding as well as non-coding) associated with in silico predicted structured probes are highly and significantly enriched in almost all analyzed brain regions. Functional implications of these RNA structures and their role in the brain are discussed in detail along with specific examples. We observe that mRNAs with a structure prediction in their UTRs are enriched for binding, transport and localization gene ontology categories. In addition, after manual examination we observe agreement between RNA binding protein interaction sites near the 3’ UTR structures and correlated expression patterns. Conclusions Our results show a potential use for RNA structures in expressed coding as well as noncoding transcripts in the adult mouse brain, and describe the role of structured RNAs in the context of intracellular signaling pathways and regulatory networks. Based on this data we hypothesize that RNA structure is widely involved in transcriptional and translational regulatory mechanisms in the brain and ultimately plays a role in brain function.
Collapse
Affiliation(s)
- Stefan E Seemann
- Center for non-coding RNA in Technology and Health, University of Copenhagen, Denmark
| | | | | | | | | |
Collapse
|
27
|
Jeyapalan Z, Yang BB. The Non-coding 3′UTR of CD44 Induces Metastasis by Regulating Extracellular Matrix Functions. J Cell Sci 2012. [DOI: 10.1242/jcs.100818] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The importance of non-coding RNA transcripts in regulating microRNA (miRNA) functions, especially the 3′ untranslated region (UTR), has been revealed in recent years. Genes encoding the extracellular matrix normally produce large mRNA transcripts including the 3′UTR. How these large transcripts affect miRNA functions and how miRNAs modulate the extracellular matrix (ECM) protein expression are largely unknown. Here, we demonstrate that the over-expression of the CD44 3′UTR results in enhanced cell motility, invasion and cell adhesion in human breast carcinoma cell line MDA-MB-231. Furthermore, we found that expression of the CD44 3′UTR enhances metastasis in vivo. We hypothesized that the increased expression of the CD44 3′UTR affected miRNA binding and modulated synthesis of the extracellular matrix. Computational analysis indicated that miRNAs that interact with the CD44 3′UTR also have binding sites in other matrix encoding mRNA 3′UTRs, including collagen type 1α1 (Col1α1) repressed by miR-328 and fibronectin type 1 (FN1) repressed by miR-512-3p, miR-491 and miR-671. Protein analysis demonstrated that expression of CD44, Col1α1, and FN1 were synergistically up-regulated in vitro and in vivo upon transfection of the CD44 3′UTR. The non-coding 3′UTR of CD44 interacts with multiple miRNAs that target extracellular matrix properties and thus can be used to antagonize miRNA activities.
Collapse
|
28
|
Keays MC, Barker D, Wicker-Thomas C, Ritchie MG. Signatures of selection and sex-specific expression variation of a novel duplicate during the evolution of the Drosophila desaturase gene family. Mol Ecol 2011; 20:3617-30. [PMID: 21801259 DOI: 10.1111/j.1365-294x.2011.05208.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The tempo and mode of evolution of loci with a large effect on adaptation and reproductive isolation will influence the rate of evolutionary divergence and speciation. Desaturase loci are involved in key biochemical changes in long-chain fatty acids. In insects, these have been shown to influence adaptation to starvation or desiccation resistance and in some cases act as important pheromones. The desaturase gene family of Drosophila is known to have evolved by gene duplication and diversification, and at least one locus shows rapid evolution of sex-specific expression variation. Here, we examine the evolution of the gene family in species representing the Drosophila phylogeny. We find that the family includes more loci than have been previously described. Most are represented as single-copy loci, but we also find additional examples of duplications in loci which influence pheromone blends. Most loci show patterns of variation associated with purifying selection, but there are strong signatures of diversifying selection in new duplicates. In the case of a new duplicate of desat1 in the obscura group species, we show that strong selection on the coding sequence is associated with the evolution of sex-specific expression variation. It seems likely that both sexual selection and ecological adaptation have influenced the evolution of this gene family in Drosophila.
Collapse
Affiliation(s)
- Maria C Keays
- Centre for Evolution, Genes and Genomics, School of Biology, University of St. Andrews, St. Andrews, Fife, UK
| | | | | | | |
Collapse
|
29
|
Evolution of exon-intron structure and alternative splicing. PLoS One 2011; 6:e18055. [PMID: 21464961 PMCID: PMC3064661 DOI: 10.1371/journal.pone.0018055] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2010] [Accepted: 02/19/2011] [Indexed: 12/22/2022] Open
Abstract
Despite significant advances in high-throughput DNA sequencing, many important
species remain understudied at the genome level. In this study we addressed a
question of what can be predicted about the genome-wide characteristics of less
studied species, based on the genomic data from completely sequenced species.
Using NCBI databases we performed a comparative genome-wide analysis of such
characteristics as alternative splicing, number of genes, gene products and
exons in 36 completely sequenced model species. We created statistical
regression models to fit these data and applied them to loblolly pine
(Pinus taeda L.), an example of an important species whose
genome has not been completely sequenced yet. Using these models, the
genome-wide characteristics, such as total number of genes and exons, can be
roughly predicted based on parameters estimated from available limited genomic
data, e.g. exon length and exon/gene ratio.
Collapse
|
30
|
Hunt AG. RNA regulatory elements and polyadenylation in plants. FRONTIERS IN PLANT SCIENCE 2011; 2:109. [PMID: 22629268 PMCID: PMC3355548 DOI: 10.3389/fpls.2011.00109] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2011] [Accepted: 12/17/2011] [Indexed: 05/20/2023]
Abstract
Alternative poly(A) site choice (also known as alternative polyadenylation, or APA) has the potential to affect gene expression in qualitative and quantitative ways. APA may affect as many as 82% of all expressed genes in a plant. The consequences of APA include the generation of transcripts with differing 3'-UTRs (and thus differing regulatory potential) and of transcripts with differing protein-coding potential. Genome-wide studies of possible APA suggest a linkage with pre-mRNA splicing, and indicate a coincidence of and perhaps cooperation between RNA regulatory elements that affect splicing efficiency and the recognition of novel intronic poly(A) sites. These studies also raise the possibility of the existence of a novel class of polyadenylation-related cis elements that are distinct from the well-characterized plant polyadenylation signal. Many potential APA events, however, have not been associated with identifiable cis elements. The present state of the field reveals a broad scope of APA, and also numerous opportunities for research into mechanisms that govern both choice and regulation of poly(A) sites in plants.
Collapse
Affiliation(s)
- Arthur G. Hunt
- Department of Plant and Soil Sciences, University of KentuckyLexington, KY, USA
- *Correspondence: Arthur G. Hunt, Department of Plant and Soil Sciences, University of Kentucky, Lexington, KY 40546-0312, USA. e-mail:
| |
Collapse
|
31
|
Jeyapalan Z, Deng Z, Shatseva T, Fang L, He C, Yang BB. Expression of CD44 3'-untranslated region regulates endogenous microRNA functions in tumorigenesis and angiogenesis. Nucleic Acids Res 2010; 39:3026-41. [PMID: 21149267 PMCID: PMC3082902 DOI: 10.1093/nar/gkq1003] [Citation(s) in RCA: 164] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
The non-coding 3'-untranslated region (UTR) plays an important role in the regulation of microRNA (miRNA) functions, since it can bind and inactivate multiple miRNAs. Here, we show the 3'-UTR of CD44 is able to antagonize cytoplasmic miRNAs, and result in the increased translation of CD44 and downstream target mRNA, CDC42. A series of cell function assays in the human breast cancer cell line, MT-1, have shown that the CD44 3'-UTR inhibits proliferation, colony formation and tumor growth. Furthermore, it modulated endothelial cell activities, favored angiogenesis, induced tumor cell apoptosis and increased sensitivity to Docetaxel. These results are due to the interaction of the CD44 3'-UTR with multiple miRNAs. Computational algorithms have predicted three miRNAs, miR-216a, miR-330 and miR-608, can bind to both the CD44 and CDC42 3'-UTRs. This was confirmed with luciferase assays, western blotting and immunohistochemical staining and correlated with a series of siRNA assays. Thus, the non-coding CD44 3'-UTR serves as a competitor for miRNA binding and subsequently inactivates miRNA functions, by freeing the target mRNAs from being repressed.
Collapse
Affiliation(s)
- Zina Jeyapalan
- Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, Toronto M4N 3M5, Canada
| | | | | | | | | | | |
Collapse
|
32
|
Zhang Z, Stamm S. Analysis of mutations that influence pre-mRNA splicing. METHODS IN MOLECULAR BIOLOGY (CLIFTON, N.J.) 2010; 703:137-60. [PMID: 21125488 DOI: 10.1007/978-1-59745-248-9_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
A rapidly increasing number of human diseases are now recognized as being caused by the selection of wrong splice sites. In most cases, these changes in alternative splice site selection are due to single nucleotide exchanges in splicing regulatory elements. This chapter describes the use of bioinformatics tools to predict the influence of a mutation on alternative pre-mRNA splicing and the experimental testing of these predictions. The bioinformatic analysis determines the influence of a mutation on splicing enhancers and silencers, splice sites and RNA secondary structures. This approach generates hypotheses that are tested using splicing reporter constructs, which are then analyzed in transfection assays. We describe a recombination-based system that allows for the generation of splicing reporter constructs in the first week and their subsequent analysis in the second week.
Collapse
Affiliation(s)
- Zhaiyi Zhang
- Department of Molecular and Cellular Biochemistry, Biomedical Biological Sciences Research Building, College of Medicine, University of Kentucky, Lexington, KY, USA.
| | | |
Collapse
|
33
|
Genome-wide survey of alternative splicing in the grass Brachypodium distachyon: a emerging model biosystem for plant functional genomics. Biotechnol Lett 2010; 33:629-36. [PMID: 21107652 DOI: 10.1007/s10529-010-0475-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2010] [Accepted: 11/09/2010] [Indexed: 10/18/2022]
Abstract
A draft sequence of the genome of Brachypodium distachyon, the emerging grass model, was recently released. This represents a unique opportunity to determine its functional diversity compared to the genomes of other model species. Using homology mapping of assembled expressed sequence tags with chromosome scale pseudomolecules, we identified 128 alternative splicing events in B. distachyon. Our study identified that retention of introns is the major type of alternative splicing events (53%) in this plant and highlights the prevalence of splicing site recognition for definition of introns in plants. We have analyzed the compositional profiles of exon-intron junctions by base-pairing nucleotides with U1 snRNA which serves as a model for describing the possibility of sequence conservation. The alternative splicing isoforms identified in this study are novel and represent one of the potentially biologically significant means by which B. distachyon controls the function of its genes. Our observations serve as a basis to understand alternative splicing events of cereal crops with more complex genomes, like wheat or barley.
Collapse
|
34
|
Dimon MT, Sorber K, DeRisi JL. HMMSplicer: a tool for efficient and sensitive discovery of known and novel splice junctions in RNA-Seq data. PLoS One 2010; 5:e13875. [PMID: 21079731 PMCID: PMC2975632 DOI: 10.1371/journal.pone.0013875] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2010] [Accepted: 09/16/2010] [Indexed: 02/01/2023] Open
Abstract
Background High-throughput sequencing of an organism's transcriptome, or RNA-Seq, is a valuable and versatile new strategy for capturing snapshots of gene expression. However, transcriptome sequencing creates a new class of alignment problem: mapping short reads that span exon-exon junctions back to the reference genome, especially in the case where a splice junction is previously unknown. Methodology/Principal Findings Here we introduce HMMSplicer, an accurate and efficient algorithm for discovering canonical and non-canonical splice junctions in short read datasets. HMMSplicer identifies more splice junctions than currently available algorithms when tested on publicly available A. thaliana, P. falciparum, and H. sapiens datasets without a reduction in specificity. Conclusions/Significance HMMSplicer was found to perform especially well in compact genomes and on genes with low expression levels, alternative splice isoforms, or non-canonical splice junctions. Because HHMSplicer does not rely on pre-built gene models, the products of inexact splicing are also detected. For H. sapiens, we find 3.6% of 3′ splice sites and 1.4% of 5′ splice sites are inexact, typically differing by 3 bases in either direction. In addition, HMMSplicer provides a score for every predicted junction allowing the user to set a threshold to tune false positive rates depending on the needs of the experiment. HMMSplicer is implemented in Python. Code and documentation are freely available at http://derisilab.ucsf.edu/software/hmmsplicer.
Collapse
Affiliation(s)
- Michelle T. Dimon
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, California, United States of America
- Biological and Medical Informatics Program, University of California San Francisco, San Francisco, California, United States of America
| | - Katherine Sorber
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, California, United States of America
| | - Joseph L. DeRisi
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, California, United States of America
- Howard Hughes Medical Institute, Bethesda, Maryland, United States of America
- * E-mail:
| |
Collapse
|
35
|
Li J, Ribeiro JMC, Yan G. Allelic gene structure variations in Anopheles gambiae mosquitoes. PLoS One 2010; 5:e10699. [PMID: 20502664 PMCID: PMC2873427 DOI: 10.1371/journal.pone.0010699] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2010] [Accepted: 04/22/2010] [Indexed: 11/19/2022] Open
Abstract
Background Allelic gene structure variations and alternative splicing are responsible for transcript structure variations. More than 75% of human genes have structural isoforms of transcripts, but to date few studies have been conducted to verify the alternative splicing systematically. Methodology/Principal Findings The present study used expressed sequence tags (ESTs) and EST tagged SNP patterns to examine the transcript structure variations resulting from allelic gene structure variations in the major human malaria vector, Anopheles gambiae. About 80% of 236,004 available A. gambiae ESTs were successfully aligned to A. gambiae reference genomes. More than 2,340 transcript structure variation events were detected. Because the current A. gambiae annotation is incomplete, we re-annotated the A. gambiae genome with an A. gambiae-specific gene model so that the effect of variations on gene coding could be better evaluated. A total of 15,962 genes were predicted. Among them, 3,873 were novel genes and 12,089 were previously identified genes. The gene completion rate improved from 60% to 84%. Based on EST support, 82.5% of gene structures were predicted correctly. In light of the new annotation, we found that ∼78% of transcript structure variations were located within the coding sequence (CDS) regions, and >65% of variations in the CDS regions have the same open-reading-frame. The association between transcript structure isoforms and SNPs indicated that more than 28% of transcript structure variation events were contributed by different gene alleles in A. gambiae. Conclusions/Significance We successfully expanded the A. gambiae genome annotation. We predicted and analyzed transcript structure variations in A. gambiae and found that allelic gene structure variation plays a major role in transcript diversity in this important human malaria vector.
Collapse
Affiliation(s)
- Jun Li
- Department of Microbiology, University of Minnesota, St. Paul, Minnesota, United States of America
- * E-mail:
| | - Jose M. C. Ribeiro
- Vector Biology Section, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Guiyun Yan
- Program in Public Health, University of California Irvine, Irvine, California, United States of America
| |
Collapse
|
36
|
Palaniswamy R, Teglund S, Lauth M, Zaphiropoulos PG, Shimokawa T. Genetic variations regulate alternative splicing in the 5' untranslated regions of the mouse glioma-associated oncogene 1, Gli1. BMC Mol Biol 2010; 11:32. [PMID: 20433698 PMCID: PMC2880320 DOI: 10.1186/1471-2199-11-32] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2009] [Accepted: 04/30/2010] [Indexed: 11/10/2022] Open
Abstract
Background Alternative splicing is one of the key mechanisms that generate biological diversity. Even though alternative splicing also occurs in the 5' and 3' untranslated regions (UTRs) of mRNAs, the understanding of the significance and the regulation of these variations is rather limited. Results We investigated 5' UTR mRNA variants of the mouse Gli1 oncogene, which is the terminal transcriptional effector of the Hedgehog (HH) signaling pathway. In addition to identifying novel transcription start sites, we demonstrated that the expression ratio of the Gli1 splice variants in the 5' UTR is regulated by the genotype of the mouse strain analyzed. The GT allele, which contains the consensus intronic dinucleotides at the 5' splice site of intron 1B, favors exon 1B inclusion, while the GC allele, having a weaker 5' splice site sequence, promotes exon 1B skipping. Moreover, the alternative Gli1 5' UTRs had an impact on translational capacity, with the shorter and the exon 1B-skipped mRNA variants being most effective. Conclusions Our findings implicate novel, genome-based mechanisms as regulators of the terminal events in the mouse HH signaling cascade.
Collapse
Affiliation(s)
- Ramesh Palaniswamy
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, SE-14157 Sweden
| | | | | | | | | |
Collapse
|
37
|
Chacko E, Ranganathan S. Genome-wide analysis of alternative splicing in cow: implications in bovine as a model for human diseases. BMC Genomics 2009; 10 Suppl 3:S11. [PMID: 19958474 PMCID: PMC2788363 DOI: 10.1186/1471-2164-10-s3-s11] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
BACKGROUND Alternative splicing (AS) is a primary mechanism of functional regulation in the human genome, with 60% to 80% of human genes being alternatively spliced. As part of the bovine genome annotation team, we have analysed 4567 bovine AS genes, compared to 16715 human and 16491 mouse AS genes, along with Gene Ontology (GO) analysis. We also analysed the two most important events, cassette exons and intron retention in 94 human disease genes and mapped them to the bovine orthologous genes. Of the 94 human inherited disease genes, a protein domain analysis was carried out for the transcript sequences of 12 human genes that have orthologous genes and have been characterised in cow. RESULTS Of the 21,755 bovine genes, 4,567 genes (21%) are alternatively spliced, compared to 16,715 (68%) in human and 16,491 (57%) in mouse. Gene-level analysis of the orthologous set suggested that bovine genes show fewer AS events compared to human and mouse genes. A detailed examination of cassette exons across human and cow for 94 human disease genes, suggested that a majority of cassette exons in human were present and constitutive in bovine as opposed to intron retention which exhibited 50% of the exons as present and 50% as absent in cow. We observed that AS plays a major role in disease implications in human through manipulations of essential/functional protein domains. It was also evident that majority of these 12 genes had conservation of all essential domains in their bovine orthologous counterpart, for these human diseases. CONCLUSION While alternative splicing has the potential to create many mRNA isoforms from a single gene, in cow the majority of genes generate two to three isoforms, compared to six in human and four in mouse. Our analyses demonstrated that a smaller number of bovine genes show greater transcript diversity. GO definitions for bovine AS genes provided 38% more functional information than currently available in the sequence database. Our protein domain analysis helped us verify the suitability of using bovine as a model for human diseases and also recognize the contribution of AS towards the disease phenotypes.
Collapse
Affiliation(s)
- Elsa Chacko
- Department of Chemistry and Biomolecular Sciences and ARC Centre of Excellence in Bioinformatics, Macquarie University, Sydney, NSW 2109, Australia.
| | | |
Collapse
|
38
|
Kuroyanagi H. Fox-1 family of RNA-binding proteins. Cell Mol Life Sci 2009; 66:3895-907. [PMID: 19688295 PMCID: PMC2777236 DOI: 10.1007/s00018-009-0120-5] [Citation(s) in RCA: 144] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2009] [Revised: 07/14/2009] [Accepted: 07/24/2009] [Indexed: 01/04/2023]
Abstract
The Fox-1 family of RNA-binding proteins are evolutionarily conserved regulators of tissue-specific alternative splicing in metazoans. The Fox-1 family specifically recognizes the (U)GCAUG stretch in regulated exons or in flanking introns, and either promotes or represses target exons. Recent unbiased bioinformatics analyses of alternatively spliced exons and comparison of various vertebrate genomes identified the (U)GCAUG stretch as a highly conserved and widely distributed element enriched in intronic regions surrounding exons with altered inclusion in muscle, heart, and brain, consistent with specific expression of Fox-1 and Fox-2 in these tissues. Global identification of Fox-2 target RNAs in living cells revealed that many of the Fox-2 target genes themselves encode splicing regulators. Further systematic elucidation of target genes of the Fox-1 family and other splicing regulators in various tissues will lead to a comprehensive understanding of splicing regulatory networks.
Collapse
Affiliation(s)
- Hidehito Kuroyanagi
- Laboratory of Gene Expression, Graduate School of Biomedical Science, Tokyo Medical and Dental University, Tokyo 113-8510, Japan.
| |
Collapse
|
39
|
Müller K, Carstens AC, Linkies A, Torres MA, Leubner-Metzger G. The NADPH-oxidase AtrbohB plays a role in Arabidopsis seed after-ripening. THE NEW PHYTOLOGIST 2009; 184:885-97. [PMID: 19761445 DOI: 10.1111/j.1469-8137.2009.03005.x] [Citation(s) in RCA: 137] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
*Seeds can enter a state of dormancy, in which they do not germinate under optimal environmental conditions. Dormancy can be broken during seed after-ripening in the low-hydrated state. *By screening enhancer trap lines of Arabidopsis, we identified a role for the NADPH-oxidase AtrbohB in after-ripening. Semiquantitative PCR was used to investigate AtrbohB transcripts in seeds. These methods were complemented with a pharmacological approach using the inhibitor diphenylene iodonium chloride (DPI) and biomechanical measurements in the Brassicaceae seed model system cress (Lepidium sativum) as well as protein carbonylation assays. *atrbohB mutants fail to after-ripen and show reduced protein oxidation. AtrbohB pre-mRNA is alternatively spliced in seeds in a hormonally and developmentally regulated manner. AtrbohB is a major producer of superoxide in germinating Arabidopsis seeds, and inhibition of superoxide production by diphenylene iodonium (DPI) leads to a delay in Arabidopsis and cress seed germination and cress endosperm weakening. *Reactive oxygen species produced by AtrbohB during after-ripening could act via abscisic acid (ABA) signalling or post-translational protein modifications. Alternative splicing could be a general mechanism in after-ripening: by altered processing of stored pre-mRNAs seeds could react quickly to environmental changes.
Collapse
Affiliation(s)
- Kerstin Müller
- Faculty of Biology, Institute for Biology II, Botany/Plant Physiology, University of Freiburg, Freiburg, Germany
| | | | | | | | | |
Collapse
|
40
|
Sammeth M. Complete alternative splicing events are bubbles in splicing graphs. J Comput Biol 2009; 16:1117-40. [PMID: 19689216 DOI: 10.1089/cmb.2009.0108] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Eukaryotic splicing structures are known to involve a high degree of alternative forms derived from a premature transcript by alternative splicing (AS). With the advent of new sequencing technologies, evidence for new splice forms becomes increasingly available-bit by bit revealing that the true splicing diversity of "AS events" often comprises more than two alternatives and therefore cannot be sufficiently described by pairwise comparisons as conducted in analyzes hitherto. Especially, I emphasize on "complete" AS events which include all hitherto known variants of a splicing variation. Challenges emerge from the richness of data (millions of transcripts) and artifacts introduced during the technical process of obtaining transcript sequences ("noise")-especially when dealing with single-read sequences known as expressed sequence tags (ESTs). Herein, I describe a novel method to efficiently predict AS events in different resolutions ("dimensions") from transcript annotations that allows for combination of fragmented EST data with full-length cDNAs and can cope with large datasets containing noise. At the doorstep of many new splice forms becoming available by novel high-throughput sequencing technologies, the presented method helps to dynamically update AS databases. Applying this method to estimate the real complexity of alternative splicing, I found in human and murine annotations thousands of novel AS events that either have been disregarded or mischaracterized in earlier works. The growth of evidence for such events suggests that the number still keeps climbing. When considering complete events, the majority of exons that are observed as "mutually exclusive" in pairwise comparisons in fact involves at least one other alternative splice form that disagrees with their mutual exclusion. Similar observations also hold for the alternative skipping of two subsequent exons. Results suggest that the systematical analysis of complete AS events on large scale provides subtle insights in the mechanisms that drive (alternative) splicing.
Collapse
Affiliation(s)
- Michael Sammeth
- Bioinformatics and Genomics, Centre for Genomic Regulation (CRG) , Barcelona, Spain.
| |
Collapse
|
41
|
The 5' leader of the mRNA encoding the marek's disease virus serotype 1 pp14 protein contains an intronic internal ribosome entry site with allosteric properties. J Virol 2009; 83:12769-78. [PMID: 19793814 DOI: 10.1128/jvi.01010-09] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
We demonstrate the presence of a functional internal ribosome entry site (IRES) within the 5' leader (designated 5L) from a variant of bicistronic mRNAs that encode the pp14 and RLORF9 proteins from Marek's disease virus (MDV) serotype 1. Transcribed as a 1.8-kb family of immediate-early genes, the mature bicistronic mRNAs have variable 5' leader sequences due to alternative splicing or promoter usage. Consequently, the presence or absence of the 5L IRES in the mRNA dictates the mode of pp14 translation and leads to the production of two pp14 isoforms that differ in their N-terminal sequences. Real-time reverse transcription-quantitative PCR indicates that the mRNA variants with the 5L IRES is two to three times more abundant in MDV-infected and transformed cells than the mRNA variants lacking the 5L IRES. A common feature to all members of the 1.8-kb family of transcripts is the presence of an intercistronic IRES that we have previously shown to control the translation of the second open reading frame (i.e., RLORF9). Investigation of the two IRESs residing in the same bicistronic reporter mRNA revealed functional synergism for translation efficiency. In analogy with allosteric models in proteins, we propose IRES allostery to describe such a novel phenomenon. The functional implications of our findings are discussed in relation to host-virus interactions and translational control.
Collapse
|
42
|
AspAlt: A tool for inter-database, inter-genomic and user-specific comparative analysis of alternative transcription and alternative splicing in 46 eukaryotes. Genomics 2009; 94:48-54. [DOI: 10.1016/j.ygeno.2009.02.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2008] [Revised: 12/16/2008] [Accepted: 02/21/2009] [Indexed: 12/22/2022]
|
43
|
Rasmussen MH, Wang B, Wabl M, Nielsen AL, Pedersen FS. Activation of alternative Jdp2 promoters and functional protein isoforms in T-cell lymphomas by retroviral insertion mutagenesis. Nucleic Acids Res 2009; 37:4657-71. [PMID: 19502497 PMCID: PMC2724284 DOI: 10.1093/nar/gkp469] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Retroviral insertional mutagenesis has been instrumental for the identification of genes important in cancer development. The molecular mechanisms involved in retroviral-mediated activation of proto-oncogenes influence the distribution of insertions within specific regions during tumorigenesis and hence may point to novel gene structures. From a retroviral tagging screen on tumors of 1767 SL3-3 MLV-infected BALB/c mice, intron 2 of the AP-1 repressor Jdp2 locus was found frequently targeted by proviruses resulting in upregulation of non-canonical RNA subspecies. We identified several promoter regions within 1000 bp upstream of exon 3 that allowed for the production of Jdp2 protein isoforms lacking the histone acetylase inhibitory domain INHAT present in canonical Jdp2. The novel Jdp2 isoforms localized to the nucleus and over-expression in murine fibroblast cells induced cell death similar to canonic Jdp2. When expressed in the context of oncogenic NRAS both full length Jdp2 and the shorter isoforms increased anchorage-independent growth. Our results demonstrate a biological function of Jdp2 lacking the INHAT domain and suggest a post-genomic application for the use of retroviral tagging data in identifying new gene products with a potential role in tumorigenesis.
Collapse
|
44
|
Resch AM, Ogurtsov AY, Rogozin IB, Shabalina SA, Koonin EV. Evolution of alternative and constitutive regions of mammalian 5'UTRs. BMC Genomics 2009; 10:162. [PMID: 19371439 PMCID: PMC2674463 DOI: 10.1186/1471-2164-10-162] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2009] [Accepted: 04/16/2009] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Alternative splicing (AS) in protein-coding sequences has emerged as an important mechanism of regulation and diversification of animal gene function. By contrast, the extent and roles of alternative events including AS and alternative transcription initiation (ATI) within the 5'-untranslated regions (5'UTRs) of mammalian genes are not well characterized. RESULTS We evaluated the abundance, conservation and evolution of putative regulatory control elements, namely, upstream start codons (uAUGs) and open reading frames (uORFs), in the 5'UTRs of human and mouse genes impacted by alternative events. For genes with alternative 5'UTRs, the fraction of alternative sequences (those present in a subset of the transcripts) is much greater than that in the corresponding coding sequence, conceivably, because 5'UTRs are not bound by constraints on protein structure that limit AS in coding regions. Alternative regions of mammalian 5'UTRs evolve faster and are subject to a weaker purifying selection than constitutive portions. This relatively weak selection results in over-abundance of uAUGs and uORFs in the alternative regions of 5'UTRs compared to constitutive regions. Nevertheless, even in alternative regions, uORFs evolve under a stronger selection than the rest of the sequences, indicating that some of the uORFs are conserved regulatory elements; some of the non-conserved uORFs could be involved in species-specific regulation. CONCLUSION The findings on the evolution and selection in alternative and constitutive regions presented here are consistent with the hypothesis that alternative events, namely, AS and ATI, in 5'UTRs of mammalian genes are likely to contribute to the regulation of translation.
Collapse
Affiliation(s)
- Alissa M Resch
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland 20894, USA.
| | | | | | | | | |
Collapse
|
45
|
Hazen SP, Naef F, Quisel T, Gendron JM, Chen H, Ecker JR, Borevitz JO, Kay SA. Exploring the transcriptional landscape of plant circadian rhythms using genome tiling arrays. Genome Biol 2009; 10:R17. [PMID: 19210792 PMCID: PMC2688271 DOI: 10.1186/gb-2009-10-2-r17] [Citation(s) in RCA: 92] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2008] [Revised: 12/09/2008] [Accepted: 02/11/2009] [Indexed: 11/20/2022] Open
Abstract
Whole genome tiling array analysis reveals the extent of transcriptional oscillation for both coding and non-coding genes in regulating Arabidopsis thaliana circadian rhythms Background Organisms are able to anticipate changes in the daily environment with an internal oscillator know as the circadian clock. Transcription is an important mechanism in maintaining these oscillations. Here we explore, using whole genome tiling arrays, the extent of rhythmic expression patterns genome-wide, with an unbiased analysis of coding and noncoding regions of the Arabidopsis genome. Results As in previous studies, we detected a circadian rhythm for approximately 25% of the protein coding genes in the genome. With an unbiased interrogation of the genome, extensive rhythmic introns were detected predominantly in phase with adjacent rhythmic exons, creating a transcript that, if translated, would be expected to produce a truncated protein. In some cases, such as the MYB transcription factor AT2G20400, an intron was found to exhibit a circadian rhythm while the remainder of the transcript was otherwise arrhythmic. In addition to several known noncoding transcripts, including microRNA, trans-acting short interfering RNA, and small nucleolar RNA, greater than one thousand intergenic regions were detected as circadian clock regulated, many of which have no predicted function, either coding or noncoding. Nearly 7% of the protein coding genes produced rhythmic antisense transcripts, often for genes whose sense strand was not similarly rhythmic. Conclusions This study revealed widespread circadian clock regulation of the Arabidopsis genome extending well beyond the protein coding transcripts measured to date. This suggests a greater level of structural and temporal dynamics than previously known.
Collapse
Affiliation(s)
- Samuel P Hazen
- Section of Cell and Developmental Biology, University of California San Diego, Gilman Drive, La Jolla, CA 92093-0130, USA
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Molecular evolution and diversification of plant cysteine proteinase inhibitors: New insights after the poplar genome. Mol Phylogenet Evol 2008; 49:349-55. [DOI: 10.1016/j.ympev.2008.04.025] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2008] [Accepted: 04/12/2008] [Indexed: 12/24/2022]
|
47
|
A general definition and nomenclature for alternative splicing events. PLoS Comput Biol 2008; 4:e1000147. [PMID: 18688268 PMCID: PMC2467475 DOI: 10.1371/journal.pcbi.1000147] [Citation(s) in RCA: 175] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2007] [Accepted: 07/01/2008] [Indexed: 11/19/2022] Open
Abstract
Understanding the molecular mechanisms responsible for the regulation of the transcriptome present in eukaryotic cells is one of the most challenging tasks in the postgenomic era. In this regard, alternative splicing (AS) is a key phenomenon contributing to the production of different mature transcripts from the same primary RNA sequence. As a plethora of different transcript forms is available in databases, a first step to uncover the biology that drives AS is to identify the different types of reflected splicing variation. In this work, we present a general definition of the AS event along with a notation system that involves the relative positions of the splice sites. This nomenclature univocally and dynamically assigns a specific “AS code” to every possible pattern of splicing variation. On the basis of this definition and the corresponding codes, we have developed a computational tool (AStalavista) that automatically characterizes the complete landscape of AS events in a given transcript annotation of a genome, thus providing a platform to investigate the transcriptome diversity across genes, chromosomes, and species. Our analysis reveals that a substantial part—in human more than a quarter—of the observed splicing variations are ignored in common classification pipelines. We have used AStalavista to investigate and to compare the AS landscape of different reference annotation sets in human and in other metazoan species and found that proportions of AS events change substantially depending on the annotation protocol, species-specific attributes, and coding constraints acting on the transcripts. The AStalavista system therefore provides a general framework to conduct specific studies investigating the occurrence, impact, and regulation of AS. The genome sequence is said to be an organism's blueprint, a set of instructions driving the organism's biology. The unfolding of these instructions—the so-called genes—is initiated by the transcription of DNA into RNA molecules, which subsequently are processed before they can take their functional role. During this processing step, initially identical RNA molecules may result in different products through a process known as alternative splicing (AS). AS therefore allows for widening the diversity from the limited repertoire of genes, and it is often postulated as an explanation for the apparent paradox that complex and simple organisms resemble in their number of genes; it characterizes species, individuals, and developmental and cellular conditions. Comparing the differences of AS products between cells may help to reveal the broad molecular basis underlying phenotypic differences—for instance, between a cancer and a normal cell. An obstacle for such comparisons has been that, so far, no paradigm existed to delineate each single quantum of AS, so-called AS events. Here, we describe a possibility of exhaustively decomposing AS complements into qualitatively different groups of events and a nomenclature to unequivocally denote them. This typological catalogue of AS events along with their observed frequencies represent the AS landscape, and we propose a procedure to automatically identify such landscapes. We use it to describe the human AS landscape and to investigate how it has changed throughout evolution.
Collapse
|
48
|
Barbazuk WB, Fu Y, McGinnis KM. Genome-wide analyses of alternative splicing in plants: opportunities and challenges. Genome Res 2008; 18:1381-92. [PMID: 18669480 DOI: 10.1101/gr.053678.106] [Citation(s) in RCA: 255] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Alternative splicing (AS) creates multiple mRNA transcripts from a single gene. While AS is known to contribute to gene regulation and proteome diversity in animals, the study of its importance in plants is in its early stages. However, recently available plant genome and transcript sequence data sets are enabling a global analysis of AS in many plant species. Results of genome analysis have revealed differences between animals and plants in the frequency of alternative splicing. The proportion of plant genes that have one or more alternative transcript isoforms is approximately 20%, indicating that AS in plants is not rare, although this rate is approximately one-third of that observed in human. The majority of plant AS events have not been functionally characterized, but evidence suggests that AS participates in important plant functions, including stress response, and may impact domestication and trait selection. The increasing availability of plant genome sequence data will enable larger comparative analyses that will identify functionally important plant AS events based on their evolutionary conservation, determine the influence of genome duplication on the evolution of AS, and discover plant-specific cis-elements that regulate AS. This review summarizes recent analyses of AS in plants, discusses the importance of further analysis, and suggests directions for future efforts.
Collapse
Affiliation(s)
- W Brad Barbazuk
- Donald Danforth Plant Science Center, St. Louis, Missouri 63132, USA.
| | | | | |
Collapse
|
49
|
Baek JM, Han P, Iandolino A, Cook DR. Characterization and comparison of intron structure and alternative splicing between Medicago truncatula, Populus trichocarpa, Arabidopsis and rice. PLANT MOLECULAR BIOLOGY 2008; 67:499-510. [PMID: 18438730 DOI: 10.1007/s11103-008-9334-4] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2007] [Accepted: 04/01/2008] [Indexed: 05/26/2023]
Abstract
Alignment of transcripts and genome sequences yielded a set of alternatively spliced transcripts in four angiosperm genomes: three dicotyledon species Medicago truncatula (Medicago), Populus trichocarpa (poplar) and Arabidopsis thaliana (Arabidopsis), and the monocotyledon Oryzae sativa (rice). Intron retention was the predominant mode of alternative splicing (AS) in each species, consistent with previous reports for Arabidopsis and rice. We analyzed the structure of 5'-splice junctions and observed commonalities between species. There was dependency of base composition between sites flanking the 5'-splice junction, with the potential to create a subset of splice sites that interact more weakly or strongly than average with U1 snRNA. Such altered nucleotide composition was correlated with splicing fidelity in all four species. For Medicago, poplar and Arabidopsis, but not in rice, alternative splicing was most prevalent for introns with decreased UA content, consistent with lower UA content for monocot introns and potentially reflecting evolved differences in splicing mechanisms. Similarly, the occurrence of AS between transcript Gene Ontology categories was positively correlated between Arabidopsis and Medicago, with no correlation between dicots and rice. Analysis of within-species paralogs and between-species reciprocal best-hit homologs yielded rare cases of potentially conserved AS events. Reverse transcriptase PCR and amplicon sequencing were used to confirm a subset of the in silico-predicted AS events within Medicago, as well as to characterize conserved AS events between Medicago and Arabidopsis.
Collapse
Affiliation(s)
- Jong-Min Baek
- College of Agricultural and Environmental Sciences Genomics Facility, University of California, 117 Robbins hall, Davis, CA 95616, USA.
| | | | | | | |
Collapse
|
50
|
Gotoh O. A space-efficient and accurate method for mapping and aligning cDNA sequences onto genomic sequence. Nucleic Acids Res 2008; 36:2630-8. [PMID: 18344523 PMCID: PMC2377433 DOI: 10.1093/nar/gkn105] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
The mapping and alignment of transcripts (cDNA, expressed sequence tag or amino acid sequences) onto a genomic sequence is a fundamental step for genome annotation, including gene finding and analyses of transcriptional activity, alternative splicing and nucleotide polymorphisms. As DNA sequence data of genomes and transcripts are accumulating at an unprecedented rate, steady improvement in accuracy, speed and space requirement in the computational tools for mapping/alignment is desired. We devised a multi-phase heuristic algorithm and implemented it in the development of the stand-alone computer program Spaln (space-efficient spliced alignment). Spaln is reasonably fast and space efficient; it requires <1 Gb of memory to map and align >120 000 Unigene sequences onto the unmasked whole human genome with a conventional computer, finishing the job in <6 h. With artificially introduced noise of various levels, Spaln significantly outperforms other leading alignment programs currently available with respect to the accuracy of mapped exon–intron structures. This performance is achieved without extensive learning procedures to adjust parameter values to a particular organism. According to the handiness and accuracy, Spaln may be used for studies on a wide area of genome analyses.
Collapse
Affiliation(s)
- Osamu Gotoh
- Department of Intelligence Science and Technology, Graduate School of Informatics, Kyoto University, Yoshida Honmachi, Sakyo-ku, Kyoto 606-8501, Japan.
| |
Collapse
|