1
|
Nascimento J, Sader M, Ribeiro T, Pedrosa-Harand A. Influence of Ty3/gypsy and Ty1/copia LTR-retrotransposons on the large genomes of Alstroemeriaceae: genome landscape of Bomarea edulis (Tussac) Herb. PROTOPLASMA 2025:10.1007/s00709-025-02036-2. [PMID: 39883160 DOI: 10.1007/s00709-025-02036-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Accepted: 01/15/2025] [Indexed: 01/31/2025]
Abstract
Repetitive elements are the main components of many plant genomes and play a crucial role in the variation of genome size and structure, ultimately impacting species diversification and adaptation. Alstroemeriaceae exhibits species with large genomes, not attributed to polyploidy. In this study, we analysed the repetitive fraction of the genome of Bomarea edulis through low-coverage sequencing and in silico characterization, and compared it to the repeats of Alstroemeria longistaminea, a species from a sister genus that has been previously characterized. LTR-retrotransposons were identified as the most abundant elements in the B. edulis genome (50.22%), with significant variations in abundance for specific lineages between the two species. The expansion of the B. edulis genome was likely due to three main lineages of LTR retrotransposons, Ty3/gypsy Tekay and Retand and Ty1/copia SIRE, all represented by truncated elements which were probably active in the past. Furthermore, the proportion of satDNA (~ 7%) was six times higher in B. edulis compared to A. longistaminea, with most families exhibiting a dispersed, uniform distribution in the genome. SatDNAs, thus, contributed to some extent to genome obesity. Despite diverging around 29 Mya, both species still share some satDNA families and retrotransposons. However, differences in repeat abundances and sequence variants led to genome differentiation despite their similar sizes and structure.
Collapse
Affiliation(s)
- Jéssica Nascimento
- Laboratory of Plant Cytogenetics and Evolution, Department of Botany, Biosciences Centre, Federal University of Pernambuco, Recife, PE, 50670-901, Brazil
| | - Mariela Sader
- Multidisciplinary Institute of Plant Biology (National Council for Scientific and Technical Research - National University of Córdoba), Córdoba, Argentina
| | - Tiago Ribeiro
- Integrative Plant Research Lab, Department of Botany and Ecology, Institute of Biosciences, Federal University of Mato Grosso, Cuiabá, Brazil
| | - Andrea Pedrosa-Harand
- Laboratory of Plant Cytogenetics and Evolution, Department of Botany, Biosciences Centre, Federal University of Pernambuco, Recife, PE, 50670-901, Brazil.
| |
Collapse
|
2
|
Báez M, Vaio M, Dreissig S, Schubert V, Houben A, Pedrosa-Harand A. Together But Different: The Subgenomes of the Bimodal Eleutherine Karyotypes Are Differentially Organized. FRONTIERS IN PLANT SCIENCE 2019; 10:1170. [PMID: 31649686 PMCID: PMC6791338 DOI: 10.3389/fpls.2019.01170] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Accepted: 08/27/2019] [Indexed: 06/10/2023]
Abstract
Bimodal karyotypes are characterized by the presence of two sets of chromosomes of contrasting size. Eleutherine bulbosa (2n = 12) presents a bimodal karyotype with a large chromosome pair, which has a pericentric inversion in permanent heterozygosity with suppressed recombination, and five pairs of three to four times smaller chromosomes. Aiming to understand whether high copy number sequence composition differs between both chromosome sets, we investigated the repetitive DNA fraction of E. bulbosa and compared it to the chromosomal organization of the related Eleutherine latifolia species, not containing the pericentric inversion. We also compared the repetitive sequence proportions between the heteromorphic large chromosomes of E. bulbosa and between E. bulbosa and E. latifolia to understand the influence of the chromosome inversion on the dynamics of repetitive sequences. The most abundant repetitive families of the genome showed a similar chromosomal distribution in both homologs of the large pair and in both species, apparently not influenced by the species-specific inversions. The repeat families Ebusat1 and Ebusat4 are localized interstitially only on the large chromosome pair, while Ebusat2 is located in the centromeric region of all chromosomes. The four most abundant retrotransposon lineages are accumulated in the large chromosome pair. Replication timing and distribution of epigenetic and transcriptional marks differ between large and small chromosomes. The differential distribution of retroelements appears to be related to the bimodal condition and is not influenced by the nonrecombining chromosome inversions in these species. Thus, the large and small chromosome subgenomes of the bimodal Eleutherine karyotype are differentially organized and probably evolved by repetitive sequences accumulation on the large chromosome set.
Collapse
Affiliation(s)
- Mariana Báez
- Laboratory of Plant Cytogenetics and Evolution, Department of Botany, Federal University of Pernambuco, Recife, Brazil
| | - Magdalena Vaio
- Laboratory of Genetics, Department of Plant Biology, College of Agronomy, University of the Republic, Montevideo, Uruguay
| | - Steven Dreissig
- Department of Breeding Research, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Germany
| | - Veit Schubert
- Department of Breeding Research, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Germany
| | - Andreas Houben
- Department of Breeding Research, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Germany
| | - Andrea Pedrosa-Harand
- Laboratory of Plant Cytogenetics and Evolution, Department of Botany, Federal University of Pernambuco, Recife, Brazil
| |
Collapse
|
3
|
Jiang B, Liu W, Peng Q, He X, Xie D. Characterization and chromosomal organization of Ty1-copia retrotransposons in wax gourd. Gene 2014; 551:26-32. [PMID: 25108132 DOI: 10.1016/j.gene.2014.08.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2013] [Revised: 06/09/2014] [Accepted: 08/05/2014] [Indexed: 10/24/2022]
Abstract
Wax gourd (2n=2x=24) is an important vegetable species in Cucurbitaceae. Because it can be stored for a very long period of time, it plays an important role in ensuring the annual supply and regulating off-season supply of the vegetables. However, the availability of genetic information about wax gourd is limited. This study aimed to identify the useful genetic information for wax gourd. The conserved domains of reverse transcriptase (RT) genes of Ty1-copia retrotransposons were isolated from the genome of wax gourd using degenerate oligonucleotide primers. A total of twenty eight RT sequences were obtained, which showed high heterogeneity with the similarity ranging from 47.5% to 94.3%. Sixteen (57.1%) of them were found to be defective, being disrupted by stop codons and/or frameshift mutations. These 28 sequences were divided into five subfamilies. The comparative phylogenetic analysis with other Cucurbitaceae species from GenBank database showed that most retrotransposons derived from the same genus tended to cluster together, although there were a few exceptions. These results indicate that both vertical transmission and horizontal transmission are the sources of Ty1-copia retrotransposons in wax gourd. Fluorescent in situ hybridization (FISH) with Ty1-copia retrotransposon sequences as probes revealed that this kind of retrotransposons had a dispersed genomic organization, physically distributed among all the chromosomes of wax gourd, with clusters in the heterochromatin regions. This is the first report of Ty1-copia retrotransposons in wax gourd, which would be helpful for our understanding about the organization and evolutions of wax gourd genome and also provide valuable information for our utilization of wax gourd retrotransposons.
Collapse
Affiliation(s)
- Biao Jiang
- Vegetable Research Institute, Guangdong Academy of Agricultural Science, Guangzhou 510640, China; Guangdong Provincial Key Lab for New Technology Research on Vegetables, Guangzhou 510640, China
| | - Wenrui Liu
- Vegetable Research Institute, Guangdong Academy of Agricultural Science, Guangzhou 510640, China; Guangdong Provincial Key Lab for New Technology Research on Vegetables, Guangzhou 510640, China
| | - Qingwu Peng
- Vegetable Research Institute, Guangdong Academy of Agricultural Science, Guangzhou 510640, China
| | - Xiaoming He
- Vegetable Research Institute, Guangdong Academy of Agricultural Science, Guangzhou 510640, China; Guangdong Provincial Key Lab for New Technology Research on Vegetables, Guangzhou 510640, China
| | - Dasen Xie
- Vegetable Research Institute, Guangdong Academy of Agricultural Science, Guangzhou 510640, China; Guangdong Provincial Key Lab for New Technology Research on Vegetables, Guangzhou 510640, China.
| |
Collapse
|
4
|
Tang ZX, Fu SL, Ren ZL, Zhang T, Zou YT, Yang ZJ, Li GR, Zhou JP, Zhang HQ, Yan BJ, Zhang HY, Tan FQ. Diversity and evolution of four dispersed repetitive DNA sequences in the genus Secale. Genome 2011; 54:285-300. [PMID: 21491972 DOI: 10.1139/g10-118] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
We present the first characterization of 360 sequences in six species of the genus Secale of both cultivated and wild accessions. These include four distinct kinds of dispersed repetitive DNA sequences named pSc20H, pSc119.1, pSaO5(411), and pSaD15(940) belonging to the Revolver family. During the evolution of the genus Secale from wild to cultivated accessions, the pSaO5(411)-like sequences became shorter mainly because of the deletion of a trinucleotide tandem repeating unit, the pSc20H-like sequences displayed apparent homogenization in cultivated rye, and the second intron of Revolver became longer. In addition, the pSc20H-, pSc119.1-, and pSaO5(411)-like sequences cloned from wild rye and cultivated rye could be divided into two large clades. No single case of the four kinds of repetitive elements has been inherited by each Secale accession from a lone ancestor. It is reasonable to consider the vertical transmission of the four repetitive elements during the evolution of the genus Secale. The pSc20H- and pSaO5(411)-like sequences showed evolutionary elimination at specific chromosomal locations from wild species to cultivated species. These cases imply that different repetitive DNA sequences have played different roles in the chromosome development and genomic evolution of rye. The present study adds important information to the investigations dealing with characterization of dispersed repetitive elements in wild and cultivated rye.
Collapse
Affiliation(s)
- Zong-Xiang Tang
- State Key Laboratory of Plant Breeding and Genetics, Sichuan Agriculture University, Ya'an, Sichuan 625014, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Zedek F, Šmerda J, Šmarda P, Bureš P. Correlated evolution of LTR retrotransposons and genome size in the genus Eleocharis. BMC PLANT BIOLOGY 2010; 10:265. [PMID: 21118487 PMCID: PMC3095338 DOI: 10.1186/1471-2229-10-265] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2010] [Accepted: 11/30/2010] [Indexed: 05/18/2023]
Abstract
BACKGROUND Transposable elements (TEs) are considered to be an important source of genome size variation and genetic and phenotypic plasticity in eukaryotes. Most of our knowledge about TEs comes from large genomic projects and studies focused on model organisms. However, TE dynamics among related taxa from natural populations and the role of TEs at the species or supra-species level, where genome size and karyotype evolution are modulated in concert with polyploidy and chromosomal rearrangements, remain poorly understood. We focused on the holokinetic genus Eleocharis (Cyperaceae), which displays large variation in genome size and the occurrence of polyploidy and agmatoploidy/symploidy. We analyzed and quantified the long terminal repeat (LTR) retrotransposons Ty1-copia and Ty3-gypsy in relation to changes in both genome size and karyotype in Eleocharis. We also examined how this relationship is reflected in the phylogeny of Eleocharis. RESULTS Using flow cytometry, we measured the genome sizes of members of the genus Eleocharis (Cyperaceae). We found positive correlation between the independent phylogenetic contrasts of genome size and chromosome number in Eleocharis. We analyzed PCR-amplified sequences of various reverse transcriptases of the LTR retrotransposons Ty1-copia and Ty3-gypsy (762 sequences in total). Using real-time PCR and dot blot approaches, we quantified the densities of Ty1-copia and Ty3-gypsy within the genomes of the analyzed species. We detected an increasing density of Ty1-copia elements in evolutionarily younger Eleocharis species and found a positive correlation between Ty1-copia densities and C/n-values (an alternative measure of monoploid genome size) in the genus phylogeny. In addition, our analysis of Ty1-copia sequences identified a novel retrotransposon family named Helos1, which is responsible for the increasing density of Ty1-copia. The transition:transversion ratio of Helos1 sequences suggests that Helos1 recently transposed in later-diverging Eleocharis species. CONCLUSIONS Using several different approaches, we were able to distinguish between the roles of LTR retrotransposons, polyploidy and agmatoploidy/symploidy in shaping Eleocharis genomes and karyotypes. Our results confirm the occurrence of both polyploidy and agmatoploidy/symploidy in Eleocharis. Additionally, we introduce a new player in the process of genome evolution in holokinetic plants: LTR retrotransposons.
Collapse
Affiliation(s)
- František Zedek
- Department of Botany and Zoology, Masaryk University, Kotlářská 2, 61137 Brno, Czech Republic
| | - Jakub Šmerda
- Department of Botany and Zoology, Masaryk University, Kotlářská 2, 61137 Brno, Czech Republic
| | - Petr Šmarda
- Department of Botany and Zoology, Masaryk University, Kotlářská 2, 61137 Brno, Czech Republic
| | - Petr Bureš
- Department of Botany and Zoology, Masaryk University, Kotlářská 2, 61137 Brno, Czech Republic
| |
Collapse
|
6
|
CARE1, a TY3-gypsy like LTR-retrotransposon in the food legume chickpea (Cicer arietinum L.). Genetica 2009; 136:429-37. [DOI: 10.1007/s10709-008-9343-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2008] [Accepted: 12/06/2008] [Indexed: 02/02/2023]
|