1
|
Daraiseh SI, Kassardjian A, Alexander KE, Rizkallah R, Hurt MM. c-Abl phosphorylation of Yin Yang 1's conserved tyrosine 254 in the spacer region modulates its transcriptional activity. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2018; 1865:1173-1186. [PMID: 29807053 DOI: 10.1016/j.bbamcr.2018.05.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Revised: 05/02/2018] [Accepted: 05/24/2018] [Indexed: 12/31/2022]
Abstract
Yin Yang 1 (YY1) is a multifunctional transcription factor that can activate or repress transcription depending on the promotor and/or the co-factors recruited. YY1 is phosphorylated in various signaling pathways and is critical for different biological functions including embryogenesis, apoptosis, proliferation, cell-cycle regulation and tumorigenesis. Here we report that YY1 is a substrate for c-Abl kinase phosphorylation at conserved residue Y254 in the spacer region. Pharmacological inhibition of c-Abl kinase by imatinib, nilotinib and GZD824, knock-down of c-Abl using siRNA, and the use of c-Abl kinase-dead drastically reduces tyrosine phosphorylation of YY1. Both radioactive and non-radioactive in vitro kinase assays, as well as co-immunoprecipitation in different cell lines, show that the target of c-Abl phosphorylation is tyrosine residue 254. c-Abl phosphorylation has little effect on YY1 DNA binding ability or cellular localization in asynchronous cells. However, functional studies reveal that c-Abl mediated phosphorylation of YY1 regulates YY1's transcriptional ability in vivo. In conclusion, we demonstrate the novel role of c-Abl kinase in regulation of YY1's transcriptional activity, linking YY1 regulation with c-Abl tyrosine kinase signaling pathways.
Collapse
Affiliation(s)
- Susan I Daraiseh
- Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, FL, USA
| | - Ari Kassardjian
- David Geffen School of Medicine, Department of Pathology and Laboratory Medicine at UCLA, Los Angeles, CA, USA
| | - Karen E Alexander
- Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, FL, USA
| | - Raed Rizkallah
- Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, FL, USA
| | - Myra M Hurt
- Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, FL, USA.
| |
Collapse
|
2
|
Dergai O, Cousin P, Gouge J, Satia K, Praz V, Kuhlman T, Lhôte P, Vannini A, Hernandez N. Mechanism of selective recruitment of RNA polymerases II and III to snRNA gene promoters. Genes Dev 2018; 32:711-722. [PMID: 29785964 PMCID: PMC6004067 DOI: 10.1101/gad.314245.118] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Accepted: 04/17/2018] [Indexed: 01/03/2023]
Abstract
RNA polymerase II (Pol II) small nuclear RNA (snRNA) promoters and type 3 Pol III promoters have highly similar structures; both contain an interchangeable enhancer and "proximal sequence element" (PSE), which recruits the SNAP complex (SNAPc). The main distinguishing feature is the presence, in the type 3 promoters only, of a TATA box, which determines Pol III specificity. To understand the mechanism by which the absence or presence of a TATA box results in specific Pol recruitment, we examined how SNAPc and general transcription factors required for Pol II or Pol III transcription of SNAPc-dependent genes (i.e., TATA-box-binding protein [TBP], TFIIB, and TFIIA for Pol II transcription and TBP and BRF2 for Pol III transcription) assemble to ensure specific Pol recruitment. TFIIB and BRF2 could each, in a mutually exclusive fashion, be recruited to SNAPc. In contrast, TBP-TFIIB and TBP-BRF2 complexes were not recruited unless a TATA box was present, which allowed selective and efficient recruitment of the TBP-BRF2 complex. Thus, TBP both prevented BRF2 recruitment to Pol II promoters and enhanced BRF2 recruitment to Pol III promoters. On Pol II promoters, TBP recruitment was separate from TFIIB recruitment and enhanced by TFIIA. Our results provide a model for specific Pol recruitment at SNAPc-dependent promoters.
Collapse
Affiliation(s)
- Oleksandr Dergai
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, 1015 Lausanne, Switzerland
| | - Pascal Cousin
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, 1015 Lausanne, Switzerland
| | - Jerome Gouge
- Division of Structural Biology, The Institute of Cancer Research, London SW7 3RP, United Kingdom
| | - Karishma Satia
- Division of Structural Biology, The Institute of Cancer Research, London SW7 3RP, United Kingdom
| | - Viviane Praz
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, 1015 Lausanne, Switzerland
- Swiss Institute of Bioinformatics, 1015 Lausanne, Switzerland
| | - Tracy Kuhlman
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA
| | - Philippe Lhôte
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, 1015 Lausanne, Switzerland
| | - Alessandro Vannini
- Division of Structural Biology, The Institute of Cancer Research, London SW7 3RP, United Kingdom
| | - Nouria Hernandez
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, 1015 Lausanne, Switzerland
| |
Collapse
|
3
|
Nieborak A, Górecki A. Significance of the pathogenic mutation T372R in the Yin Yang 1 protein interaction with DNA--thermodynamic studies. FEBS Lett 2016; 590:838-47. [PMID: 26910132 DOI: 10.1002/1873-3468.12106] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Revised: 01/13/2016] [Accepted: 02/11/2016] [Indexed: 02/01/2023]
Abstract
This work focuses on the pathogenic missense mutation in YY1 protein correlated with insulinomas. Based on in vitro studies, we demonstrate that the mutation does not affect the secondary structure of either zinc fingers or the N-terminal fragment (NTF) of the protein. Apart from a slight increase in the protein's compactness, no changes in the tertiary structure were observed. The introduced mutation significantly alters DNA-binding properties, both the affinity and enthalpy-entropy contribution of the process, which are highly dependent on the recognized sequence. Obtained results indicate concerted rather than a modular mode of sequence recognition by YY1 with the significant impact of a disordered NTF.
Collapse
Affiliation(s)
- Anna Nieborak
- Department of Physical Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland
| | - Andrzej Górecki
- Department of Physical Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland
| |
Collapse
|
4
|
Dumay-Odelot H, Durrieu-Gaillard S, El Ayoubi L, Parrot C, Teichmann M. Contributions of in vitro transcription to the understanding of human RNA polymerase III transcription. Transcription 2015; 5:e27526. [PMID: 25764111 DOI: 10.4161/trns.27526] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Human RNA polymerase III transcribes small untranslated RNAs that contribute to the regulation of essential cellular processes, including transcription, RNA processing and translation. Analysis of this transcription system by in vitro transcription techniques has largely contributed to the discovery of its transcription factors and to the understanding of the regulation of human RNA polymerase III transcription. Here we review some of the key steps that led to the identification of transcription factors and to the definition of minimal promoter sequences for human RNA polymerase III transcription.
Collapse
Affiliation(s)
- Hélène Dumay-Odelot
- a INSERM U869; University of Bordeaux; Institut Européen de Chimie et Biologie (IECB); 33607 Pessac, France
| | | | | | | | | |
Collapse
|
5
|
Górecki A, Bonarek P, Górka AK, Figiel M, Wilamowski M, Dziedzicka-Wasylewska M. Intrinsic disorder of human Yin Yang 1 protein. Proteins 2015; 83:1284-96. [PMID: 25963536 DOI: 10.1002/prot.24822] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2014] [Revised: 04/27/2015] [Accepted: 05/02/2015] [Indexed: 01/26/2023]
Abstract
YY1 (Yin Yang 1) is a zinc finger protein with an essential role in various biological functions via DNA- and protein-protein interactions with numerous partners. YY1 is involved in the regulation of a broad spectrum of cellular processes such as embryogenesis, proliferation, tumorigenesis, and snRNA transcription. The more than 100 reported targets of the YY1 protein suggest that it contains intrinsically disordered regions that are involved in such diverse interactions. Here, we present a study of the structural properties of human YY1 using several biochemical and biophysical techniques (fluorescence, circular dichroism, gel filtration chromatography, proteolytic susceptibility) together with various bioinformatics approaches. To facilitate our exploration of the YY1 structure, the full-length protein as well as an N-terminal fragment (residues 1-295) and the C-terminal DNA binding domain were used. We found the N-terminus to be a non-compact fragment of YY1 with little residual secondary structure and lacking a well-defined tertiary structure. The results of our study indicate that YY1 belongs to the family of intrinsically disordered proteins (IDPs), which exist natively in a partially unfolded conformation.
Collapse
Affiliation(s)
- Andrzej Górecki
- Department of Physical Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, Kraków, 30-387, Poland
| | - Piotr Bonarek
- Department of Physical Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, Kraków, 30-387, Poland
| | - Adam Kazimierz Górka
- Department of Physical Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, Kraków, 30-387, Poland
| | - Małgorzata Figiel
- Department of Physical Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, Kraków, 30-387, Poland
| | - Mateusz Wilamowski
- Department of Physical Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, Kraków, 30-387, Poland
| | - Marta Dziedzicka-Wasylewska
- Department of Physical Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, Kraków, 30-387, Poland
| |
Collapse
|
6
|
Jawdekar GW, Henry RW. Transcriptional regulation of human small nuclear RNA genes. BIOCHIMICA ET BIOPHYSICA ACTA 2008; 1779:295-305. [PMID: 18442490 PMCID: PMC2684849 DOI: 10.1016/j.bbagrm.2008.04.001] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2007] [Revised: 04/01/2008] [Accepted: 04/02/2008] [Indexed: 01/06/2023]
Abstract
The products of human snRNA genes have been frequently described as performing housekeeping functions and their synthesis refractory to regulation. However, recent studies have emphasized that snRNA and other related non-coding RNA molecules control multiple facets of the central dogma, and their regulated expression is critical to cellular homeostasis during normal growth and in response to stress. Human snRNA genes contain compact and yet powerful promoters that are recognized by increasingly well-characterized transcription factors, thus providing a premier model system to study gene regulation. This review summarizes many recent advances deciphering the mechanism by which the transcription of human snRNA and related genes are regulated.
Collapse
Affiliation(s)
- Gauri W. Jawdekar
- Department of Microbiology, Immunology, and Molecular Genetics, University of California at Los Angeles, Los Angeles, CA 90095
| | - R. William Henry
- Department of Biochemistry & Molecular Biology, Michigan State University, East Lansing, MI 48824
| |
Collapse
|
7
|
Shanmugam M, Hernandez N. Mitotic functions for SNAP45, a subunit of the small nuclear RNA-activating protein complex SNAPc. J Biol Chem 2008; 283:14845-56. [PMID: 18356157 PMCID: PMC2386947 DOI: 10.1074/jbc.m800833200] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
The small nuclear RNA-activating protein complex SNAPc is required for transcription of small nuclear RNA genes and binds to a proximal sequence element in their promoters. SNAPc contains five types of subunits stably associated with each other. Here we show that one of these polypeptides, SNAP45, also known as PTF δ, localizes to centrosomes during parts of mitosis, as well as to the spindle midzone during anaphase and the mid-body during telophase. Consistent with localization to these mitotic structures, both down- and up-regulation of SNAP45 lead to a G2/M arrest with cells displaying abnormal mitotic structures. In contrast, down-regulation of SNAP190, another SNAPc subunit, leads to an accumulation of cells with a G0/G1 DNA content. These results are consistent with the proposal that SNAP45 plays two roles in the cell, one as a subunit of the transcription factor SNAPc and another as a factor required for proper mitotic progression.
Collapse
|