1
|
Weibel CA, Wheeler AL, James JE, Willis SM, McShea H, Masel J. The protein domains of vertebrate species in which selection is more effective have greater intrinsic structural disorder. eLife 2024; 12:RP87335. [PMID: 39239703 PMCID: PMC11379457 DOI: 10.7554/elife.87335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/07/2024] Open
Abstract
The nearly neutral theory of molecular evolution posits variation among species in the effectiveness of selection. In an idealized model, the census population size determines both this minimum magnitude of the selection coefficient required for deleterious variants to be reliably purged, and the amount of neutral diversity. Empirically, an 'effective population size' is often estimated from the amount of putatively neutral genetic diversity and is assumed to also capture a species' effectiveness of selection. A potentially more direct measure of the effectiveness of selection is the degree to which selection maintains preferred codons. However, past metrics that compare codon bias across species are confounded by among-species variation in %GC content and/or amino acid composition. Here, we propose a new Codon Adaptation Index of Species (CAIS), based on Kullback-Leibler divergence, that corrects for both confounders. We demonstrate the use of CAIS correlations, as well as the Effective Number of Codons, to show that the protein domains of more highly adapted vertebrate species evolve higher intrinsic structural disorder.
Collapse
Affiliation(s)
- Catherine A Weibel
- Department of Mathematics, University of Arizona, Tucson, United States
- Department of Physics, University of Arizona, Tucson, United States
| | - Andrew L Wheeler
- Genetics Graduate Interdisciplinary Program, University of Arizona, Tucson, United States
| | - Jennifer E James
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, United States
| | - Sara M Willis
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, United States
| | - Hanon McShea
- Department of Earth System Science, Stanford University, Stanford, United States
| | - Joanna Masel
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, United States
| |
Collapse
|
2
|
Weibel CA, Wheeler AL, James JE, Willis SM, McShea H, Masel J. The protein domains of vertebrate species in which selection is more effective have greater intrinsic structural disorder. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.03.02.530449. [PMID: 38712167 PMCID: PMC11071303 DOI: 10.1101/2023.03.02.530449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
The nearly neutral theory of molecular evolution posits variation among species in the effectiveness of selection. In an idealized model, the census population size determines both this minimum magnitude of the selection coefficient required for deleterious variants to be reliably purged, and the amount of neutral diversity. Empirically, an "effective population size" is often estimated from the amount of putatively neutral genetic diversity and is assumed to also capture a species' effectiveness of selection. A potentially more direct measure of the effectiveness of selection is the degree to which selection maintains preferred codons. However, past metrics that compare codon bias across species are confounded by among-species variation in %GC content and/or amino acid composition. Here we propose a new Codon Adaptation Index of Species (CAIS), based on Kullback-Leibler divergence, that corrects for both confounders. We demonstrate the use of CAIS correlations, as well as the Effective Number of Codons, to show that the protein domains of more highly adapted vertebrate species evolve higher intrinsic structural disorder.
Collapse
Affiliation(s)
- Catherine A. Weibel
- Department of Mathematics, University of Arizona, Tucson, Arizona 85721, USA
- Department of Physics, University of Arizona, Tucson, Arizona 85721, USA
- present address: Department of Applied Physics, Stanford University, California, USA
| | - Andrew L. Wheeler
- Genetics Graduate Interdisciplinary Program, University of Arizona, Tucson, Arizona 85721, USA
| | - Jennifer E. James
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, Arizona 85721, USA
- present address: Department of Ecology and Genetics, Evolutionary Biology Center, Uppsala University, Sweden
| | - Sara M. Willis
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, Arizona 85721, USA
- present address: University Information Technology Services, University of Arizona, Tucson, Arizona 85721, USA
| | - Hanon McShea
- Department of Earth System Science, Stanford University
| | - Joanna Masel
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, Arizona 85721, USA
| |
Collapse
|
3
|
Lamolle G, Simón D, Iriarte A, Musto H. Main Factors Shaping Amino Acid Usage Across Evolution. J Mol Evol 2023:10.1007/s00239-023-10120-5. [PMID: 37264211 DOI: 10.1007/s00239-023-10120-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 05/17/2023] [Indexed: 06/03/2023]
Abstract
The standard genetic code determines that in most species, including viruses, there are 20 amino acids that are coded by 61 codons, while the other three codons are stop triplets. Considering the whole proteome each species features its own amino acid frequencies, given the slow rate of change, closely related species display similar GC content and amino acids usage. In contrast, distantly related species display different amino acid frequencies. Furthermore, within certain multicellular species, as mammals, intragenomic differences in the usage of amino acids are evident. In this communication, we shall summarize some of the most prominent and well-established factors that determine the differences found in the amino acid usage, both across evolution and intragenomically.
Collapse
Affiliation(s)
- Guillermo Lamolle
- Laboratorio de Genómica Evolutiva, Facultad de Ciencias, Universidad de La República, Montevideo, Uruguay
| | - Diego Simón
- Laboratorio de Genómica Evolutiva, Facultad de Ciencias, Universidad de La República, Montevideo, Uruguay
- Laboratorio de Virología Molecular, Centro de Investigaciones Nucleares, Facultad de Ciencias, Universidad de La República, Montevideo, Uruguay
- Laboratorio de Evolución Experimental de Virus, Institut Pasteur de Montevideo, Montevideo, Uruguay
| | - Andrés Iriarte
- Laboratorio de Genómica Evolutiva, Facultad de Ciencias, Universidad de La República, Montevideo, Uruguay
- Laboratorio de Biología Computacional, Departamento de Desarrollo Biotecnológico, Instituto de Higiene, Facultad de Medicina, Universidad de La República, Montevideo, Uruguay
| | - Héctor Musto
- Laboratorio de Genómica Evolutiva, Facultad de Ciencias, Universidad de La República, Montevideo, Uruguay.
| |
Collapse
|
4
|
How Many Factors Influence Genomic GC Content Among Prokaryotes? J Mol Evol 2023; 91:6-9. [PMID: 36370165 DOI: 10.1007/s00239-022-10077-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 11/04/2022] [Indexed: 11/14/2022]
|
5
|
Wilcox JJS, Arca-Ruibal B, Samour J, Mateuta V, Idaghdour Y, Boissinot S. Linked-Read Sequencing of Eight Falcons Reveals a Unique Genomic Architecture in Flux. Genome Biol Evol 2022; 14:evac090. [PMID: 35700227 PMCID: PMC9214253 DOI: 10.1093/gbe/evac090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 05/27/2022] [Accepted: 06/06/2022] [Indexed: 11/12/2022] Open
Abstract
Falcons are diverse birds of cultural and economic importance. They have undergone major lineage-specific chromosomal rearrangements, resulting in greatly-reduced chromosome counts relative to other birds. Here, we use 10X Genomics linked reads to provide new high-contiguity genomes for two gyrfalcons, a saker falcon, a lanner falcon, three subspecies of peregrine falcons, and the common kestrel. Assisted by a transcriptome sequenced from 22 gyrfalcon tissues, we annotate these genomes for a variety of genomic features, estimate historical demography, and then investigate genomic equilibrium in the context of falcon-specific chromosomal rearrangements. We find that falcon genomes are not in AT-GC equilibrium with a bias in substitutions towards higher AT content; this bias is predominantly but not exclusively driven by hypermutability of CpG sites. Small indels and large structural variants were also biased towards insertions rather than deletions. Patterns of disequilibrium were linked to chromosomal rearrangements: falcons have lost GC content in regions that have fused to larger chromosomes from microchromosomes and gained GC content in regions of macrochromosomes that have translocated to microchromosomes. Inserted bases have accumulated on regions ancestrally belonging to microchromosomes, consistent with insertion-biased gene conversion. We also find an excess of interspersed repeats on regions of microchromosomes that have fused to macrochromosomes. Our results reveal that falcon genomes are in a state of flux. They further suggest that many of the key differences between microchromosomes and macrochromosomes are driven by differences in chromosome size, and indicate a clear role for recombination and biased-gene-conversion in determining genomic equilibrium.
Collapse
Affiliation(s)
- Justin J S Wilcox
- Center for Genomics & Systems Biology, New York University Abu Dhabi, Saadiyat Island, Abu Dhabi, United Arab Emirates
| | | | - Jaime Samour
- Wildlife Management and Falcon Medicine and Breeding Consultancy, Abu Dhabi, United Arab Emirates
| | | | - Youssef Idaghdour
- Center for Genomics & Systems Biology, New York University Abu Dhabi, Saadiyat Island, Abu Dhabi, United Arab Emirates
- Biology Program, New York University Abu Dhabi, Saadiyat Island, Abu Dhabi, United Arab Emirates
| | - Stéphane Boissinot
- Center for Genomics & Systems Biology, New York University Abu Dhabi, Saadiyat Island, Abu Dhabi, United Arab Emirates
- Biology Program, New York University Abu Dhabi, Saadiyat Island, Abu Dhabi, United Arab Emirates
| |
Collapse
|
6
|
Pokusaeva VO, Diez AR, Espinar L, Pérez AT, Filion GJ. Strand asymmetry influences mismatch resolution during a single-strand annealing. Genome Biol 2022; 23:93. [PMID: 35414014 PMCID: PMC9001825 DOI: 10.1186/s13059-022-02665-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 03/30/2022] [Indexed: 02/08/2023] Open
Abstract
Background Biases of DNA repair can shape the nucleotide landscape of genomes at evolutionary timescales. The molecular mechanisms of those biases are still poorly understood because it is difficult to isolate the contributions of DNA repair from those of DNA damage. Results Here, we develop a genome-wide assay whereby the same DNA lesion is repaired in different genomic contexts. We insert thousands of barcoded transposons carrying a reporter of DNA mismatch repair in the genome of mouse embryonic stem cells. Upon inducing a double-strand break between tandem repeats, a mismatch is generated if the break is repaired through single-strand annealing. The resolution of the mismatch showed a 60–80% bias in favor of the strand with the longest 3′ flap. The location of the lesion in the genome and the type of mismatch had little influence on the bias. Instead, we observe a complete reversal of the bias when the longest 3′ flap is moved to the opposite strand by changing the position of the double-strand break in the reporter. Conclusions These results suggest that the processing of the double-strand break has a major influence on the repair of mismatches during a single-strand annealing. Supplementary Information The online version contains supplementary material available at 10.1186/s13059-022-02665-3.
Collapse
Affiliation(s)
- Victoria O Pokusaeva
- Center for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, 08003, Barcelona, Spain.,Present Address: Institute of Science and Technology Austria, Am Campus 1, Klosterneuburg, Austria
| | - Aránzazu Rosado Diez
- Center for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, 08003, Barcelona, Spain.,Present Address: H12O-CNIO Lung Cancer Clinical Research Unit, i + 12 Research Institute, Spanish National Cancer Research Center (CNIO), Madrid, Spain
| | - Lorena Espinar
- Center for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, 08003, Barcelona, Spain
| | - Albert Torelló Pérez
- Center for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, 08003, Barcelona, Spain
| | - Guillaume J Filion
- Center for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, 08003, Barcelona, Spain. .,University Pompeu Fabra (UPF), Barcelona, Spain. .,Present Address: Department Biological Sciences, University of Toronto Scarborough, Toronto, Canada.
| |
Collapse
|
7
|
Pantier R, Chhatbar K, Quante T, Skourti-Stathaki K, Cholewa-Waclaw J, Alston G, Alexander-Howden B, Lee HY, Cook AG, Spruijt CG, Vermeulen M, Selfridge J, Bird A. SALL4 controls cell fate in response to DNA base composition. Mol Cell 2021; 81:845-858.e8. [PMID: 33406384 PMCID: PMC7895904 DOI: 10.1016/j.molcel.2020.11.046] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 10/23/2020] [Accepted: 11/25/2020] [Indexed: 12/30/2022]
Abstract
Mammalian genomes contain long domains with distinct average compositions of A/T versus G/C base pairs. In a screen for proteins that might interpret base composition by binding to AT-rich motifs, we identified the stem cell factor SALL4, which contains multiple zinc fingers. Mutation of the domain responsible for AT binding drastically reduced SALL4 genome occupancy and prematurely upregulated genes in proportion to their AT content. Inactivation of this single AT-binding zinc-finger cluster mimicked defects seen in Sall4 null cells, including precocious differentiation of embryonic stem cells (ESCs) and embryonic lethality in mice. In contrast, deletion of two other zinc-finger clusters was phenotypically neutral. Our data indicate that loss of pluripotency is triggered by downregulation of SALL4, leading to de-repression of a set of AT-rich genes that promotes neuronal differentiation. We conclude that base composition is not merely a passive byproduct of genome evolution and constitutes a signal that aids control of cell fate.
Collapse
Affiliation(s)
- Raphaël Pantier
- The Wellcome Centre for Cell Biology, University of Edinburgh, Michael Swann Building, Max Born Crescent, The King's Buildings, Edinburgh EH9 3BF, UK
| | - Kashyap Chhatbar
- The Wellcome Centre for Cell Biology, University of Edinburgh, Michael Swann Building, Max Born Crescent, The King's Buildings, Edinburgh EH9 3BF, UK; Informatics Forum, School of Informatics, University of Edinburgh, 10 Crichton Street, Edinburgh EH8 9AB, UK
| | - Timo Quante
- The Wellcome Centre for Cell Biology, University of Edinburgh, Michael Swann Building, Max Born Crescent, The King's Buildings, Edinburgh EH9 3BF, UK
| | - Konstantina Skourti-Stathaki
- The Wellcome Centre for Cell Biology, University of Edinburgh, Michael Swann Building, Max Born Crescent, The King's Buildings, Edinburgh EH9 3BF, UK
| | - Justyna Cholewa-Waclaw
- The Wellcome Centre for Cell Biology, University of Edinburgh, Michael Swann Building, Max Born Crescent, The King's Buildings, Edinburgh EH9 3BF, UK
| | - Grace Alston
- The Wellcome Centre for Cell Biology, University of Edinburgh, Michael Swann Building, Max Born Crescent, The King's Buildings, Edinburgh EH9 3BF, UK
| | - Beatrice Alexander-Howden
- The Wellcome Centre for Cell Biology, University of Edinburgh, Michael Swann Building, Max Born Crescent, The King's Buildings, Edinburgh EH9 3BF, UK
| | - Heng Yang Lee
- The Wellcome Centre for Cell Biology, University of Edinburgh, Michael Swann Building, Max Born Crescent, The King's Buildings, Edinburgh EH9 3BF, UK
| | - Atlanta G Cook
- The Wellcome Centre for Cell Biology, University of Edinburgh, Michael Swann Building, Max Born Crescent, The King's Buildings, Edinburgh EH9 3BF, UK
| | - Cornelia G Spruijt
- Department of Molecular Biology, Faculty of Science, Radboud Institute for Molecular Life Sciences, Oncode Institute, Radboud University Nijmegen, Nijmegen, the Netherlands
| | - Michiel Vermeulen
- Department of Molecular Biology, Faculty of Science, Radboud Institute for Molecular Life Sciences, Oncode Institute, Radboud University Nijmegen, Nijmegen, the Netherlands
| | - Jim Selfridge
- The Wellcome Centre for Cell Biology, University of Edinburgh, Michael Swann Building, Max Born Crescent, The King's Buildings, Edinburgh EH9 3BF, UK
| | - Adrian Bird
- The Wellcome Centre for Cell Biology, University of Edinburgh, Michael Swann Building, Max Born Crescent, The King's Buildings, Edinburgh EH9 3BF, UK.
| |
Collapse
|
8
|
A century of bias in genetics and evolution. Heredity (Edinb) 2019; 123:33-43. [PMID: 31189901 DOI: 10.1038/s41437-019-0194-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 01/29/2019] [Accepted: 01/29/2019] [Indexed: 02/08/2023] Open
Abstract
Mendel proposed that the heritable material is particulate and that transmission of alleles is unbiased. An assumption of unbiased transmission was necessary to show how variation can be preserved in the absence of selection, so overturning an early objection to Darwinism. In the second half of the twentieth century, it was widely recognised that even strongly deleterious alleles can invade if they have strongly biased transmission (i.e. strong segregation distortion). The spread of alleles with distorted segregation can explain many curiosities. More recently, the selectionist-neutralist duopoly was broken by the realisation that biased gene conversion can explain phenomena such as mammalian isochore structures. An initial focus on unbiased transmission in 1919, has thus given way to an interest in biased transmission in 2019. A focus on very weak bias is now possible owing to technological advances, although technical biases may put a limit on resolving power. To understand the relevance of weak bias we could profit from having the concept of the effectively Mendelian allele, a companion to the effectively neutral allele. Understanding the implications of unbiased and biased transmission may, I suggest, be a good way to teach evolution so as to avoid psychological biases.
Collapse
|
9
|
Rousselle M, Laverré A, Figuet E, Nabholz B, Galtier N. Influence of Recombination and GC-biased Gene Conversion on the Adaptive and Nonadaptive Substitution Rate in Mammals versus Birds. Mol Biol Evol 2019; 36:458-471. [PMID: 30590692 PMCID: PMC6389324 DOI: 10.1093/molbev/msy243] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Recombination is expected to affect functional sequence evolution in several ways. On the one hand, recombination is thought to improve the efficiency of multilocus selection by dissipating linkage disequilibrium. On the other hand, natural selection can be counteracted by recombination-associated transmission distorters such as GC-biased gene conversion (gBGC), which tends to promote G and C alleles irrespective of their fitness effect in high-recombining regions. It has been suggested that gBGC might impact coding sequence evolution in vertebrates, and particularly the ratio of nonsynonymous to synonymous substitution rates (dN/dS). However, distinctive gBGC patterns have been reported in mammals and birds, maybe reflecting the documented contrasts in evolutionary dynamics of recombination rate between these two taxa. Here, we explore how recombination and gBGC affect coding sequence evolution in mammals and birds by analyzing proteome-wide data in six species of Galloanserae (fowls) and six species of catarrhine primates. We estimated the dN/dS ratio and rates of adaptive and nonadaptive evolution in bins of genes of increasing recombination rate, separately analyzing AT → GC, GC → AT, and G ↔ C/A ↔ T mutations. We show that in both taxa, recombination and gBGC entail a decrease in dN/dS. Our analysis indicates that recombination enhances the efficiency of purifying selection by lowering Hill-Robertson effects, whereas gBGC leads to an overestimation of the adaptive rate of AT → GC mutations. Finally, we report a mutagenic effect of recombination, which is independent of gBGC.
Collapse
Affiliation(s)
| | - Alexandre Laverré
- ISEM, Université de Montpellier, CNRS, IRD, EPHE, Montpellier, France
| | - Emeric Figuet
- ISEM, Université de Montpellier, CNRS, IRD, EPHE, Montpellier, France
| | - Benoit Nabholz
- ISEM, Université de Montpellier, CNRS, IRD, EPHE, Montpellier, France
| | - Nicolas Galtier
- ISEM, Université de Montpellier, CNRS, IRD, EPHE, Montpellier, France
| |
Collapse
|
10
|
Tilak MK, Botero-Castro F, Galtier N, Nabholz B. Illumina Library Preparation for Sequencing the GC-Rich Fraction of Heterogeneous Genomic DNA. Genome Biol Evol 2018; 10:616-622. [PMID: 29385572 PMCID: PMC5808798 DOI: 10.1093/gbe/evy022] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/18/2018] [Indexed: 02/06/2023] Open
Abstract
Standard Illumina libraries are biased toward sequences of intermediate GC-content. This results in an underrepresentation of GC-rich regions in sequencing projects of genomes with heterogeneous base composition, such as mammals and birds. We developed a simple, cost-effective protocol to enrich sheared genomic DNA in its GC-rich fraction by subtracting AT-rich DNA. This was achieved by heating DNA up to 90 °C before applying Illumina library preparation. We tested the new approach on chicken DNA and found that heated DNA increased average coverage in the GC-richest chromosomes by a factor up to six. Using a Taq polymerase supposedly appropriate for PCR amplification of GC-rich sequences had a much weaker effect. Our protocol should greatly facilitate sequencing and resequencing of the GC-richest regions of heterogeneous genomes, in combination with standard short-read and long-read technologies.
Collapse
Affiliation(s)
- Marie-Ka Tilak
- Institut des Sciences de l'Evolution, ISEM, Université de Montellier, CNRS, IRD, EPHE, France
| | - Fidel Botero-Castro
- Institut des Sciences de l'Evolution, ISEM, Université de Montellier, CNRS, IRD, EPHE, France
| | - Nicolas Galtier
- Institut des Sciences de l'Evolution, ISEM, Université de Montellier, CNRS, IRD, EPHE, France
| | - Benoit Nabholz
- Institut des Sciences de l'Evolution, ISEM, Université de Montellier, CNRS, IRD, EPHE, France
| |
Collapse
|
11
|
Dutta R, Saha-Mandal A, Cheng X, Qiu S, Serpen J, Fedorova L, Fedorov A. 1000 human genomes carry widespread signatures of GC biased gene conversion. BMC Genomics 2018; 19:256. [PMID: 29661137 PMCID: PMC5902838 DOI: 10.1186/s12864-018-4593-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Accepted: 03/12/2018] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND GC-Biased Gene Conversion (gBGC) is one of the important theories put forward to explain profound long-range non-randomness in nucleotide compositions along mammalian chromosomes. Nucleotide changes due to gBGC are hard to distinguish from regular mutations. Here, we present an algorithm for analysis of millions of known SNPs that detects a subset of so-called "SNP flip-over" events representing recent gBGC nucleotide changes, which occurred in previous generations via non-crossover meiotic recombination. RESULTS This algorithm has been applied in a large-scale analysis of 1092 sequenced human genomes. Altogether, 56,328 regions on all autosomes have been examined, which revealed 223,955 putative gBGC cases leading to SNP flip-overs. We detected a strong bias (11.7% ± 0.2% excess) in AT- > GC over GC- > AT base pair changes within the entire set of putative gBGC cases. CONCLUSIONS On average, a human gamete acquires 7 SNP flip-over events, in which one allele is replaced by its complementary allele during the process of meiotic non-crossover recombination. In each meiosis event, on average, gBGC results in replacement of 7 AT base pairs by GC base pairs, while only 6 GC pairs are replaced by AT pairs. Therefore, every human gamete is enriched by one GC pair. Happening over millions of years of evolution, this bias may be a noticeable force in changing the nucleotide composition landscape along chromosomes.
Collapse
Affiliation(s)
- Rajib Dutta
- Program in Biomedical Sciences, University of Toledo, Health Science Campus, Toledo, OH 43614 USA
- Department of Medicine, University of Toledo, Health Science Campus, Toledo, OH 43614 USA
- Present Address: Center for Cardiovascular and Pulmonary Research, Nationwide Children’s Hospital, 700 Children’s Dr, Columbus, OH USA
| | - Arnab Saha-Mandal
- Program in Bioinformatics and Proteomics/Genomics, University of Toledo, Health Science Campus, Toledo, OH 43614 USA
- Present Address: Biochemistry and Molecular Biology Graduate Program, Cumming School of Medicine, University of Calgary, Calgary, AB T2N4N1 Canada
| | - Xi Cheng
- Program in Biomedical Sciences, University of Toledo, Health Science Campus, Toledo, OH 43614 USA
| | - Shuhao Qiu
- Program in Biomedical Sciences, University of Toledo, Health Science Campus, Toledo, OH 43614 USA
- Department of Medicine, University of Toledo, Health Science Campus, Toledo, OH 43614 USA
| | - Jasmine Serpen
- SURF Program, University of Toledo, Health Science Campus, Toledo, OH 43614 USA
- College of Arts and Sciences, Washington University in St. Louis, 1 Brookings Dr, St. Louis, MO 63130 USA
| | | | - Alexei Fedorov
- Department of Medicine, University of Toledo, Health Science Campus, Toledo, OH 43614 USA
- Program in Bioinformatics and Proteomics/Genomics, University of Toledo, Health Science Campus, Toledo, OH 43614 USA
| |
Collapse
|
12
|
Murray GGR, Soares AER, Novak BJ, Schaefer NK, Cahill JA, Baker AJ, Demboski JR, Doll A, Da Fonseca RR, Fulton TL, Gilbert MTP, Heintzman PD, Letts B, McIntosh G, O'Connell BL, Peck M, Pipes ML, Rice ES, Santos KM, Sohrweide AG, Vohr SH, Corbett-Detig RB, Green RE, Shapiro B. Natural selection shaped the rise and fall of passenger pigeon genomic diversity. Science 2018; 358:951-954. [PMID: 29146814 DOI: 10.1126/science.aao0960] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Accepted: 09/28/2017] [Indexed: 12/13/2022]
Abstract
The extinct passenger pigeon was once the most abundant bird in North America, and possibly the world. Although theory predicts that large populations will be more genetically diverse, passenger pigeon genetic diversity was surprisingly low. To investigate this disconnect, we analyzed 41 mitochondrial and 4 nuclear genomes from passenger pigeons and 2 genomes from band-tailed pigeons, which are passenger pigeons' closest living relatives. Passenger pigeons' large population size appears to have allowed for faster adaptive evolution and removal of harmful mutations, driving a huge loss in their neutral genetic diversity. These results demonstrate the effect that selection can have on a vertebrate genome and contradict results that suggested that population instability contributed to this species's surprisingly rapid extinction.
Collapse
Affiliation(s)
- Gemma G R Murray
- Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, CA 95064, USA
| | - André E R Soares
- Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, CA 95064, USA
| | - Ben J Novak
- Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, CA 95064, USA.,Revive & Restore, Sausalito, CA 94965, USA
| | - Nathan K Schaefer
- Department of Biomolecular Engineering, University of California Santa Cruz, Santa Cruz, CA 95064, USA
| | - James A Cahill
- Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, CA 95064, USA
| | - Allan J Baker
- Department of Natural History, Royal Ontario Museum, Toronto, ON M5S 2C6, Canada
| | - John R Demboski
- Department of Zoology, Denver Museum of Nature and Science, Denver, CO 80205, USA
| | - Andrew Doll
- Department of Zoology, Denver Museum of Nature and Science, Denver, CO 80205, USA
| | - Rute R Da Fonseca
- Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, Øster Voldgade 5-7, 1350 Copenhagen, Denmark
| | - Tara L Fulton
- Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, CA 95064, USA.,Environment and Climate Change Canada, 9250-49th Street, Edmonton, AB T6B 1K5, Canada
| | - M Thomas P Gilbert
- Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, Øster Voldgade 5-7, 1350 Copenhagen, Denmark.,NTNU University Museum, 7491 Trondheim, Norway
| | - Peter D Heintzman
- Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, CA 95064, USA.,Tromsø University Museum, UiT-The Arctic University of Norway, 9037 Tromsø, Norway
| | - Brandon Letts
- Department of Biology, The Pennsylvania State University, University Park, PA 16802, USA
| | - George McIntosh
- Collections Department, Rochester Museum and Science Center, Rochester, NY 14607, USA
| | - Brendan L O'Connell
- Department of Biomolecular Engineering, University of California Santa Cruz, Santa Cruz, CA 95064, USA
| | - Mark Peck
- Department of Zoology, Denver Museum of Nature and Science, Denver, CO 80205, USA
| | | | - Edward S Rice
- Department of Biomolecular Engineering, University of California Santa Cruz, Santa Cruz, CA 95064, USA
| | - Kathryn M Santos
- Collections Department, Rochester Museum and Science Center, Rochester, NY 14607, USA
| | | | - Samuel H Vohr
- Department of Biomolecular Engineering, University of California Santa Cruz, Santa Cruz, CA 95064, USA
| | - Russell B Corbett-Detig
- Department of Biomolecular Engineering, University of California Santa Cruz, Santa Cruz, CA 95064, USA.,University of California Santa Cruz Genomics Institute, 1156 High Street, Santa Cruz, CA 95064, USA
| | - Richard E Green
- Department of Biomolecular Engineering, University of California Santa Cruz, Santa Cruz, CA 95064, USA.,University of California Santa Cruz Genomics Institute, 1156 High Street, Santa Cruz, CA 95064, USA
| | - Beth Shapiro
- Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, CA 95064, USA. .,University of California Santa Cruz Genomics Institute, 1156 High Street, Santa Cruz, CA 95064, USA
| |
Collapse
|
13
|
Costantini M, Musto H. The Isochores as a Fundamental Level of Genome Structure and Organization: A General Overview. J Mol Evol 2017; 84:93-103. [PMID: 28243687 DOI: 10.1007/s00239-017-9785-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Accepted: 02/15/2017] [Indexed: 11/30/2022]
Abstract
The recent availability of a number of fully sequenced genomes (including marine organisms) allowed to map very precisely the isochores, based on DNA sequences, confirming the results obtained before genome sequencing by the ultracentrifugation in CsCl. In fact, the analytical profile of human DNA showed that the vertebrate genome is a mosaic of isochores, typically megabase-size DNA segments that belong to a small number of families characterized by different GC levels. In this review, we will concentrate on some general genome features regarding the compositional organization from different organisms and their evolution, ranging from vertebrates to invertebrates until unicellular organisms. Since isochores are tightly linked to biological properties such as gene density, replication timing, and recombination, the new level of detail provided by the isochore map helped the understanding of genome structure, function, and evolution. All the findings reported here confirm the idea that the isochores can be considered as a "fundamental level of genome structure and organization." We stress that we do not discuss in this review the origin of isochores, which is still a matter of controversy, but we focus on well established structural and physiological aspects.
Collapse
Affiliation(s)
- Maria Costantini
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121, Napoli, Italy.
| | - Héctor Musto
- Laboratorio de Organización y Evolución del Genoma, Unidad de Genómica Evolutiva, Facultad de Ciencias, 11400, Montevideo, Uruguay
| |
Collapse
|
14
|
Badouin H, Gladieux P, Gouzy J, Siguenza S, Aguileta G, Snirc A, Le Prieur S, Jeziorski C, Branca A, Giraud T. Widespread selective sweeps throughout the genome of model plant pathogenic fungi and identification of effector candidates. Mol Ecol 2017; 26:2041-2062. [DOI: 10.1111/mec.13976] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2016] [Revised: 12/15/2016] [Accepted: 12/19/2016] [Indexed: 12/11/2022]
Affiliation(s)
- H. Badouin
- Ecologie Systématique Evolution, Univ. Paris-Sud, CNRS, AgroParisTech; Université Paris-Saclay; 91400 Orsay France
| | - P. Gladieux
- Ecologie Systématique Evolution, Univ. Paris-Sud, CNRS, AgroParisTech; Université Paris-Saclay; 91400 Orsay France
- UMR BGPI; Campus International de Baillarguet; INRA; 34398 Montpellier France
| | - J. Gouzy
- Laboratoire des Interactions Plantes-Microorganismes (LIPM); UMR441; INRA; 31326 Castanet-Tolosan France
- Laboratoire des Interactions Plantes-Microorganismes (LIPM); UMR2594; CNRS; 31326 Castanet-Tolosan France
| | - S. Siguenza
- Laboratoire des Interactions Plantes-Microorganismes (LIPM); UMR441; INRA; 31326 Castanet-Tolosan France
- Laboratoire des Interactions Plantes-Microorganismes (LIPM); UMR2594; CNRS; 31326 Castanet-Tolosan France
| | - G. Aguileta
- Ecologie Systématique Evolution, Univ. Paris-Sud, CNRS, AgroParisTech; Université Paris-Saclay; 91400 Orsay France
| | - A. Snirc
- Ecologie Systématique Evolution, Univ. Paris-Sud, CNRS, AgroParisTech; Université Paris-Saclay; 91400 Orsay France
| | - S. Le Prieur
- Ecologie Systématique Evolution, Univ. Paris-Sud, CNRS, AgroParisTech; Université Paris-Saclay; 91400 Orsay France
| | - C. Jeziorski
- Genotoul; GeT-PlaGe; INRA Auzeville 31326 Castanet-Tolosan France
- UAR1209; INRA Auzeville 31326 Castanet-Tolosan France
| | - A. Branca
- Ecologie Systématique Evolution, Univ. Paris-Sud, CNRS, AgroParisTech; Université Paris-Saclay; 91400 Orsay France
| | - T. Giraud
- Ecologie Systématique Evolution, Univ. Paris-Sud, CNRS, AgroParisTech; Université Paris-Saclay; 91400 Orsay France
| |
Collapse
|
15
|
Drillon G, Audit B, Argoul F, Arneodo A. Evidence of selection for an accessible nucleosomal array in human. BMC Genomics 2016; 17:526. [PMID: 27472913 PMCID: PMC4966569 DOI: 10.1186/s12864-016-2880-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Accepted: 07/04/2016] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Recently, a physical model of nucleosome formation based on sequence-dependent bending properties of the DNA double-helix has been used to reveal some enrichment of nucleosome-inhibiting energy barriers (NIEBs) nearby ubiquitous human "master" replication origins. Here we use this model to predict the existence of about 1.6 millions NIEBs over the 22 human autosomes. RESULTS We show that these high energy barriers of mean size 153 bp correspond to nucleosome-depleted regions (NDRs) in vitro, as expected, but also in vivo. On either side of these NIEBs, we observe, in vivo and in vitro, a similar compacted nucleosome ordering, suggesting an absence of chromatin remodeling. This nucleosomal ordering strongly correlates with oscillations of the GC content as well as with the interspecies and intraspecies mutation profiles along these regions. Comparison of these divergence rates reveals the existence of both positive and negative selections linked to nucleosome positioning around these intrinsic NDRs. Overall, these NIEBs and neighboring nucleosomes cover 37.5 % of the human genome where nucleosome occupancy is stably encoded in the DNA sequence. These 1 kb-sized regions of intrinsic nucleosome positioning are equally found in GC-rich and GC-poor isochores, in early and late replicating regions, in intergenic and genic regions but not at gene promoters. CONCLUSION The source of selection pressure on the NIEBs has yet to be resolved in future work. One possible scenario is that these widely distributed chromatin patterns have been selected in human to impair the condensation of the nucleosomal array into the 30 nm chromatin fiber, so as to facilitate the epigenetic regulation of nuclear functions in a cell-type-specific manner.
Collapse
Affiliation(s)
- Guénola Drillon
- Univ Lyon, Ens de Lyon, Univ Claude Bernard Lyon 1, CNRS, Laboratoire de Physique, Lyon, F-69342 France
| | - Benjamin Audit
- Univ Lyon, Ens de Lyon, Univ Claude Bernard Lyon 1, CNRS, Laboratoire de Physique, Lyon, F-69342 France
| | - Françoise Argoul
- Univ Lyon, Ens de Lyon, Univ Claude Bernard Lyon 1, CNRS, Laboratoire de Physique, Lyon, F-69342 France
- LOMA, Université de Bordeaux, CNRS, UMR 5798, 51 Cours de le Libération, Talence, F-33405 France
| | - Alain Arneodo
- Univ Lyon, Ens de Lyon, Univ Claude Bernard Lyon 1, CNRS, Laboratoire de Physique, Lyon, F-69342 France
- LOMA, Université de Bordeaux, CNRS, UMR 5798, 51 Cours de le Libération, Talence, F-33405 France
| |
Collapse
|
16
|
Bolívar P, Mugal CF, Nater A, Ellegren H. Recombination Rate Variation Modulates Gene Sequence Evolution Mainly via GC-Biased Gene Conversion, Not Hill-Robertson Interference, in an Avian System. Mol Biol Evol 2015; 33:216-27. [PMID: 26446902 PMCID: PMC4693978 DOI: 10.1093/molbev/msv214] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The ratio of nonsynonymous to synonymous substitution rates (ω) is often used to measure the strength of natural selection. However, ω may be influenced by linkage among different targets of selection, that is, Hill–Robertson interference (HRI), which reduces the efficacy of selection. Recombination modulates the extent of HRI but may also affect ω by means of GC-biased gene conversion (gBGC), a process leading to a preferential fixation of G:C (“strong,” S) over A:T (“weak,” W) alleles. As HRI and gBGC can have opposing effects on ω, it is essential to understand their relative impact to make proper inferences of ω. We used a model that separately estimated S-to-S, S-to-W, W-to-S, and W-to-W substitution rates in 8,423 avian genes in the Ficedula flycatcher lineage. We found that the W-to-S substitution rate was positively, and the S-to-W rate negatively, correlated with recombination rate, in accordance with gBGC but not predicted by HRI. The W-to-S rate further showed the strongest impact on both dN and dS. However, since the effects were stronger at 4-fold than at 0-fold degenerated sites, likely because the GC content of these sites is farther away from its equilibrium, ω slightly decreases with increasing recombination rate, which could falsely be interpreted as a consequence of HRI. We corroborated this hypothesis analytically and demonstrate that under particular conditions, ω can decrease with increasing recombination rate. Analyses of the site-frequency spectrum showed that W-to-S mutations were skewed toward high, and S-to-W mutations toward low, frequencies, consistent with a prevalent gBGC-driven fixation bias.
Collapse
Affiliation(s)
- Paulina Bolívar
- Department of Evolutionary Biology, Evolutionary Biology Centre, Uppsala University, Uppsala, Sweden
| | - Carina F Mugal
- Department of Evolutionary Biology, Evolutionary Biology Centre, Uppsala University, Uppsala, Sweden
| | - Alexander Nater
- Department of Evolutionary Biology, Evolutionary Biology Centre, Uppsala University, Uppsala, Sweden
| | - Hans Ellegren
- Department of Evolutionary Biology, Evolutionary Biology Centre, Uppsala University, Uppsala, Sweden
| |
Collapse
|
17
|
Weber CC, Nabholz B, Romiguier J, Ellegren H. Kr/Kc but not dN/dS correlates positively with body mass in birds, raising implications for inferring lineage-specific selection. Genome Biol 2015; 15:542. [PMID: 25607475 PMCID: PMC4264323 DOI: 10.1186/s13059-014-0542-8] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Accepted: 11/13/2014] [Indexed: 02/02/2023] Open
Abstract
Background The ratio of the rates of non-synonymous and synonymous substitution (dN/dS) is commonly used to estimate selection in coding sequences. It is often suggested that, all else being equal, dN/dS should be lower in populations with large effective size (Ne) due to increased efficacy of purifying selection. As Ne is difficult to measure directly, life history traits such as body mass, which is typically negatively associated with population size, have commonly been used as proxies in empirical tests of this hypothesis. However, evidence of whether the expected positive correlation between body mass and dN/dS is consistently observed is conflicting. Results Employing whole genome sequence data from 48 avian species, we assess the relationship between rates of molecular evolution and life history in birds. We find a negative correlation between dN/dS and body mass, contrary to nearly neutral expectation. This raises the question whether the correlation might be a method artefact. We therefore in turn consider non-stationary base composition, divergence time and saturation as possible explanations, but find no clear patterns. However, in striking contrast to dN/dS, the ratio of radical to conservative amino acid substitutions (Kr/Kc) correlates positively with body mass. Conclusions Our results in principle accord with the notion that non-synonymous substitutions causing radical amino acid changes are more efficiently removed by selection in large populations, consistent with nearly neutral theory. These findings have implications for the use of dN/dS and suggest that caution is warranted when drawing conclusions about lineage-specific modes of protein evolution using this metric. Electronic supplementary material The online version of this article (doi:10.1186/s13059-014-0542-8) contains supplementary material, which is available to authorized users.
Collapse
|
18
|
Glémin S, Arndt PF, Messer PW, Petrov D, Galtier N, Duret L. Quantification of GC-biased gene conversion in the human genome. Genome Res 2015; 25:1215-28. [PMID: 25995268 PMCID: PMC4510005 DOI: 10.1101/gr.185488.114] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2014] [Accepted: 05/18/2015] [Indexed: 11/25/2022]
Abstract
Much evidence indicates that GC-biased gene conversion (gBGC) has a major impact on the evolution of mammalian genomes. However, a detailed quantification of the process is still lacking. The strength of gBGC can be measured from the analysis of derived allele frequency spectra (DAF), but this approach is sensitive to a number of confounding factors. In particular, we show by simulations that the inference is pervasively affected by polymorphism polarization errors and by spatial heterogeneity in gBGC strength. We propose a new general method to quantify gBGC from DAF spectra, incorporating polarization errors, taking spatial heterogeneity into account, and jointly estimating mutation bias. Applying it to human polymorphism data from the 1000 Genomes Project, we show that the strength of gBGC does not differ between hypermutable CpG sites and non-CpG sites, suggesting that in humans gBGC is not caused by the base-excision repair machinery. Genome-wide, the intensity of gBGC is in the nearly neutral area. However, given that recombination occurs primarily within recombination hotspots, 1%–2% of the human genome is subject to strong gBGC. On average, gBGC is stronger in African than in non-African populations, reflecting differences in effective population sizes. However, due to more heterogeneous recombination landscapes, the fraction of the genome affected by strong gBGC is larger in non-African than in African populations. Given that the location of recombination hotspots evolves very rapidly, our analysis predicts that, in the long term, a large fraction of the genome is affected by short episodes of strong gBGC.
Collapse
Affiliation(s)
- Sylvain Glémin
- Institut des Sciences de l'Evolution (ISEM - UMR 5554 Université de Montpellier-CNRS-IRD-EPHE), 34095 Montpellier, France; Department of Ecology and Genetics, Evolutionary Biology Centre, Uppsala University, SE-752 36 Uppsala, Sweden
| | - Peter F Arndt
- Department of Computational Molecular Biology, Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany
| | - Philipp W Messer
- Department of Biological Statistics and Computational Biology, Cornell University, Ithaca, New York 14853, USA
| | - Dmitri Petrov
- Department of Biology, Stanford University, Stanford, California 94305-5020, USA
| | - Nicolas Galtier
- Institut des Sciences de l'Evolution (ISEM - UMR 5554 Université de Montpellier-CNRS-IRD-EPHE), 34095 Montpellier, France
| | - Laurent Duret
- Laboratoire de Biométrie et Biologie Evolutive, UMR CNRS 5558, Université Lyon 1, 69622 Villeurbanne, France
| |
Collapse
|
19
|
Drillon G, Audit B, Argoul F, Arneodo A. Ubiquitous human 'master' origins of replication are encoded in the DNA sequence via a local enrichment in nucleosome excluding energy barriers. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2015; 27:064102. [PMID: 25563930 DOI: 10.1088/0953-8984/27/6/064102] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
As the elementary building block of eukaryotic chromatin, the nucleosome is at the heart of the compromise between the necessity of compacting DNA in the cell nucleus and the required accessibility to regulatory proteins. The recent availability of genome-wide experimental maps of nucleosome positions for many different organisms and cell types has provided an unprecedented opportunity to elucidate to what extent the DNA sequence conditions the primary structure of chromatin and in turn participates in the chromatin-mediated regulation of nuclear functions, such as gene expression and DNA replication. In this study, we use in vivo and in vitro genome-wide nucleosome occupancy data together with the set of nucleosome-free regions (NFRs) predicted by a physical model of nucleosome formation based on sequence-dependent bending properties of the DNA double-helix, to investigate the role of intrinsic nucleosome occupancy in the regulation of the replication spatio-temporal programme in human. We focus our analysis on the so-called replication U/N-domains that were shown to cover about half of the human genome in the germline (skew-N domains) as well as in embryonic stem cells, somatic and HeLa cells (mean replication timing U-domains). The 'master' origins of replication (MaOris) that border these megabase-sized U/N-domains were found to be specified by a few hundred kb wide regions that are hyper-sensitive to DNase I cleavage, hypomethylated, and enriched in epigenetic marks involved in transcription regulation, the hallmarks of localized open chromatin structures. Here we show that replication U/N-domain borders that are conserved in all considered cell lines have an environment highly enriched in nucleosome-excluding-energy barriers, suggesting that these ubiquitous MaOris have been selected during evolution. In contrast, MaOris that are cell-type-specific are mainly regulated epigenetically and are no longer favoured by a local abundance of intrinsic NFRs encoded in the DNA sequence. At the smaller few hundred bp scale of gene promoters, CpG-rich promoters of housekeeping genes found nearby ubiquitous MaOris as well as CpG-poor promoters of tissue-specific genes found nearby cell-type-specific MaOris, both correspond to in vivo NFRs that are not coded as nucleosome-excluding-energy barriers. Whereas the former promoters are likely to correspond to high occupancy transcription factor binding regions, the latter are an illustration that gene regulation in human is typically cell-type-specific.
Collapse
Affiliation(s)
- Guénola Drillon
- Université de Lyon, F-69000 Lyon, France. Laboratoire de Physique, CNRS UMR 5672, École Normale Supérieure de Lyon, F-69007 Lyon, France
| | | | | | | |
Collapse
|
20
|
Nikbakht H, Xia X, Hickey DA. The evolution of genomic GC content undergoes a rapid reversal within the genus Plasmodium. Genome 2015; 57:507-11. [PMID: 25633864 DOI: 10.1139/gen-2014-0158] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The genome of the malarial parasite Plasmodium falciparum is extremely AT rich. This bias toward a low GC content is a characteristic of several, but not all, species within the genus Plasmodium. We compared 4283 orthologous pairs of protein-coding sequences between Plasmodium falciparum and the less AT-biased Plasmodium vivax. Our results indicate that the common ancestor of these two species was also extremely AT rich. This means that, although there was a strong bias toward A+T during the early evolution of the ancestral Plasmodium lineage, there was a subsequent reversal of this trend during the more recent evolution of some species, such as P. vivax. Moreover, we show that not only is the P. vivax genome losing its AT richness, it is actually gaining a very significant degree of GC richness. This example illustrates the potential volatility of nucleotide content during the course of molecular evolution. Such reversible fluxes in nucleotide content within lineages could have important implications for phylogenetic reconstruction based on molecular sequence data.
Collapse
Affiliation(s)
- Hamid Nikbakht
- a Department of Biology, Concordia University, Montreal, QC H4B 1R6, Canada
| | | | | |
Collapse
|
21
|
Panda A, Podder S, Chakraborty S, Ghosh TC. GC-made protein disorder sheds new light on vertebrate evolution. Genomics 2014; 104:530-7. [PMID: 25240915 DOI: 10.1016/j.ygeno.2014.09.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2014] [Revised: 08/05/2014] [Accepted: 09/10/2014] [Indexed: 10/24/2022]
Abstract
At the emergence of endothermic vertebrates, GC rich regions of the ectothermic ancestral genomes underwent a significant GC increase. Such an increase was previously postulated to increase thermodynamic and structural stability of proteins through selective increase of protein hydrophobicity. Here, we found that, increase in GC content promotes a higher content of disorder promoting amino acid in endothermic vertebrates proteins and that the increase in hydrophobicity is mainly due to a higher content of the small disorder promoting amino acid alanine. In endothermic vertebrates, prevalence of disordered residues was found to promote functional diversity of proteins encoded by GC rich genes. Higher fraction of disordered residues in this group of proteins was also found to minimize their aggregation tendency. Thus, we propose that the GC transition has favored disordered residues to promote functional diversity in GC rich genes, and to protect them against functional loss by protein misfolding.
Collapse
Affiliation(s)
- Arup Panda
- Bioinformatics Centre, Bose Institute, P 1/12, C.I.T. Scheme VII M, Kolkata 700 054, India
| | - Soumita Podder
- Bioinformatics Centre, Bose Institute, P 1/12, C.I.T. Scheme VII M, Kolkata 700 054, India
| | - Sandip Chakraborty
- Bioinformatics Centre, Bose Institute, P 1/12, C.I.T. Scheme VII M, Kolkata 700 054, India
| | - Tapash Chandra Ghosh
- Bioinformatics Centre, Bose Institute, P 1/12, C.I.T. Scheme VII M, Kolkata 700 054, India.
| |
Collapse
|
22
|
Zaghloul L, Drillon G, Boulos RE, Argoul F, Thermes C, Arneodo A, Audit B. Large replication skew domains delimit GC-poor gene deserts in human. Comput Biol Chem 2014; 53 Pt A:153-65. [PMID: 25224847 DOI: 10.1016/j.compbiolchem.2014.08.020] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/11/2014] [Indexed: 01/25/2023]
Abstract
Besides their large-scale organization in isochores, mammalian genomes display megabase-sized regions, spanning both genes and intergenes, where the strand nucleotide composition asymmetry decreases linearly, possibly due to replication activity. These so-called skew-N domains cover about a third of the human genome and are bordered by two skew upward jumps that were hypothesized to compose a subset of "master" replication origins active in the germline. Skew-N domains were shown to exhibit a particular gene organization. Genes with CpG-rich promoters likely expressed in the germline are over represented near the master replication origins, with large genes being co-oriented with replication fork progression, which suggests some coordination of replication and transcription. In this study, we describe another skew structure that covers ∼13% of the human genome and that is bordered by putative master replication origins similar to the ones flanking skew-N domains. These skew-split-N domains have a shape reminiscent of a N, but split in half, leaving in the center a region of null skew whose length increases with domain size. These central regions (median size ∼860 kb) have a homogeneous composition, i.e. both a null and constant skew and a constant and low GC content. They correspond to heterochromatin gene deserts found in low-GC isochores with an average gene density of 0.81 promoters/Mb as compared to 7.73 promoters/Mb genome wide. The analysis of epigenetic marks and replication timing data confirms that, in these late replicating heterochomatic regions, the initiation of replication is likely to be random. This contrasts with the transcriptionally active euchromatin state found around the bordering well positioned master replication origins. Altogether skew-N domains and skew-split-N domains cover about 50% of the human genome.
Collapse
Affiliation(s)
- Lamia Zaghloul
- Université de Lyon, F-69000 Lyon, France; Laboratoire de Physique, CNRS UMR 5672, Ecole Normale Supérieure de Lyon, F-69007 Lyon, France
| | - Guénola Drillon
- Université de Lyon, F-69000 Lyon, France; Laboratoire de Physique, CNRS UMR 5672, Ecole Normale Supérieure de Lyon, F-69007 Lyon, France
| | - Rasha E Boulos
- Université de Lyon, F-69000 Lyon, France; Laboratoire de Physique, CNRS UMR 5672, Ecole Normale Supérieure de Lyon, F-69007 Lyon, France
| | - Françoise Argoul
- Université de Lyon, F-69000 Lyon, France; Laboratoire de Physique, CNRS UMR 5672, Ecole Normale Supérieure de Lyon, F-69007 Lyon, France
| | - Claude Thermes
- Centre de Génétique Moléculaire, CNRS UPR 3404, Gif-sur-Yvette, France
| | - Alain Arneodo
- Université de Lyon, F-69000 Lyon, France; Laboratoire de Physique, CNRS UMR 5672, Ecole Normale Supérieure de Lyon, F-69007 Lyon, France
| | - Benjamin Audit
- Université de Lyon, F-69000 Lyon, France; Laboratoire de Physique, CNRS UMR 5672, Ecole Normale Supérieure de Lyon, F-69007 Lyon, France.
| |
Collapse
|
23
|
Dutheil JY, Gaillard S, Stukenbrock EH. MafFilter: a highly flexible and extensible multiple genome alignment files processor. BMC Genomics 2014; 15:53. [PMID: 24447531 PMCID: PMC3904536 DOI: 10.1186/1471-2164-15-53] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2013] [Accepted: 01/16/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Sequence alignments are the starting point for most evolutionary and comparative analyses. Full genome sequences can be compared to study patterns of within and between species variation. Genome sequence alignments are complex structures containing information such as coordinates, quality scores and synteny structure, which are stored in Multiple Alignment Format (MAF) files. Processing these alignments therefore involves parsing and manipulating typically large MAF files in an efficient way. RESULTS MafFilter is a command-line driven program written in C++ that enables the processing of genome alignments stored in the Multiple Alignment Format in an efficient and extensible manner. It provides an extensive set of tools which can be parametrized and combined by the user via option files. We demonstrate the software's functionality and performance on several biological examples covering Primate genomics and fungal population genomics. Example analyses involve window-based alignment filtering, feature extractions and various statistics, phylogenetics and population genomics calculations. CONCLUSIONS MafFilter is a highly efficient and flexible tool to analyse multiple genome alignments. By allowing the user to combine a large set of available methods, as well as designing his/her own, it enables the design of custom data filtering and analysis pipelines for genomic studies. MafFilter is an open source software available at http://bioweb.me/maffilter.
Collapse
Affiliation(s)
- Julien Y Dutheil
- Max Planck Institute for Terrestrial Microbiology, Department of Organismic Interactions, Marburg, Germany.
| | | | | |
Collapse
|
24
|
Weber CC, Boussau B, Romiguier J, Jarvis ED, Ellegren H. Evidence for GC-biased gene conversion as a driver of between-lineage differences in avian base composition. Genome Biol 2014; 15:549. [PMID: 25496599 PMCID: PMC4290106 DOI: 10.1186/s13059-014-0549-1] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2014] [Accepted: 11/19/2014] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND While effective population size (Ne) and life history traits such as generation time are known to impact substitution rates, their potential effects on base composition evolution are less well understood. GC content increases with decreasing body mass in mammals, consistent with recombination-associated GC biased gene conversion (gBGC) more strongly impacting these lineages. However, shifts in chromosomal architecture and recombination landscapes between species may complicate the interpretation of these results. In birds, interchromosomal rearrangements are rare and the recombination landscape is conserved, suggesting that this group is well suited to assess the impact of life history on base composition. RESULTS Employing data from 45 newly and 3 previously sequenced avian genomes covering a broad range of taxa, we found that lineages with large populations and short generations exhibit higher GC content. The effect extends to both coding and non-coding sites, indicating that it is not due to selection on codon usage. Consistent with recombination driving base composition, GC content and heterogeneity were positively correlated with the rate of recombination. Moreover, we observed ongoing increases in GC in the majority of lineages. CONCLUSIONS Our results provide evidence that gBGC may drive patterns of nucleotide composition in avian genomes and are consistent with more effective gBGC in large populations and a greater number of meioses per unit time; that is, a shorter generation time. Thus, in accord with theoretical predictions, base composition evolution is substantially modulated by species life history.
Collapse
Affiliation(s)
- Claudia C Weber
- />Department of Evolutionary Biology, Evolutionary Biology Centre, Uppsala University, Norbyvägen 18D, SE-752 36 Uppsala, Sweden
| | - Bastien Boussau
- />Laboratoire de Biométrie et Biologie Evolutive, Université de Lyon, Université Lyon 1, CNRS, UMR5558 Villeurbanne, France
| | | | - Erich D Jarvis
- />Department of Neurobiology, Howard Hughes Medical Institute, Duke University Medical Center, Durham, NC USA
| | - Hans Ellegren
- />Department of Evolutionary Biology, Evolutionary Biology Centre, Uppsala University, Norbyvägen 18D, SE-752 36 Uppsala, Sweden
| |
Collapse
|
25
|
De Maio N, Schlötterer C, Kosiol C. Linking great apes genome evolution across time scales using polymorphism-aware phylogenetic models. Mol Biol Evol 2013; 30:2249-62. [PMID: 23906727 PMCID: PMC3773373 DOI: 10.1093/molbev/mst131] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The genomes of related species contain valuable information on the history of the considered taxa. Great apes in particular exhibit variation of evolutionary patterns along their genomes. However, the great ape data also bring new challenges, such as the presence of incomplete lineage sorting and ancestral shared polymorphisms. Previous methods for genome-scale analysis are restricted to very few individuals or cannot disentangle the contribution of mutation rates and fixation biases. This represents a limitation both for the understanding of these forces as well as for the detection of regions affected by selection. Here, we present a new model designed to estimate mutation rates and fixation biases from genetic variation within and between species. We relax the assumption of instantaneous substitutions, modeling substitutions as mutational events followed by a gradual fixation. Hence, we straightforwardly account for shared ancestral polymorphisms and incomplete lineage sorting. We analyze genome-wide synonymous site alignments of human, chimpanzee, and two orangutan species. From each taxon, we include data from several individuals. We estimate mutation rates and GC-biased gene conversion intensity. We find that both mutation rates and biased gene conversion vary with GC content. We also find lineage-specific differences, with weaker fixation biases in orangutan species, suggesting a reduced historical effective population size. Finally, our results are consistent with directional selection acting on coding sequences in relation to exonic splicing enhancers.
Collapse
Affiliation(s)
- Nicola De Maio
- Institut für Populationsgenetik, Vetmeduni Vienna, Wien, Austria
| | | | | |
Collapse
|
26
|
Matsubara K, Kuraku S, Tarui H, Nishimura O, Nishida C, Agata K, Kumazawa Y, Matsuda Y. Intra-genomic GC heterogeneity in sauropsids: evolutionary insights from cDNA mapping and GC(3) profiling in snake. BMC Genomics 2012; 13:604. [PMID: 23140509 PMCID: PMC3549455 DOI: 10.1186/1471-2164-13-604] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2012] [Accepted: 10/24/2012] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Extant sauropsids (reptiles and birds) are divided into two major lineages, the lineage of Testudines (turtles) and Archosauria (crocodilians and birds) and the lineage of Lepidosauria (tuatara, lizards, worm lizards and snakes). Karyotypes of these sauropsidan groups generally consist of macrochromosomes and microchromosomes. In chicken, microchromosomes exhibit a higher GC-content than macrochromosomes. To examine the pattern of intra-genomic GC heterogeneity in lepidosaurian genomes, we constructed a cytogenetic map of the Japanese four-striped rat snake (Elaphe quadrivirgata) with 183 cDNA clones by fluorescence in situ hybridization, and examined the correlation between the GC-content of exonic third codon positions (GC3) of the genes and the size of chromosomes on which the genes were localized. RESULTS Although GC3 distribution of snake genes was relatively homogeneous compared with those of the other amniotes, microchromosomal genes showed significantly higher GC3 than macrochromosomal genes as in chicken. Our snake cytogenetic map also identified several conserved segments between the snake macrochromosomes and the chicken microchromosomes. Cross-species comparisons revealed that GC3 of most snake orthologs in such macrochromosomal segments were GC-poor (GC3 < 50%) whereas those of chicken orthologs in microchromosomes were relatively GC-rich (GC3 ≥ 50%). CONCLUSION Our results suggest that the chromosome size-dependent GC heterogeneity had already occurred before the lepidosaur-archosaur split, 275 million years ago. This character was probably present in the common ancestor of lepidosaurs and but lost in the lineage leading to Anolis during the diversification of lepidosaurs. We also identified several genes whose GC-content might have been influenced by the size of the chromosomes on which they were harbored over the course of sauropsid evolution.
Collapse
Affiliation(s)
- Kazumi Matsubara
- Department of Information and Biological Sciences, Graduate School of Natural Sciences, Nagoya City University, 1 Yamanohata, Mizuho-cho, Mizuho-ku, Nagoya, Aichi 467-8501, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
27
|
van der Kuyl AC, Berkhout B. The biased nucleotide composition of the HIV genome: a constant factor in a highly variable virus. Retrovirology 2012; 9:92. [PMID: 23131071 PMCID: PMC3511177 DOI: 10.1186/1742-4690-9-92] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2012] [Accepted: 10/14/2012] [Indexed: 01/09/2023] Open
Abstract
Viruses often deviate from their hosts in the nucleotide composition of their genomes. The RNA genome of the lentivirus family of retroviruses, including human immunodeficiency virus (HIV), contains e.g. an above average percentage of adenine (A) nucleotides, while being extremely poor in cytosine (C). Such a deviant base composition has implications for the amino acids that are encoded by the open reading frames (ORFs), both in the requirement of specific tRNA species and in the preference for amino acids encoded by e.g. A-rich codons. Nucleotide composition does obviously affect the secondary and tertiary structure of the RNA genome and its biological functions, but it does also influence phylogenetic analysis of viral genome sequences, and possibly the activity of the integrated DNA provirus. Over time, the nucleotide composition of the HIV-1 genome is exceptionally conserved, varying by less than 1% per base position per isolate within either group M, N, or O during 1983–2009. This extreme stability of the nucleotide composition may possibly be achieved by negative selection, perhaps conserving semi-stable RNA secondary structure as reverse transcription would be significantly affected for a less A-rich genome where secondary structures are expected to be more stable and thus more difficult to unfold. This review will discuss all aspects of the lentiviral genome composition, both of the RNA and of its derived double-stranded DNA genome, with a focus on HIV-1, the nucleotide composition over time, the effects of artificially humanized codons as well as contributions of immune system pressure on HIV nucleotide bias.
Collapse
Affiliation(s)
- Antoinette C van der Kuyl
- Laboratory of Experimental Virology, Department of Medical Microbiology, Center for Infection and Immunity Amsterdam, Academic Medical Center of the University of Amsterdam, Meibergdreef 15, Amsterdam, AZ 1105, The Netherlands.
| | | |
Collapse
|
28
|
Lartillot N. Phylogenetic patterns of GC-biased gene conversion in placental mammals and the evolutionary dynamics of recombination landscapes. Mol Biol Evol 2012; 30:489-502. [PMID: 23079417 DOI: 10.1093/molbev/mss239] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
GC-biased gene conversion (gBGC) is a major evolutionary force shaping genomic nucleotide landscapes, distorting the estimation of the strength of selection, and having potentially deleterious effects on genome-wide fitness. Yet, a global quantitative picture, at large evolutionary scale, of the relative strength of gBGC compared with selection and random drift is still lacking. Furthermore, owing to its dependence on the local recombination rate, gBGC results in modulations of the substitution patterns along genomes and across time which, if correctly interpreted, may yield quantitative insights into the long-term evolutionary dynamics of recombination landscapes. Deriving a model of the substitution process at putatively neutral nucleotide positions from population-genetics arguments, and accounting for among-lineage and among-gene effects, we propose a reconstruction of the variation in gBGC intensity at the scale of placental mammals, and of its scaling with body-size and karyotypic traits. Our results are compatible with a simple population genetics model relating gBGC to effective population size and recombination rate. In addition, among-gene variation and phylogenetic patterns of exon-specific levels of gBGC reveal the presence of rugged recombination landscapes, and suggest that short-lived recombination hot-spots are a general feature of placentals. Across placental mammals, variation in gBGC strength spans two orders of magnitude, at its lowest in apes, strongest in lagomorphs, microbats or tenrecs, and near or above the nearly neutral threshold in most other lineages. Combined with among-gene variation, such high levels of biased gene conversion are likely to significantly impact midly selected positions, and to represent a substantial mutation load. Altogether, our analysis suggests a more important role of gBGC in placental genome evolution, compared with what could have been anticipated from studies conducted in anthropoid primates.
Collapse
Affiliation(s)
- Nicolas Lartillot
- Centre Robert-Cedergren pour la Bioinformatique, Département de Biochimie, Université de Montréal, Québec, Canada.
| |
Collapse
|
29
|
Liu H, Li J, Yang F, Cai Y. Molecular sexing of endangered cranes based on CHD-W gene. JOURNAL OF APPLIED ANIMAL RESEARCH 2011. [DOI: 10.1080/09712119.2011.565225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
30
|
The genome of the green anole lizard and a comparative analysis with birds and mammals. Nature 2011; 477:587-91. [PMID: 21881562 PMCID: PMC3184186 DOI: 10.1038/nature10390] [Citation(s) in RCA: 486] [Impact Index Per Article: 34.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2011] [Accepted: 07/27/2011] [Indexed: 01/10/2023]
Abstract
The evolution of the amniotic egg was one of the great evolutionary innovations in the history of life, freeing vertebrates from an obligatory connection to water and thus permitting the conquest of terrestrial environments1. Among amniotes, genome sequences are available for mammals2 and birds3–5, but not for non-avian reptiles. Here we report the genome sequence of the North American green anole lizard, Anolis carolinensis. We find that A. carolinensis microchromosomes are highly syntenic with chicken microchromosomes, yet do not exhibit the high GC and low repeat content that are characteristic of avian microchromosomes3. Also, A. carolinensis mobile elements are very young and diverse – more so than in any other sequenced amniote genome. This lizard genome’s GC content is also unusual in its homogeneity, unlike the regionally variable GC content found in mammals and birds6. We describe and assign sequence to the previously unknown A. carolinensis X chromosome. Comparative gene analysis shows that amniote egg proteins have evolved significantly more rapidly than other proteins. An anole phylogeny resolves basal branches to illuminate the history of their repeated adaptive radiations.
Collapse
|
31
|
Fujita MK, Edwards SV, Ponting CP. The Anolis lizard genome: an amniote genome without isochores. Genome Biol Evol 2011; 3:974-84. [PMID: 21795750 PMCID: PMC3184785 DOI: 10.1093/gbe/evr072] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Isochores are large regions of relatively homogeneous nucleotide composition and are present in the genomes of all mammals and birds that have been sequenced to date. The newly sequenced genome of Anolis carolinensis provides the first opportunity to quantify isochore structure in a nonavian reptile. We find Anolis to have the most compositionally homogeneous genome of all amniotes sequenced thus far, a homogeneity exceeding that for the frog Xenopus. Based on a Bayesian algorithm, Anolis has smaller and less GC-rich isochores compared with human and chicken. Correlates generally associated with GC-rich isochores, including shorter introns and higher gene density, have all but disappeared from the Anolis genome. Using genic GC as a proxy for isochore structure so as to compare with other vertebrates, we found that GC content has substantially decreased in the lineage leading to Anolis since diverging from the common ancestor of Reptilia ∼275 Ma, perhaps reflecting weakened or reversed GC-biased gene conversion, a nonadaptive substitution process that is thought to be important in the maintenance and trajectory of isochore evolution. Our results demonstrate that GC composition in Anolis is not associated with important features of genome structure, including gene density and intron size, in contrast to patterns seen in mammal and bird genomes.
Collapse
Affiliation(s)
- Matthew K Fujita
- Museum of Comparative Zoology, Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts, USA.
| | | | | |
Collapse
|
32
|
Katzman S, Capra JA, Haussler D, Pollard KS. Ongoing GC-biased evolution is widespread in the human genome and enriched near recombination hot spots. Genome Biol Evol 2011; 3:614-26. [PMID: 21697099 PMCID: PMC3157837 DOI: 10.1093/gbe/evr058] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Fast evolving regions of many metazoan genomes show a bias toward substitutions that change weak (A,T) into strong (G,C) base pairs. Single-nucleotide polymorphisms (SNPs) do not share this pattern, suggesting that it results from biased fixation rather than biased mutation. Supporting this hypothesis, analyses of polymorphism in specific regions of the human genome have identified a positive correlation between weak to strong (W→S) SNPs and derived allele frequency (DAF), suggesting that SNPs become increasingly GC biased over time, especially in regions of high recombination. Using polymorphism data generated by the 1000 Genomes Project from 179 individuals from 4 human populations, we evaluated the extent and distribution of ongoing GC-biased evolution in the human genome. We quantified GC fixation bias by comparing the DAFs of W→S mutations and S→W mutations using a Mann-Whitney U test. Genome-wide, W→S SNPs have significantly higher DAFs than S→W SNPs. This pattern is widespread across the human genome but varies in magnitude along the chromosomes. We found extreme GC-biased evolution in neighborhoods of recombination hot spots, a significant correlation between GC bias and recombination rate, and an inverse correlation between GC bias and chromosome arm length. These findings demonstrate the presence of ongoing fixation bias favoring G and C alleles throughout the human genome and suggest that the bias is caused by a recombination-associated process, such as GC-biased gene conversion.
Collapse
Affiliation(s)
- Sol Katzman
- Center for Biomolecular Science and Engineering, University of California, Santa Cruz, USA
| | | | | | | |
Collapse
|
33
|
Chevereau G, Arneodo A, Vaillant C. Influence of the genomic sequence on the primary structure of chromatin. FRONTIERS IN LIFE SCIENCE 2011. [DOI: 10.1080/21553769.2012.708882] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
34
|
Zhang W, Wu W, Lin W, Zhou P, Dai L, Zhang Y, Huang J, Zhang D. Deciphering heterogeneity in pig genome assembly Sscrofa9 by isochore and isochore-like region analyses. PLoS One 2010; 5:e13303. [PMID: 20948965 PMCID: PMC2952626 DOI: 10.1371/journal.pone.0013303] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2010] [Accepted: 09/15/2010] [Indexed: 11/18/2022] Open
Abstract
Background The isochore, a large DNA sequence with relatively small GC variance, is one of the most important structures in eukaryotic genomes. Although the isochore has been widely studied in humans and other species, little is known about its distribution in pigs. Principal Findings In this paper, we construct a map of long homogeneous genome regions (LHGRs), i.e., isochores and isochore-like regions, in pigs to provide an intuitive version of GC heterogeneity in each chromosome. The LHGR pattern study not only quantifies heterogeneities, but also reveals some primary characteristics of the chromatin organization, including the followings: (1) the majority of LHGRs belong to GC-poor families and are in long length; (2) a high gene density tends to occur with the appearance of GC-rich LHGRs; and (3) the density of LINE repeats decreases with an increase in the GC content of LHGRs. Furthermore, a portion of LHGRs with particular GC ranges (50%–51% and 54%–55%) tend to have abnormally high gene densities, suggesting that biased gene conversion (BGC), as well as time- and energy-saving principles, could be of importance to the formation of genome organization. Conclusion This study significantly improves our knowledge of chromatin organization in the pig genome. Correlations between the different biological features (e.g., gene density and repeat density) and GC content of LHGRs provide a unique glimpse of in silico gene and repeats prediction.
Collapse
Affiliation(s)
- Wenqian Zhang
- Bioinformatics Center, College of Life Science, Northwest A&F University, Xianyang, Shaanxi, China
| | - Wenwu Wu
- Bioinformatics Center, College of Life Science, Northwest A&F University, Xianyang, Shaanxi, China
| | - Wenchao Lin
- Bioinformatics Center, College of Life Science, Northwest A&F University, Xianyang, Shaanxi, China
| | - Pengfang Zhou
- Bioinformatics Center, College of Life Science, Northwest A&F University, Xianyang, Shaanxi, China
| | - Li Dai
- Bioinformatics Center, College of Life Science, Northwest A&F University, Xianyang, Shaanxi, China
| | - Yang Zhang
- Investigation Group of Molecular Virology, Immunology, Oncology and Systems Biology, and Bioinformatics Center, College of Veterinary Medicine, Northwest A&F University, Xianyang, Shaanxi, China
| | - Jingfei Huang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
- * E-mail: (DZ); (JH)
| | - Deli Zhang
- Investigation Group of Molecular Virology, Immunology, Oncology and Systems Biology, and Bioinformatics Center, College of Veterinary Medicine, Northwest A&F University, Xianyang, Shaanxi, China
- * E-mail: (DZ); (JH)
| |
Collapse
|
35
|
Lynch DB, Logue ME, Butler G, Wolfe KH. Chromosomal G + C content evolution in yeasts: systematic interspecies differences, and GC-poor troughs at centromeres. Genome Biol Evol 2010; 2:572-83. [PMID: 20693156 PMCID: PMC2997560 DOI: 10.1093/gbe/evq042] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022] Open
Abstract
The G + C content at synonymous codon positions (GC3s) in genes varies along chromosomes in most eukaryotes. In Saccharomyces cerevisiae, regions of high GC3s are correlated with recombination hot spots, probably due to biased gene conversion. Here we examined how GC3s differs among groups of related yeast species in the Saccharomyces and Candida clades. The chromosomal locations of GC3s peaks and troughs are conserved among four Saccharomyces species, but we find that there have been highly consistent small shifts in their GC3s values. For instance, 84% of all S. cerevisiae genes have a lower GC3s value than their S. bayanus orthologs. There are extensive interspecies differences in the Candida clade both in the median value of GC3s (ranging from 22% to 49%) and in the variance of GC3s among genes. In three species—Candida lusitaniae, Pichia stipitis, and Yarrowia lipolytica—there is one region on each chromosome in which GC3s is markedly reduced. We propose that these GC-poor troughs indicate the positions of centromeres because in Y. lipolytica they coincide with the five experimentally identified centromeres. In P. stipitis, the troughs contain clusters of the retrotransposon Tps5. Likewise, in Debaryomyces hansenii, there is one cluster of the retrotransposon Tdh5 per chromosome, and all these clusters are located in GC-poor troughs. Locally reduced G + C content around centromeres is consistent with a model in which G + C content correlates with recombination rate, and recombination is suppressed around centromeres, although the troughs are unexpectedly wide (100–300 kb).
Collapse
Affiliation(s)
- Denise B Lynch
- Conway Institute of Biomedical and Biomolecular Sciences, University College Dublin, Belfield, Dublin 4, Ireland
| | | | | | | |
Collapse
|
36
|
Surprising fitness consequences of GC-biased gene conversion: I. Mutation load and inbreeding depression. Genetics 2010; 185:939-59. [PMID: 20421602 DOI: 10.1534/genetics.110.116368] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
GC-biased gene conversion (gBGC) is a recombination-associated process mimicking selection in favor of G and C alleles. It is increasingly recognized as a widespread force in shaping the genomic nucleotide landscape. In recombination hotspots, gBGC can lead to bursts of fixation of GC nucleotides and to accelerated nucleotide substitution rates. It was recently shown that these episodes of strong gBGC could give spurious signatures of adaptation and/or relaxed selection. There is also evidence that gBGC could drive the fixation of deleterious amino acid mutations in some primate genes. This raises the question of the potential fitness effects of gBGC. While gBGC has been metaphorically termed the "Achilles' heel" of our genome, we do not know whether interference between gBGC and selection merely has practical consequences for the analysis of sequence data or whether it has broader fundamental implications for individuals and populations. I developed a population genetics model to predict the consequences of gBGC on the mutation load and inbreeding depression. I also used estimates available for humans to quantitatively evaluate the fitness impact of gBGC. Surprising features emerged from this model: (i) Contrary to classical mutation load models, gBGC generates a fixation load independent of population size and could contribute to a significant part of the load; (ii) gBGC can maintain recessive deleterious mutations for a long time at intermediate frequency, in a similar way to overdominance, and these mutations generate high inbreeding depression, even if they are slightly deleterious; (iii) since mating systems affect both the selection efficacy and gBGC intensity, gBGC challenges classical predictions concerning the interaction between mating systems and deleterious mutations, and gBGC could constitute an additional cost of outcrossing; and (iv) if mutations are biased toward A and T alleles, very low gBGC levels can reduce the load. A robust prediction is that the gBGC level minimizing the load depends only on the mutational bias and population size. These surprising results suggest that gBGC may have nonnegligible fitness consequences and could play a significant role in the evolution of genetic systems. They also shed light on the evolution of gBGC itself.
Collapse
|
37
|
Uliano E, Chaurasia A, Bernà L, Agnisola C, D'Onofrio G. Metabolic rate and genomic GC: what we can learn from teleost fish. Mar Genomics 2010; 3:29-34. [PMID: 21798194 DOI: 10.1016/j.margen.2010.02.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2009] [Revised: 02/05/2010] [Accepted: 02/11/2010] [Indexed: 11/29/2022]
Abstract
Teleosts are a highly diverse group of animals occupying all kind of aquatic environment. Data on routine mass specific metabolic rate were re-examined correcting them for the Boltzmann's factor. Teleostean fish were grouped in five broad groups, corresponding to major environmental classifications: polar, temperate, sub-tropical, tropical and deep-water. The specific routine metabolic rate, temperature-corrected using the Boltzmann's factor (MR), and the average base composition of genomes (GC%) were calculated in each group. Fish of the polar habitat showed the highest MR. Temperate fish displayed a significantly higher MR than tropical fish, which had the lowest average value. These results were apparently in agreement with the cold adaptation hypothesis. In contrast with this hypothesis, however, the MR of fish living in deep-water environment turned out to be not significantly different from that of fish living in tropical habitats. Most probably, the amount of oxygen dissolved in the water directly affects MR adaptation. Regarding the different habitats, the genomic GC levels showed a decreasing trend similar to that of MR. Indeed, both polar and temperate fish showed a GC level significantly higher than that of both sub-tropical and tropical fish. Plotting the genomic GC levels versus the MR a significant positive correlation was found, supporting the hypothesis that metabolic rate can explain not only the compositional transition mode (e.g. amphibian/mammals), but also the compositional shifting mode (e.g. fish/fish) of evolution observed for vertebrate genomes.
Collapse
Affiliation(s)
- Erminia Uliano
- Department of Biological Sciences, University of Naples Federico II, Napoli, Italy
| | | | | | | | | |
Collapse
|
38
|
Sabbbia V, Romero H, Musto H, Naya H. Composition Profile of the Human Genome at the Chromosome Level. J Biomol Struct Dyn 2009; 27:361-70. [DOI: 10.1080/07391102.2009.10507322] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
39
|
Prakash A, Shepard SS, He J, Hart B, Chen M, Amarachintha SP, Mileyeva-Biebesheimer O, Bechtel J, Fedorov A. Evolution of genomic sequence inhomogeneity at mid-range scales. BMC Genomics 2009; 10:513. [PMID: 19891785 PMCID: PMC2779198 DOI: 10.1186/1471-2164-10-513] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2009] [Accepted: 11/05/2009] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Mid-range inhomogeneity or MRI is the significant enrichment of particular nucleotides in genomic sequences extending from 30 up to several thousands of nucleotides. The best-known manifestation of MRI is CpG islands representing CG-rich regions. Recently it was demonstrated that MRI could be observed not only for G+C content but also for all other nucleotide pairings (e.g. A+G and G+T) as well as for individual bases. Various types of MRI regions are 4-20 times enriched in mammalian genomes compared to their occurrences in random models. RESULTS This paper explores how different types of mutations change MRI regions. Human, chimpanzee and Macaca mulatta genomes were aligned to study the projected effects of substitutions and indels on human sequence evolution within both MRI regions and control regions of average nucleotide composition. Over 18.8 million fixed point substitutions, 3.9 million SNPs, and indels spanning 6.9 Mb were procured and evaluated in human. They include 1.8 Mb substitutions and 1.9 Mb indels within MRI regions. Ancestral and mutant (derived) alleles for substitutions have been determined. Substitutions were grouped according to their fixation within human populations: fixed substitutions (from the human-chimp-macaca alignment), major SNPs (> 80% mutant allele frequency within humans), medium SNPs (20% - 80% mutant allele frequency), minor SNPs (3% - 20%), and rare SNPs (<3%). Data on short (< 3 bp) and medium-length (3 - 50 bp) insertions and deletions within MRI regions and appropriate control regions were analyzed for the effect of indels on the expansion or diminution of such regions as well as on changing nucleotide composition. CONCLUSION MRI regions have comparable levels of de novo mutations to the control genomic sequences with average base composition. De novo substitutions rapidly erode MRI regions, bringing their nucleotide composition toward genome-average levels. However, those substitutions that favor the maintenance of MRI properties have a higher chance to spread through the entire population. Indels have a clear tendency to maintain MRI features yet they have a smaller impact than substitutions. All in all, the observed fixation bias for mutations helps to preserve MRI regions during evolution.
Collapse
Affiliation(s)
- Ashwin Prakash
- Program in Cardiovascular & Metabolic Diseases Track, Biomedical Sciences, Toledo, OH 43614, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Powdel BR, Satapathy SS, Kumar A, Jha PK, Buragohain AK, Borah M, Ray SK. A study in entire chromosomes of violations of the intra-strand parity of complementary nucleotides (Chargaff's second parity rule). DNA Res 2009; 16:325-43. [PMID: 19861381 PMCID: PMC2780954 DOI: 10.1093/dnares/dsp021] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Chargaff's rule of intra-strand parity (ISP) between complementary mono/oligonucleotides in chromosomes is well established in the scientific literature. Although a large numbers of papers have been published citing works and discussions on ISP in the genomic era, scientists are yet to find all the factors responsible for such a universal phenomenon in the chromosomes. In the present work, we have tried to address the issue from a new perspective, which is a parallel feature to ISP. The compositional abundance values of mono/oligonucleotides were determined in all non-overlapping sub-chromosomal regions of specific size. Also the frequency distributions of the mono/oligonucleotides among the regions were compared using the Kolmogorov–Smirnov test. Interestingly, the frequency distributions between the complementary mono/oligonucleotides revealed statistical similarity, which we named as intra-strand frequency distribution parity (ISFDP). ISFDP was observed as a general feature in chromosomes of bacteria, archaea and eukaryotes. Violation of ISFDP was also observed in several chromosomes. Chromosomes of different strains belonging a species in bacteria/archaea (Haemophilus influenza, Xylella fastidiosa etc.) and chromosomes of a eukaryote are found to be different among each other with respect to ISFDP violation. ISFDP correlates weakly with ISP in chromosomes suggesting that the latter one is not entirely responsible for the former. Asymmetry of replication topography and composition of forward-encoded sequences between the strands in chromosomes are found to be insufficient to explain the ISFDP feature in all chromosomes. This suggests that multiple factors in chromosomes are responsible for establishing ISFDP.
Collapse
Affiliation(s)
- B R Powdel
- 1Department of Mathematical Sciences, Tezpur University, Tezpur, Assam 784 028, India
| | | | | | | | | | | | | |
Collapse
|
41
|
Yap VB, Lindsay H, Easteal S, Huttley G. Estimates of the effect of natural selection on protein-coding content. Mol Biol Evol 2009; 27:726-34. [PMID: 19815689 PMCID: PMC2822286 DOI: 10.1093/molbev/msp232] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Analysis of natural selection is key to understanding many core biological processes, including the emergence of competition, cooperation, and complexity, and has important applications in the targeted development of vaccines. Selection is hard to observe directly but can be inferred from molecular sequence variation. For protein-coding nucleotide sequences, the ratio of nonsynonymous to synonymous substitutions (omega) distinguishes neutrally evolving sequences (omega = 1) from those subjected to purifying (omega < 1) or positive Darwinian (omega > 1) selection. We show that current models used to estimate omega are substantially biased by naturally occurring sequence compositions. We present a novel model that weights substitutions by conditional nucleotide frequencies and which escapes these artifacts. Applying it to the genomes of pathogens causing malaria, leprosy, tuberculosis, and Lyme disease gave significant discrepancies in estimates with approximately 10-30% of genes affected. Our work has substantial implications for how vaccine targets are chosen and for studying the molecular basis of adaptive evolution.
Collapse
Affiliation(s)
- Von Bing Yap
- Department of Statistics and Applied Probability, National University of Singapore, Singapore, Singapore.
| | | | | | | |
Collapse
|
42
|
Lemaitre C, Zaghloul L, Sagot MF, Gautier C, Arneodo A, Tannier E, Audit B. Analysis of fine-scale mammalian evolutionary breakpoints provides new insight into their relation to genome organisation. BMC Genomics 2009; 10:335. [PMID: 19630943 PMCID: PMC2722678 DOI: 10.1186/1471-2164-10-335] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2009] [Accepted: 07/24/2009] [Indexed: 11/21/2022] Open
Abstract
Background The Intergenic Breakage Model, which is the current model of structural genome evolution, considers that evolutionary rearrangement breakages happen with a uniform propensity along the genome but are selected against in genes, their regulatory regions and in-between. However, a growing body of evidence shows that there exists regions along mammalian genomes that present a high susceptibility to breakage. We reconsidered this question taking advantage of a recently published methodology for the precise detection of rearrangement breakpoints based on pairwise genome comparisons. Results We applied this methodology between the genome of human and those of five sequenced eutherian mammals which allowed us to delineate evolutionary breakpoint regions along the human genome with a finer resolution (median size 26.6 kb) than obtained before. We investigated the distribution of these breakpoints with respect to genome organisation into domains of different activity. In agreement with the Intergenic Breakage Model, we observed that breakpoints are under-represented in genes. Surprisingly however, the density of breakpoints in small intergenes (1 per Mb) appears significantly higher than in gene deserts (0.1 per Mb). More generally, we found a heterogeneous distribution of breakpoints that follows the organisation of the genome into isochores (breakpoints are more frequent in GC-rich regions). We then discuss the hypothesis that regions with an enhanced susceptibility to breakage correspond to regions of high transcriptional activity and replication initiation. Conclusion We propose a model to describe the heterogeneous distribution of evolutionary breakpoints along human chromosomes that combines natural selection and a mutational bias linked to local open chromatin state.
Collapse
Affiliation(s)
- Claire Lemaitre
- Université de Bordeaux, Centre de Bioinformatique - Génomique Fonctionnelle Bordeaux, F-33000 Bordeaux, France.
| | | | | | | | | | | | | |
Collapse
|
43
|
Payen C, Fischer G, Marck C, Proux C, Sherman DJ, Coppée JY, Johnston M, Dujon B, Neuvéglise C. Unusual composition of a yeast chromosome arm is associated with its delayed replication. Genome Res 2009; 19:1710-21. [PMID: 19592681 DOI: 10.1101/gr.090605.108] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
The 11.3-Mb genome of the yeast Lachancea (Saccharomyces) kluyveri displays an intriguing compositional heterogeneity: a region of approximately 1 Mb, covering almost the whole left arm of chromosome C (C-left), has an average GC content of 52.9%, which is significantly higher than the 40.4% global GC content of the rest of the genome. This region contains the MAT locus, which remains normal in composition. The excess of GC base pairs affects both coding and noncoding sequences, and thus is not due to selective pressure acting on protein sequences. It leads to a strong codon usage bias and alters the amino acid composition of the 457 proteins encoded on C-left that do not show obvious bias for functional categories, or the presence of paralogs or orthologs of essential genes of Saccharomyces cerevisiae. They share significant synteny conservation with other species of the Saccharomycetaceae, and phylogenetic analysis indicates that C-left originates from a Lachancea species. In contrast, there is a complete absence of transposable elements in C-left, whereas 18 elements per megabase are distributed across the rest of the genome. Comparative hybridization of synchronized cells using high-density genome arrays reveals that C-left is replicated later during S phase than the rest of the genome. Two possible primary causes of this major compositional heterogeneity are discussed: an ancient hybridization of two related species with very distinct GC composition, or an intrinsic mechanism, possibly associated with the loss of the silent cassettes from C-left that progressively increased the GC content and generated the delayed replication of this chromosomal arm.
Collapse
Affiliation(s)
- Célia Payen
- Institut Pasteur, CNRS, URA, Université Pierre et Marie Curie, Paris, France
| | | | | | | | | | | | | | | | | |
Collapse
|
44
|
GC content and recombination: reassessing the causal effects for the Saccharomyces cerevisiae genome. Genetics 2009; 183:31-8. [PMID: 19546316 DOI: 10.1534/genetics.109.105049] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Recombination plays a crucial role in the evolution of genomes. Among many chromosomal features, GC content is one of the most prominent variables that appear to be highly correlated with recombination. However, it is not yet clear (1) whether recombination drives GC content (as proposed, for example, in the biased gene conversion model) or the converse and (2) what are the length scales for mutual influences between GC content and recombination. Here we have reassessed these questions for the model genome Saccharomyces cerevisiae, for which the most refined recombination data are available. First, we confirmed a strong correlation between recombination rate and GC content at local scales (a few kilobases). Second, on the basis of alignments between S. cerevisiae, S. paradoxus, and S. mikatae sequences, we showed that the inferred AT/GC substitution patterns are not correlated with recombination, indicating that GC content is not driven by recombination in yeast. These results thus suggest that, in S. cerevisiae, recombination is determined either by the GC content or by a third parameter, also affecting the GC content. Third, we observed long-range correlations between GC and recombination for chromosome III (for which such correlations were reported experimentally and were the model for many structural studies). However, similar correlations were not detected in the other chromosomes, restraining thus the generality of the phenomenon. These results pave the way for further analyses aimed at the detailed untangling of drives involved in the evolutionary shaping of the yeast genome.
Collapse
|
45
|
Costantini M, Cammarano R, Bernardi G. The evolution of isochore patterns in vertebrate genomes. BMC Genomics 2009; 10:146. [PMID: 19344507 PMCID: PMC2678159 DOI: 10.1186/1471-2164-10-146] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2008] [Accepted: 04/03/2009] [Indexed: 01/23/2023] Open
Abstract
Background Previous work from our laboratory showed that (i) vertebrate genomes are mosaics of isochores, typically megabase-size DNA segments that are fairly homogeneous in base composition; (ii) isochores belong to a small number of families (five in the human genome) characterized by different GC levels; (iii) isochore family patterns are different in fishes/amphibians and mammals/birds, the latter showing GC-rich isochore families that are absent or very scarce in the former; (iv) there are two modes of genome evolution, a conservative one in which isochore patterns basically do not change (e.g., among mammalian orders), and a transitional one, in which they do change (e.g., between amphibians and mammals); and (v) isochores are tightly linked to a number of basic biological properties, such as gene density, gene expression, replication timing and recombination. Results The present availability of a number of fully sequenced genomes ranging from fishes to mammals allowed us to carry out investigations that (i) more precisely quantified our previous conclusions; (ii) showed that the different isochore families of vertebrate genomes are largely conserved in GC levels and dinucleotide frequencies, as well as in isochore size; and (iii) isochore family patterns can be either conserved or change within both warm- and cold-blooded vertebrates. Conclusion On the basis of the results presented, we propose that (i) the large conservation of GC levels and dinucleotide frequencies may reflect the conservation of chromatin structures; (ii) the conservation of isochore size may be linked to the role played by isochores in chromosome structure and replication; (iii) the formation, the maintainance and the changes of isochore patterns are due to natural selection.
Collapse
|
46
|
Watanabe Y, Abe T, Ikemura T, Maekawa M. Relationships between replication timing and GC content of cancer-related genes on human chromosomes 11q and 21q. Gene 2009; 433:26-31. [DOI: 10.1016/j.gene.2008.12.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2008] [Revised: 11/28/2008] [Accepted: 12/05/2008] [Indexed: 10/21/2022]
|
47
|
Galtier N, Duret L, Glémin S, Ranwez V. GC-biased gene conversion promotes the fixation of deleterious amino acid changes in primates. Trends Genet 2009; 25:1-5. [DOI: 10.1016/j.tig.2008.10.011] [Citation(s) in RCA: 136] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2008] [Revised: 10/17/2008] [Accepted: 10/24/2008] [Indexed: 01/22/2023]
|
48
|
Gaffney DJ, Keightley PD. Effect of the assignment of ancestral CpG state on the estimation of nucleotide substitution rates in mammals. BMC Evol Biol 2008; 8:265. [PMID: 18826599 PMCID: PMC2576242 DOI: 10.1186/1471-2148-8-265] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2008] [Accepted: 09/30/2008] [Indexed: 12/03/2022] Open
Abstract
BACKGROUND Molecular evolutionary studies in mammals often estimate nucleotide substitution rates within and outside CpG dinucleotides separately. Frequently, in alignments of two sequences, the division of sites into CpG and non-CpG classes is based simply on the presence or absence of a CpG dinucleotide in either sequence, a procedure that we refer to as CpG/non-CpG assignment. Although it likely that this procedure is biased, it is generally assumed that the bias is negligible if species are very closely related. RESULTS Using simulations of DNA sequence evolution we show that assignment of the ancestral CpG state based on the simple presence/absence of the CpG dinucleotide can seriously bias estimates of the substitution rate, because many true non-CpG changes are misassigned as CpG. Paradoxically, this bias is most severe between closely related species, because a minimum of two substitutions are required to misassign a true ancestral CpG site as non-CpG whereas only a single substitution is required to misassign a true ancestral non-CpG site as CpG in a two branch tree. We also show that CpG misassignment bias differentially affects fourfold degenerate and noncoding sites due to differences in base composition such that fourfold degenerate sites can appear to be evolving more slowly than noncoding sites. We demonstrate that the effects predicted by our simulations occur in a real evolutionary setting by comparing substitution rates estimated from human-chimp coding and intronic sequence using CpG/non-CpG assignment with estimates derived from a method that is largely free from bias. CONCLUSION Our study demonstrates that a common method of assigning sites into CpG and non CpG classes in pairwise alignments is seriously biased and recommends against the adoption of ad hoc methods of ancestral state assignment.
Collapse
Affiliation(s)
- Daniel J Gaffney
- McGill University and Genome Québec Innovation Centre, 740 ave Dr Penfield Rm 7208, Montréal (Québec), H3A 1A4, Canada
| | - Peter D Keightley
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3JT, UK
| |
Collapse
|
49
|
Abstract
The strategic importance of the genome sequence of the gray, short-tailed opossum, Monodelphis domestica, accrues from both the unique phylogenetic position of metatherian (marsupial) mammals and the fundamental biologic characteristics of metatherians that distinguish them from other mammalian species. Metatherian and eutherian (placental) mammals are more closely related to one another than to other vertebrate groups, and owing to this close relationship they share fundamentally similar genetic structures and molecular processes. However, during their long evolutionary separation these alternative mammals have developed distinctive anatomical, physiologic, and genetic features that hold tremendous potential for examining relationships between the molecular structures of mammalian genomes and the functional attributes of their components. Comparative analyses using the opossum genome have already provided a wealth of new evidence regarding the importance of noncoding elements in the evolution of mammalian genomes, the role of transposable elements in driving genomic innovation, and the relationships between recombination rate, nucleotide composition, and the genomic distributions of repetitive elements. The genome sequence is also beginning to enlarge our understanding of the evolution and function of the vertebrate immune system, and it provides an alternative model for investigating mechanisms of genomic imprinting. Equally important, availability of the genome sequence is fostering the development of new research tools for physical and functional genomic analyses of M. domestica that are expanding its versatility as an experimental system for a broad range of research applications in basic biology and biomedically oriented research.
Collapse
|
50
|
Haddrill PR, Charlesworth B. Non-neutral processes drive the nucleotide composition of non-coding sequences in Drosophila. Biol Lett 2008; 4:438-41. [PMID: 18505714 PMCID: PMC2515589 DOI: 10.1098/rsbl.2008.0174] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
The nature of the forces affecting base composition is a key question in genome evolution. There is uncertainty as to whether differences in the GC contents of non-coding sequences reflect differences in mutational bias, or in the intensity of selection or biased gene conversion. We have used a polymorphism dataset for non-coding sequences on the X chromosome of Drosophila simulans to examine this question. The proportion of GC→AT versus AT→GC polymorphic mutations in a locus is correlated with its GC content. This implies the action of forces that favour GC over AT base pairs, which are apparently strongest in GC-rich sequences.
Collapse
Affiliation(s)
- Penelope R Haddrill
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Ashworth Laboratories, King's Buildings, Edinburgh, UK.
| | | |
Collapse
|