1
|
Vatin M, Girault MS, Firlej V, Marchiol C, Ialy-Radio C, Montagutelli X, Vaiman D, Barbaux S, Ziyyat A. Identification of a New QTL Region on Mouse Chromosome 1 Responsible for Male Hypofertility: Phenotype Characterization and Candidate Genes. Int J Mol Sci 2020; 21:ijms21228506. [PMID: 33198087 PMCID: PMC7697627 DOI: 10.3390/ijms21228506] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Revised: 11/07/2020] [Accepted: 11/09/2020] [Indexed: 12/14/2022] Open
Abstract
Male fertility disorders often have their origin in disturbed spermatogenesis, which can be induced by genetic factors. In this study, we used interspecific recombinant congenic mouse strains (IRCS) to identify genes responsible for male infertility. Using ultrasonography, in vivo and in vitro fertilization (IVF) and electron microscopy, the phenotyping of several IRCS carrying mouse chromosome 1 segments of Mus spretus origin revealed a decrease in the ability of sperm to fertilize. This teratozoospermia included the abnormal anchoring of the acrosome to the nucleus and a persistence of residual bodies at the level of epididymal sperm midpiece. We identified a quantitative trait locus (QTL) responsible for these phenotypes and we have proposed a short list of candidate genes specifically expressed in spermatids. The future functional validation of candidate genes should allow the identification of new genes and mechanisms involved in male infertility.
Collapse
Affiliation(s)
- Magalie Vatin
- Institut Cochin, Université de Paris, INSERM, CNRS, F-75014 Paris, France; (M.V.); (M.-S.G.); (V.F.); (C.M.); (C.I.-R.); (D.V.); (S.B.)
| | - Marie-Sophie Girault
- Institut Cochin, Université de Paris, INSERM, CNRS, F-75014 Paris, France; (M.V.); (M.-S.G.); (V.F.); (C.M.); (C.I.-R.); (D.V.); (S.B.)
| | - Virginie Firlej
- Institut Cochin, Université de Paris, INSERM, CNRS, F-75014 Paris, France; (M.V.); (M.-S.G.); (V.F.); (C.M.); (C.I.-R.); (D.V.); (S.B.)
| | - Carmen Marchiol
- Institut Cochin, Université de Paris, INSERM, CNRS, F-75014 Paris, France; (M.V.); (M.-S.G.); (V.F.); (C.M.); (C.I.-R.); (D.V.); (S.B.)
| | - Côme Ialy-Radio
- Institut Cochin, Université de Paris, INSERM, CNRS, F-75014 Paris, France; (M.V.); (M.-S.G.); (V.F.); (C.M.); (C.I.-R.); (D.V.); (S.B.)
| | | | - Daniel Vaiman
- Institut Cochin, Université de Paris, INSERM, CNRS, F-75014 Paris, France; (M.V.); (M.-S.G.); (V.F.); (C.M.); (C.I.-R.); (D.V.); (S.B.)
| | - Sandrine Barbaux
- Institut Cochin, Université de Paris, INSERM, CNRS, F-75014 Paris, France; (M.V.); (M.-S.G.); (V.F.); (C.M.); (C.I.-R.); (D.V.); (S.B.)
| | - Ahmed Ziyyat
- Institut Cochin, Université de Paris, INSERM, CNRS, F-75014 Paris, France; (M.V.); (M.-S.G.); (V.F.); (C.M.); (C.I.-R.); (D.V.); (S.B.)
- Service d’histologie, d’embryologie, Biologie de la Reproduction, AP-HP, Hôpital Cochin, F-75014 Paris, France
- Correspondence:
| |
Collapse
|
2
|
Kong L, Wang B, Yang X, He B, Hao D, Yan L. Integrin-associated molecules and signalling cross talking in osteoclast cytoskeleton regulation. J Cell Mol Med 2020; 24:3271-3281. [PMID: 32045092 PMCID: PMC7131929 DOI: 10.1111/jcmm.15052] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 01/22/2020] [Accepted: 01/27/2020] [Indexed: 12/30/2022] Open
Abstract
In the ageing skeleton, the balance of bone reconstruction could commonly be broken by the increasing of bone resorption and decreasing of bone formation. Consequently, the bone resorption gradually occupies a dominant status. During this imbalance process, osteoclast is unique cell linage act the bone resorptive biological activity, which is a highly differentiated ultimate cell derived from monocyte/macrophage. The erosive function of osteoclasts is that they have to adhere the bone matrix and migrate along it, in which adhesive cytoskeleton recombination of osteoclast is essential. In that, the podosome is a membrane binding microdomain organelle, based on dynamic actin, which forms a cytoskeleton superstructure connected with the plasma membrane. Otherwise, as the main adhesive protein, integrin regulates the formation of podosome and cytoskeleton, which collaborates with the various molecules including: c-Cbl, p130Cas , c-Src and Pyk2, through several signalling cascades cross talking, including: M-CSF and RANKL. In our current study, we discuss the role of integrin and associated molecules in osteoclastogenesis cytoskeletal, especially podosomes, regulation and relevant signalling cascades cross talking.
Collapse
Affiliation(s)
- Lingbo Kong
- Hong-Hui Hospital, Xi'an Jiaotong University College of Medicine, Xi'an, China
| | - Biao Wang
- Hong-Hui Hospital, Xi'an Jiaotong University College of Medicine, Xi'an, China
| | - Xiaobin Yang
- Hong-Hui Hospital, Xi'an Jiaotong University College of Medicine, Xi'an, China
| | - Baorong He
- Hong-Hui Hospital, Xi'an Jiaotong University College of Medicine, Xi'an, China
| | - Dingjun Hao
- Hong-Hui Hospital, Xi'an Jiaotong University College of Medicine, Xi'an, China
| | - Liang Yan
- Hong-Hui Hospital, Xi'an Jiaotong University College of Medicine, Xi'an, China
| |
Collapse
|
3
|
Vallet S, Bashari MH, Fan FJ, Malvestiti S, Schneeweiss A, Wuchter P, Jäger D, Podar K. Pre-Osteoblasts Stimulate Migration of Breast Cancer Cells via the HGF/MET Pathway. PLoS One 2016; 11:e0150507. [PMID: 26934743 PMCID: PMC4774929 DOI: 10.1371/journal.pone.0150507] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Accepted: 02/14/2016] [Indexed: 01/08/2023] Open
Abstract
Introduction The occurrence of skeletal metastases in cancer, e.g. breast cancer (BC), deteriorates patient life expectancy and quality-of-life. Current treatment options against tumor-associated bone disease are limited to anti-resorptive therapies and aimed towards palliation. There remains a lack of therapeutic approaches, which reverse or even prevent the development of bone metastases. Recent studies demonstrate that not only osteoclasts (OCs), but also osteoblasts (OBs) play a central role in the pathogenesis of skeletal metastases, partly by producing hepatocyte growth factor (HGF), which promotes tumor cell migration and seeding into the bone. OBs consist of a heterogeneous cell pool with respect to their maturation stage and function. Recent studies highlight the critical role of pre-OBs in hematopoiesis. Whether the development of bone metastases can be attributed to a particular OB maturation stage is currently unknown. Methods and Results Pre-OBs were generated from healthy donor (HD)-derived bone marrow stromal cells (BMSC) as well as the BMSC line KM105 and defined as ALPlow OPNlow RUNX2high OSX high CD166high. Conditioned media (CM) of pre-OBs, but not of undifferentiated cells or mature OBs, enhanced migration of metastatic BC cells. Importantly, HGF mRNA was significantly up-regulated in pre-OBs versus mature OBs, and CM of pre-OBs activated the MET signaling pathway. Highlighting a key role for HGF, CM from HGF-negative pre-OBs derived from the BMSC line HS27A did not support migration of BC cells. Genetically (siMET) or pharmacologically (INCB28060) targeting MET inhibited both HGF- and pre-OB CM- mediated BC cell migration. Conclusions Our data demonstrate for the first time a role for pre-OBs in mediating HGF/MET- dependent migration of BC cells and strongly support the clinical evaluation of INCB28060 and other MET inhibitors to limit and/or prevent BC-associated bone metastases.
Collapse
Affiliation(s)
- Sonia Vallet
- Department of Medical Oncology, National Center for Tumor Diseases (NCT), University of Heidelberg, Heidelberg, Germany
| | - Muhammad Hasan Bashari
- Department of Medical Oncology, National Center for Tumor Diseases (NCT), University of Heidelberg, Heidelberg, Germany
- Department of Pharmacology and Therapy, Faculty of Medicine, Universitas Padjadjaran, Bandung, Indonesia
| | - Feng-Juan Fan
- Department of Medical Oncology, National Center for Tumor Diseases (NCT), University of Heidelberg, Heidelberg, Germany
| | - Stefano Malvestiti
- Department of Medical Oncology, National Center for Tumor Diseases (NCT), University of Heidelberg, Heidelberg, Germany
| | - Andreas Schneeweiss
- Department of Medical Oncology, National Center for Tumor Diseases (NCT), University of Heidelberg, Heidelberg, Germany
- Department of Obstetrics and Gynecology, University of Heidelberg, Heidelberg, Germany
| | - Patrick Wuchter
- Department of Medicine V, University of Heidelberg, Heidelberg, Germany
| | - Dirk Jäger
- Department of Medical Oncology, National Center for Tumor Diseases (NCT), University of Heidelberg, Heidelberg, Germany
- German Cancer Research Center (DKFZ), Applied Tumor Immunity, Heidelberg, Germany
| | - Klaus Podar
- Department of Medical Oncology, National Center for Tumor Diseases (NCT), University of Heidelberg, Heidelberg, Germany
- * E-mail:
| |
Collapse
|
4
|
Zhao N, Han D, Liu Y, Li Y, Zeng L, Wang Y, Feng H. DLX3 negatively regulates osteoclastic differentiation through microRNA-124. Exp Cell Res 2016; 341:166-76. [DOI: 10.1016/j.yexcr.2016.01.018] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Revised: 01/21/2016] [Accepted: 01/29/2016] [Indexed: 11/26/2022]
|
5
|
Lézot F, Thomas BL, Blin-Wakkach C, Castaneda B, Bolanos A, Hotton D, Sharpe PT, Heymann D, Carles GF, Grigoriadis AE, Berdal A. Dlx homeobox gene family expression in osteoclasts. J Cell Physiol 2010; 223:779-87. [PMID: 20205208 DOI: 10.1002/jcp.22095] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Skeletal growth and homeostasis require the finely orchestrated secretion of mineralized tissue matrices by highly specialized cells, balanced with their degradation by osteoclasts. Time- and site-specific expression of Dlx and Msx homeobox genes in the cells secreting these matrices have been identified as important elements in the regulation of skeletal morphology. Such specific expression patterns have also been reported in osteoclasts for Msx genes. The aim of the present study was to establish the expression patterns of Dlx genes in osteoclasts and identify their function in regulating skeletal morphology. The expression patterns of all Dlx genes were examined during the whole osteoclastogenesis using different in vitro models. The results revealed that Dlx1 and Dlx2 are the only Dlx family members with a possible function in osteoclastogenesis as well as in mature osteoclasts. Dlx5 and Dlx6 were detected in the cultures but appear to be markers of monocytes and their derivatives. In vivo, Dlx2 expression in osteoclasts was examined using a Dlx2/LacZ transgenic mouse. Dlx2 is expressed in a subpopulation of osteoclasts in association with tooth, brain, nerve, and bone marrow volumetric growths. Altogether the present data suggest a role for Dlx2 in regulation of skeletal morphogenesis via functions within osteoclasts.
Collapse
Affiliation(s)
- F Lézot
- INSERM, UMR 872, Centre de Recherche des Cordeliers, Paris, France.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Abstract
The cause of metastasis remains elusive despite vast information on cancer cells. We posit that cancer cell fusion with macrophages or other migratory bone marrow-derived cells (BMDCs) provides an explanation. BMDCs fused with tumor cells were present in animal tumor xenografts where they were associated with metastases. In myeloma patients, transcriptionally active myeloma nuclei were incorporated into osteoclasts through fusion. In patients with renal cell carcinoma arising poststem cell transplant, donor genes were incorporated in recipient cancer cell nuclei, most likely through fusion, and showed tumor distribution patterns characteristic of cancer stem cells. Melanoma-macrophage hybrids generated in vitro contained chromosomes from both parental partners, showed increased ploidy, and transcribed and translated genes from both parents. They exhibited chemotactic migration in vitro toward fibronectin and exhibited high frequencies of metastasis when implanted in mice. They produced macromolecules that are characteristic of macrophages and known indicators of metastasis (c-Met, SPARC, MCR1, GnT-V, and the integrin subunits alpha(3), alpha(5), alpha(6), alpha(v), beta(1), beta(3)). They also produced high levels of beta1,6-branched oligosaccharides-predictors of poor survival in patients with melanoma or carcinomas of the breast, lung, and colon. We thus hypothesize that such gene expression patterns in cancer are generated through fusion. Tumor hybrids also showed active autophagy, a characteristic of both metastatic cancers and macrophages. BMDC-tumor cell fusion explains epidermal-mesenchymal transition in cancer since BMDCs express mesodermal traits and epithelial-mesenchymal transition regulators (Twist, SPARC, and others). If BMDC-tumor cell fusion underlies invasion and metastasis in human cancer, new approaches for therapeutic intervention would be mandated.
Collapse
Affiliation(s)
- John M Pawelek
- Department of Dermatology and the Yale Cancer Center, Yale University School of Medicine, New Haven, Connecticut, USA
| | | |
Collapse
|
7
|
Prante BC, Garman KL, Sims BN, Lindsey JS. Matrix-coated transwell-cultured TM4 sertoli cell testosterone-regulated gene expression mimics in vivo expression. In Vitro Cell Dev Biol Anim 2008; 44:434-43. [DOI: 10.1007/s11626-008-9135-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2008] [Accepted: 07/02/2008] [Indexed: 10/21/2022]
|
8
|
Pawelek JM, Chakraborty AK. Fusion of tumour cells with bone marrow-derived cells: a unifying explanation for metastasis. Nat Rev Cancer 2008; 8:377-86. [PMID: 18385683 DOI: 10.1038/nrc2371] [Citation(s) in RCA: 252] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The causes of metastasis remain elusive despite vast information on cancer cells. We posit that cancer cell fusion with macrophages or other migratory bone marrow-derived cells (BMDCs) provides an explanation. BMDC-tumour hybrids have been detected in numerous animal models and recently in human cancer. Molecular studies indicate that gene expression in such hybrids reflects a metastatic phenotype. Should BMDC-tumour fusion be found to underlie invasion and metastasis in human cancer, new approaches for therapy would surely follow.
Collapse
Affiliation(s)
- John M Pawelek
- Department of Dermatology and the Yale Cancer Center, Yale University School of Medicine, 333 Cedar Street, New Haven, Connecticut 06520-08059, USA.
| | | |
Collapse
|
9
|
Guo Y, Yang TL, Pan F, Xu XH, Dong SS, Deng HW. Molecular genetic studies of gene identification for osteoporosis. Expert Rev Endocrinol Metab 2008; 3:223-267. [PMID: 30764094 DOI: 10.1586/17446651.3.2.223] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
This review comprehensively summarizes the most important and representative molecular genetics studies of gene identification for osteoporosis published up to the end of September 2007. It is intended to constitute a sequential update of our previously published reviews covering the available data up to the end of 2004. Evidence from candidate gene-association studies, genome-wide linkage and association studies, as well as functional genomic studies (including gene-expression microarray and proteomics) on osteogenesis and osteoporosis, are reviewed separately. Studies of transgenic and knockout mice models relevant to osteoporosis are summarized. The major results of all studies are tabulated for comparison and ease of reference. Comments are made on the most notable findings and representative studies for their potential influence and implications on our present understanding of genetics of osteoporosis. The format adopted by this review should be ideal for accommodating future new advances and studies.
Collapse
Affiliation(s)
- Yan Guo
- a The Key Laboratory of Biomedical Information Engineering of Ministry of Education and Institute of Molecular Genetics, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, PR China
| | - Tie-Lin Yang
- a The Key Laboratory of Biomedical Information Engineering of Ministry of Education and Institute of Molecular Genetics, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, PR China
| | - Feng Pan
- a The Key Laboratory of Biomedical Information Engineering of Ministry of Education and Institute of Molecular Genetics, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, PR China
| | - Xiang-Hong Xu
- a The Key Laboratory of Biomedical Information Engineering of Ministry of Education and Institute of Molecular Genetics, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, PR China
| | - Shan-Shan Dong
- a The Key Laboratory of Biomedical Information Engineering of Ministry of Education and Institute of Molecular Genetics, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, PR China
| | - Hong-Wen Deng
- b The Key Laboratory of Biomedical Information Engineering of Ministry of Education and Institute of Molecular Genetics, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, PR China and Departments of Orthopedic Surgery and Basic Medical Sciences, University of Missouri - Kansas City, Kansas City, MO 64108, USA.
| |
Collapse
|
10
|
Yang G, Zaidi M, Zhang W, Zhu LL, Li J, Iqbal J, Varbanov A, Gross G, Phipps R, Troen BR, Sun L. Functional grouping of osteoclast genes revealed through microarray analysis. Biochem Biophys Res Commun 2007; 366:352-9. [PMID: 18060857 DOI: 10.1016/j.bbrc.2007.11.106] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2007] [Accepted: 11/15/2007] [Indexed: 01/21/2023]
Abstract
We describe for the first time functional clusters of genes that are modulated during the differentiation of osteoclasts. Pathway analysis was applied to gene array data generated from affymetrix chips hybridized to RNA isolated from RAW264.7 cells exposed to RANK-ligand (RANK-L) for 5 days. This analysis revealed major functional gene clusters that were either up- or down-regulated during osteoclastogenesis. Some of the genes within the clusters have known functions, while others do not. We discuss herein the relevance of these functional gene clusters and their modulation to biological processes underlying the formation, function, and fate of osteoclasts.
Collapse
Affiliation(s)
- Guozhe Yang
- Mount Sinai Bone Program, Mount Sinai School of Medicine, New York, NY 10029, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Adamopoulos IE, Xia Z, Lau YS, Athanasou NA. Hepatocyte growth factor can substitute for M-CSF to support osteoclastogenesis. Biochem Biophys Res Commun 2006; 350:478-83. [PMID: 17022947 DOI: 10.1016/j.bbrc.2006.09.076] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2006] [Accepted: 09/18/2006] [Indexed: 11/24/2022]
Abstract
Osteopetrotic mice lacking functional macrophage-colony stimulating factor (M-CSF) recover with ageing, suggesting that alternative osteoclastogenesis pathways exist. Hepatocyte growth factor (HGF) and M-CSF signal through tyrosine kinase receptors and phosphorylate common transducers and effectors such as Src, Grb2, and PI3-Kinase. HGF is known to play a role in osteoclast formation, and in this study we have determined whether HGF could replace M-CSF to support human osteoclastogenesis. We found that the HGF receptor, c-Met, is expressed by the CD14(+) monocyte fraction of human peripheral blood mononuclear cells (PBMC). HGF was able to support monocyte-osteoclast differentiation in the presence of receptor activator for nuclear factor kappaB ligand as evidenced by the formation of numerous multinucleated tartrate-resistant acid phosphatase and vitronectin receptor positive cells which formed F-actin rings and were capable of lacunar resorption. The addition of a neutralising antibody to M-CSF did not inhibit osteoclast differentiation. HGF is a well-established survival factor and viability assays and live/dead staining showed that it promoted the survival and proliferation of monocytes and osteoclasts in a manner similar to M-CSF. Our findings indicate that HGF can substitute for M-CSF to support human osteoclast formation.
Collapse
Affiliation(s)
- Iannis E Adamopoulos
- Institute of Musculoskeletal Sciences, Botnar Research Centre, Nuffield Orthopaedic Centre, University of Oxford, Oxford OX3 7LD, UK.
| | | | | | | |
Collapse
|