1
|
Kwan EX, Alvino GM, Lynch KL, Levan PF, Amemiya HM, Wang XS, Johnson SA, Sanchez JC, Miller MA, Croy M, Lee SB, Naushab M, Bedalov A, Cuperus JT, Brewer BJ, Queitsch C, Raghuraman MK. Ribosomal DNA replication time coordinates completion of genome replication and anaphase in yeast. Cell Rep 2023; 42:112161. [PMID: 36842087 PMCID: PMC10142053 DOI: 10.1016/j.celrep.2023.112161] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/31/2022] [Revised: 12/19/2022] [Accepted: 02/09/2023] [Indexed: 02/27/2023] Open
Abstract
Timely completion of genome replication is a prerequisite for mitosis, genome integrity, and cell survival. A challenge to this timely completion comes from the need to replicate the hundreds of untranscribed copies of rDNA that organisms maintain in addition to the copies required for ribosome biogenesis. Replication of these rDNA arrays is relegated to late S phase despite their large size, repetitive nature, and essentiality. Here, we show that, in Saccharomyces cerevisiae, reducing the number of rDNA repeats leads to early rDNA replication, which results in delaying replication elsewhere in the genome. Moreover, cells with early-replicating rDNA arrays and delayed genome-wide replication aberrantly release the mitotic phosphatase Cdc14 from the nucleolus and enter anaphase prematurely. We propose that rDNA copy number determines the replication time of the rDNA locus and that the release of Cdc14 upon completion of rDNA replication is a signal for cell cycle progression.
Collapse
Affiliation(s)
- Elizabeth X Kwan
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
| | - Gina M Alvino
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
| | - Kelsey L Lynch
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
| | - Paula F Levan
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
| | - Haley M Amemiya
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
| | - Xiaobin S Wang
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
| | - Sarah A Johnson
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
| | - Joseph C Sanchez
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
| | - Madison A Miller
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
| | - Mackenzie Croy
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
| | - Seung-Been Lee
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
| | - Maria Naushab
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
| | - Antonio Bedalov
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Josh T Cuperus
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
| | - Bonita J Brewer
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
| | - Christine Queitsch
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA.
| | - M K Raghuraman
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA.
| |
Collapse
|
2
|
González‐Garrido C, Prado F. Novel insights into the roles of Cdc7 in response to replication stress. FEBS J 2022. [DOI: 10.1111/febs.16456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/15/2021] [Revised: 03/01/2022] [Accepted: 04/07/2022] [Indexed: 11/26/2022]
Affiliation(s)
- Cristina González‐Garrido
- Centro Andaluz de Biología Molecular y Medicina Regenerativa–CABIMER Consejo Superior de Investigaciones Científicas Universidad de Sevilla Universidad Pablo de Olavide Spain
| | - Félix Prado
- Centro Andaluz de Biología Molecular y Medicina Regenerativa–CABIMER Consejo Superior de Investigaciones Científicas Universidad de Sevilla Universidad Pablo de Olavide Spain
| |
Collapse
|
3
|
Tang Y, Xu L, Ren Y, Li Y, Yuan F, Cao M, Zhang Y, Deng M, Yao Z. Identification and Validation of a Prognostic Model Based on Three MVI-Related Genes in Hepatocellular Carcinoma. Int J Biol Sci 2022; 18:261-275. [PMID: 34975331 PMCID: PMC8692135 DOI: 10.7150/ijbs.66536] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/27/2021] [Accepted: 10/20/2021] [Indexed: 12/13/2022] Open
Abstract
MVI has significant clinical value for treatment selection and prognosis evaluation in hepatocellular carcinoma (HCC). We aimed to construct a model based on MVI-Related Genes (MVIRGs) for risk assessment and prognosis prediction in patients with HCC. This study utilized various statistical analysis methods for prognostic model construction and validation in the Cancer Genome Atlas (TCGA) and International Cancer Genome Consortium (ICGC) cohorts, respectively. In addition, immunohistochemistry and qRT-PCR were used to analyze and identify the value of the model in our cohort. After the analyses, 153 differentially expressed MVIRGs were identified, and three key genes were selected to construct a prognostic model. The high-risk group showed significantly lower overall survival (OS), and this trend was observed in all subgroups: different age groups, genders, stages, and grades. Risk score was a risk factor independent of age, gender, stage, and grade. Moreover, the ICGC cohort validated the prognostic value of the model corresponding to the TCGA. In our cohort, qRT-PCR and immunohistochemistry showed that all three genes had higher expression levels in HCC samples than in normal controls. High expression levels of genes and high-risk scores showed significantly lower recurrence-free survival (RFS) and OS, especially in MVI-positive HCC samples. Therefore, the prognostic model constructed by three MVIRGs can reliably predict the RFS and OS of patients with HCC and is valuable for guiding clinical treatment selection and prognostic assessment of HCC.
Collapse
Affiliation(s)
- Yongchang Tang
- Department of Hepatobiliary Surgery, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, China
| | - Lei Xu
- Department of Nuclear Medicine, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518107, China.,Department of Nuclear Medicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, China
| | - Yupeng Ren
- Department of Hepatobiliary Surgery, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, China
| | - Yuxuan Li
- Department of Hepatobiliary Surgery, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, China
| | - Feng Yuan
- Department of Hepatobiliary Surgery, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, China
| | - Mingbo Cao
- Department of Hepatobiliary Surgery, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, China
| | - Yong Zhang
- Department of Nuclear Medicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, China
| | - Meihai Deng
- Department of Hepatobiliary Surgery, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, China
| | - Zhicheng Yao
- Department of General Surgery, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, China
| |
Collapse
|
4
|
Aricthota S, Haldar D. DDK/Hsk1 phosphorylates and targets fission yeast histone deacetylase Hst4 for degradation to stabilize stalled DNA replication forks. eLife 2021; 10:70787. [PMID: 34608864 PMCID: PMC8565929 DOI: 10.7554/elife.70787] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/31/2021] [Accepted: 10/01/2021] [Indexed: 01/01/2023] Open
Abstract
In eukaryotes, paused replication forks are prone to collapse, which leads to genomic instability, a hallmark of cancer. Dbf4-dependent kinase (DDK)/Hsk1Cdc7 is a conserved replication initiator kinase with conflicting roles in replication stress response. Here, we show that fission yeast DDK/Hsk1 phosphorylates sirtuin, Hst4 upon replication stress at C-terminal serine residues. Phosphorylation of Hst4 by DDK marks it for degradation via the ubiquitin ligase SCFpof3. Phosphorylation-defective hst4 mutant (4SA-hst4) displays defective recovery from replication stress, faulty fork restart, slow S-phase progression and decreased viability. The highly conserved fork protection complex (FPC) stabilizes stalled replication forks. We found that the recruitment of FPC components, Swi1 and Mcl1 to the chromatin is compromised in the 4SA-hst4 mutant, although whole cell levels increased. These defects are dependent upon H3K56ac and independent of intra S-phase checkpoint activation. Finally, we show conservation of H3K56ac-dependent regulation of Timeless, Tipin, and And-1 in human cells. We propose that degradation of Hst4 via DDK increases H3K56ac, changing the chromatin state in the vicinity of stalled forks facilitating recruitment and function of FPC. Overall, this study identified a crucial role of DDK and FPC in the regulation of replication stress response with implications in cancer therapeutics.
Collapse
Affiliation(s)
- Shalini Aricthota
- Laboratory of Chromatin Biology and Epigenetics, Centre for DNA Fingerprinting and Diagnostics, Hyderabad, India.,Graduate Studies, Manipal Academy of Higher Education, Manipal, India
| | - Devyani Haldar
- Laboratory of Chromatin Biology and Epigenetics, Centre for DNA Fingerprinting and Diagnostics, Hyderabad, India
| |
Collapse
|
5
|
Cabello-Lobato MJ, González-Garrido C, Cano-Linares MI, Wong RP, Yáñez-Vílchez A, Morillo-Huesca M, Roldán-Romero JM, Vicioso M, González-Prieto R, Ulrich HD, Prado F. Physical interactions between MCM and Rad51 facilitate replication fork lesion bypass and ssDNA gap filling by non-recombinogenic functions. Cell Rep 2021; 36:109440. [PMID: 34320356 DOI: 10.1016/j.celrep.2021.109440] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/24/2020] [Revised: 05/28/2021] [Accepted: 07/01/2021] [Indexed: 11/15/2022] Open
Abstract
The minichromosome maintenance (MCM) helicase physically interacts with the recombination proteins Rad51 and Rad52 from yeast to human cells. We show, in Saccharomyces cerevisiae, that these interactions occur within a nuclease-insoluble scaffold enriched in replication/repair factors. Rad51 accumulates in a MCM- and DNA-binding-independent manner and interacts with MCM helicases located outside of the replication origins and forks. MCM, Rad51, and Rad52 accumulate in this scaffold in G1 and are released during the S phase. In the presence of replication-blocking lesions, Cdc7 prevents their release from the scaffold, thus maintaining the interactions. We identify a rad51 mutant that is impaired in its ability to bind to MCM but not to the scaffold. This mutant is proficient in recombination but partially defective in single-stranded DNA (ssDNA) gap filling and replication fork progression through damaged DNA. Therefore, cells accumulate MCM/Rad51/Rad52 complexes at specific nuclear scaffolds in G1 to assist stressed forks through non-recombinogenic functions.
Collapse
Affiliation(s)
- María J Cabello-Lobato
- Centro Andaluz de Biología Molecular y Medicina Regenerativa-CABIMER, Consejo Superior de Investigaciones Científicas; Universidad de Sevilla; Universidad Pablo de Olavide; Seville, Spain
| | - Cristina González-Garrido
- Centro Andaluz de Biología Molecular y Medicina Regenerativa-CABIMER, Consejo Superior de Investigaciones Científicas; Universidad de Sevilla; Universidad Pablo de Olavide; Seville, Spain
| | - María I Cano-Linares
- Centro Andaluz de Biología Molecular y Medicina Regenerativa-CABIMER, Consejo Superior de Investigaciones Científicas; Universidad de Sevilla; Universidad Pablo de Olavide; Seville, Spain
| | - Ronald P Wong
- Institute of Molecular Biology (IMB), Mainz, Germany
| | - Aurora Yáñez-Vílchez
- Centro Andaluz de Biología Molecular y Medicina Regenerativa-CABIMER, Consejo Superior de Investigaciones Científicas; Universidad de Sevilla; Universidad Pablo de Olavide; Seville, Spain
| | - Macarena Morillo-Huesca
- Centro Andaluz de Biología Molecular y Medicina Regenerativa-CABIMER, Consejo Superior de Investigaciones Científicas; Universidad de Sevilla; Universidad Pablo de Olavide; Seville, Spain
| | - Juan M Roldán-Romero
- Centro Andaluz de Biología Molecular y Medicina Regenerativa-CABIMER, Consejo Superior de Investigaciones Científicas; Universidad de Sevilla; Universidad Pablo de Olavide; Seville, Spain
| | - Marta Vicioso
- Centro Andaluz de Biología Molecular y Medicina Regenerativa-CABIMER, Consejo Superior de Investigaciones Científicas; Universidad de Sevilla; Universidad Pablo de Olavide; Seville, Spain
| | - Román González-Prieto
- Centro Andaluz de Biología Molecular y Medicina Regenerativa-CABIMER, Consejo Superior de Investigaciones Científicas; Universidad de Sevilla; Universidad Pablo de Olavide; Seville, Spain
| | | | - Félix Prado
- Centro Andaluz de Biología Molecular y Medicina Regenerativa-CABIMER, Consejo Superior de Investigaciones Científicas; Universidad de Sevilla; Universidad Pablo de Olavide; Seville, Spain.
| |
Collapse
|
6
|
Qi Y, Hou Y, Qi L. miR-30d-5p represses the proliferation, migration, and invasion of lung squamous cell carcinoma via targeting DBF4. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART C, TOXICOLOGY AND CARCINOGENESIS 2021; 39:251-268. [PMID: 34165043 DOI: 10.1080/26896583.2021.1926855] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 06/13/2023]
Abstract
OBJECTIVE This study aims to explore the mechanism of miR-30d-5p in regulating the development of lung squamous cell carcinoma (LUSC) via targeting DBF4. METHODS Bioinformatics methods were employed to analyze the differentially expressed genes in LUSC tissue microarray. qRT-PCR was employed to detect the expression of miR-30d-5p and DBF4 mRNA in normal human bronchial epithelial cells and LUSC cells. CCK-8 was used to detect LUSC cell activity. Wound healing assay was employed to detect the migratory ability of LUSC cells. Transwell was employed to detect invasive ability. Dual-luciferase reporter assay was used to detect the targeting relationship between miR-30d-5p and DBF4. Western blot was used to detect the protein expression of marker molecules associated with epithelial-mesenchymal transition (EMT). RESULTS In this study, the expression of miR-30d-5p in LUSC cell lines was found to be obviously low compared with that in normal human bronchial epithelial cell line, which was opposite to the expression of DBF4. Dual-luciferase reporter assay verified that miR-30d-5p could target DBF4 and the overexpression of miR-30d-5p downregulated the expression of DBF4. Overexpression of DBF4 promoted the proliferation, migration, invasion, and EMT of LUSC, whereas over-expression of miR-30d-5p could weaken the promotion of DBF4 on cancer cells. CONCLUSION miR-30d-5p downregulates the expression of DBF4 to regulate the development of LUSC.
Collapse
Affiliation(s)
- Yitian Qi
- Department of Radiology, China-Japan Union Hospital, Jilin University, Changchun 130031, Jilin, China
| | - Yi Hou
- Department of Tissue Engineering, School of Pharmacy, Jilin University, Changchun 130012, Jilin, China
| | - Liangchen Qi
- Department of Thoracic Surgery, China-Japan Union Hospital, Jilin University, Changchun 130031, China
| |
Collapse
|
7
|
Hanasaki M, Yaku K, Yamauchi M, Nakagawa T, Masumoto H. Deletion of the GAPDH gene contributes to genome stability in Saccharomyces cerevisiae. Sci Rep 2020; 10:21146. [PMID: 33273685 PMCID: PMC7713361 DOI: 10.1038/s41598-020-78302-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/03/2019] [Accepted: 11/17/2020] [Indexed: 12/30/2022] Open
Abstract
Cellular metabolism is directly or indirectly associated with various cellular processes by producing a variety of metabolites. Metabolic alterations may cause adverse effects on cell viability. However, some alterations potentiate the rescue of the malfunction of the cell system. Here, we found that the alteration of glucose metabolism suppressed genome instability caused by the impairment of chromatin structure. Deletion of the TDH2 gene, which encodes glyceraldehyde 3-phospho dehydrogenase and is essential for glycolysis/gluconeogenesis, partially suppressed DNA damage sensitivity due to chromatin structure, which was persistently acetylated histone H3 on lysine 56 in cells with deletions of both HST3 and HST4, encoding NAD+-dependent deacetylases. tdh2 deletion also restored the short replicative lifespan of cells with deletion of sir2, another NAD+-dependent deacetylase, by suppressing intrachromosomal recombination in rDNA repeats increased by the unacetylated histone H4 on lysine 16. tdh2 deletion also suppressed recombination between direct repeats in hst3∆ hst4∆ cells by suppressing the replication fork instability that leads to both DNA deletions among repeats. We focused on quinolinic acid (QUIN), a metabolic intermediate in the de novo nicotinamide adenine dinucleotide (NAD+) synthesis pathway, which accumulated in the tdh2 deletion cells and was a candidate metabolite to suppress DNA replication fork instability. Deletion of QPT1, quinolinate phosphoribosyl transferase, elevated intracellular QUIN levels and partially suppressed the DNA damage sensitivity of hst3∆ hst4∆ cells as well as tdh2∆ cells. qpt1 deletion restored the short replicative lifespan of sir2∆ cells by suppressing intrachromosomal recombination among rDNA repeats. In addition, qpt1 deletion could suppress replication fork slippage between direct repeats. These findings suggest a connection between glucose metabolism and genomic stability.
Collapse
Affiliation(s)
- Miki Hanasaki
- Biomedical Research Support Center (BRSC), Nagasaki University School of Medicine, 1-12-4 Sakamoto, Nagasaki, Nagasaki, 852-8523, Japan
| | - Keisuke Yaku
- Department of Metabolism and Nutrition, Graduate School of Medicine and Pharmaceutical Sciences for Research, University of Toyama, 2630 Sugitani, Toyama, Toyama, 930-0194, Japan
| | - Motohiro Yamauchi
- Department of Radiation Biology and Protection, Atomic Bomb Disease Institute, Nagasaki University, 1-12-4 Sakamoto, Nagasaki, Nagasaki, 852-8523, Japan
| | - Takashi Nakagawa
- Department of Metabolism and Nutrition, Graduate School of Medicine and Pharmaceutical Sciences for Research, University of Toyama, 2630 Sugitani, Toyama, Toyama, 930-0194, Japan
| | - Hiroshi Masumoto
- Biomedical Research Support Center (BRSC), Nagasaki University School of Medicine, 1-12-4 Sakamoto, Nagasaki, Nagasaki, 852-8523, Japan.
| |
Collapse
|
8
|
Yang CC, Kato H, Shindo M, Masai H. Cdc7 activates replication checkpoint by phosphorylating the Chk1-binding domain of Claspin in human cells. eLife 2019; 8:50796. [PMID: 31889509 PMCID: PMC6996922 DOI: 10.7554/elife.50796] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/02/2019] [Accepted: 12/30/2019] [Indexed: 01/05/2023] Open
Abstract
Replication checkpoint is essential for maintaining genome integrity in response to various replication stresses as well as during the normal growth. The evolutionally conserved ATR-Claspin-Chk1 pathway is induced during replication checkpoint activation. Cdc7 kinase, required for initiation of DNA replication at replication origins, has been implicated in checkpoint activation but how it is involved in this pathway has not been known. Here, we show that Cdc7 is required for Claspin-Chk1 interaction in human cancer cells by phosphorylating CKBD (Chk1-binding-domain) of Claspin. The residual Chk1 activation in Cdc7-depleted cells is lost upon further depletion of casein kinase1 (CK1γ1), previously reported to phosphorylate CKBD. Thus, Cdc7, in conjunction with CK1γ1, facilitates the interaction between Claspin and Chk1 through phosphorylating CKBD. We also show that, whereas Cdc7 is predominantly responsible for CKBD phosphorylation in cancer cells, CK1γ1 plays a major role in non-cancer cells, providing rationale for targeting Cdc7 for cancer cell-specific cell killing.
Collapse
Affiliation(s)
- Chi-Chun Yang
- Department of Genome Medicine, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Hiroyuki Kato
- Department of Genome Medicine, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Mayumi Shindo
- Protein Analyses Laboratory, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Hisao Masai
- Department of Genome Medicine, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| |
Collapse
|
9
|
Chen EW, Tay NQ, Brzostek J, Gascoigne NRJ, Rybakin V. A Dual Inhibitor of Cdc7/Cdk9 Potently Suppresses T Cell Activation. Front Immunol 2019; 10:1718. [PMID: 31402912 PMCID: PMC6670834 DOI: 10.3389/fimmu.2019.01718] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/19/2019] [Accepted: 07/09/2019] [Indexed: 01/05/2023] Open
Abstract
T cell activation is mediated by signaling pathways originating from the T cell receptor (TCR). Propagation of signals downstream of the TCR involves a cascade of numerous kinases, some of which have yet to be identified. Through a screening strategy that we have previously introduced, PHA-767491, an inhibitor of the kinases Cdc7 and Cdk9, was identified to impede TCR signaling. PHA-767491 suppressed several T cell activation phenomena, including the expression of activation markers, proliferation, and effector functions. We also observed a defect in TCR signaling pathways upon PHA-767491 treatment. Inhibition of Cdc7/Cdk9 impairs T cell responses, which could potentially be detrimental for the immune response to tumors, and also compromises the ability to resist infections. The Cdc7/Cdk9 inhibitor is a strong candidate as a cancer therapeutic, but its effect on the immune system poses a problem for clinical applications.
Collapse
Affiliation(s)
- Elijah W Chen
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Neil Q Tay
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,Immunology Programme, Centre for Life Sciences, Life Sciences Institute, National University of Singapore, Singapore, Singapore.,Centre for Life Sciences (CeLS), NUS Graduate School for Integrative Sciences and Engineering (NGS), National University of Singapore, Singapore, Singapore
| | - Joanna Brzostek
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Nicholas R J Gascoigne
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,Immunology Programme, Centre for Life Sciences, Life Sciences Institute, National University of Singapore, Singapore, Singapore.,Centre for Life Sciences (CeLS), NUS Graduate School for Integrative Sciences and Engineering (NGS), National University of Singapore, Singapore, Singapore
| | - Vasily Rybakin
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,Laboratory of Immunobiology, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| |
Collapse
|
10
|
Modulation of Gene Silencing by Cdc7p via H4 K16 Acetylation and Phosphorylation of Chromatin Assembly Factor CAF-1 in Saccharomyces cerevisiae. Genetics 2019; 211:1219-1237. [PMID: 30728156 DOI: 10.1534/genetics.118.301858] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/05/2018] [Accepted: 01/29/2019] [Indexed: 11/18/2022] Open
Abstract
CAF-1 is an evolutionarily conserved H3/H4 histone chaperone that plays a key role in replication-coupled chromatin assembly and is targeted to the replication fork via interactions with PCNA, which, if disrupted, leads to epigenetic defects. In Saccharomyces cerevisiae, when the silent mating-type locus HMR contains point mutations within the E silencer, Sir protein association and silencing is lost. However, mutation of CDC7, encoding an S-phase-specific kinase, or subunits of the H4 K16-specific acetyltransferase complex SAS-I, restore silencing to this crippled HMR, HMR a e** Here, we observed that loss of Cac1p, the largest subunit of CAF-1, also restores silencing at HMR a e**, and silencing in both cac1Δ and cdc7 mutants is suppressed by overexpression of SAS2 We demonstrate Cdc7p and Cac1p interact in vivo in S phase, but not in G1, consistent with observed cell cycle-dependent phosphorylation of Cac1p, and hypoacetylation of chromatin at H4 K16 in both cdc7 and cac1Δ mutants. Moreover, silencing at HMR a e** is restored in cells expressing cac1p mutants lacking Cdc7p phosphorylation sites. We also discovered that cac1Δ and cdc7-90 synthetically interact negatively in the presence of DNA damage, but that Cdc7p phosphorylation sites on Cac1p are not required for responses to DNA damage. Combined, our results support a model in which Cdc7p regulates replication-coupled histone modification via a CAC1-dependent mechanism involving H4 K16ac deposition, and thereby silencing, while CAF-1-dependent replication- and repair-coupled chromatin assembly per se are functional in the absence of phosphorylation of Cdc7p consensus sites on CAF-1.
Collapse
|
11
|
Bacal J, Moriel-Carretero M, Pardo B, Barthe A, Sharma S, Chabes A, Lengronne A, Pasero P. Mrc1 and Rad9 cooperate to regulate initiation and elongation of DNA replication in response to DNA damage. EMBO J 2018; 37:e99319. [PMID: 30158111 PMCID: PMC6213276 DOI: 10.15252/embj.201899319] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/25/2018] [Revised: 07/17/2018] [Accepted: 07/31/2018] [Indexed: 01/04/2023] Open
Abstract
The S-phase checkpoint maintains the integrity of the genome in response to DNA replication stress. In budding yeast, this pathway is initiated by Mec1 and is amplified through the activation of Rad53 by two checkpoint mediators: Mrc1 promotes Rad53 activation at stalled forks, and Rad9 is a general mediator of the DNA damage response. Here, we have investigated the interplay between Mrc1 and Rad9 in response to DNA damage and found that they control DNA replication through two distinct but complementary mechanisms. Mrc1 rapidly activates Rad53 at stalled forks and represses late-firing origins but is unable to maintain this repression over time. Rad9 takes over Mrc1 to maintain a continuous checkpoint signaling. Importantly, the Rad9-mediated activation of Rad53 slows down fork progression, supporting the view that the S-phase checkpoint controls both the initiation and the elongation of DNA replication in response to DNA damage. Together, these data indicate that Mrc1 and Rad9 play distinct functions that are important to ensure an optimal completion of S phase under replication stress conditions.
Collapse
Affiliation(s)
- Julien Bacal
- Institut de Génétique Humaine, CNRS, Equipe Labellisée Ligue contre le Cancer, Université de Montpellier, Montpellier, France
| | - María Moriel-Carretero
- Institut de Génétique Humaine, CNRS, Equipe Labellisée Ligue contre le Cancer, Université de Montpellier, Montpellier, France
| | - Benjamin Pardo
- Institut de Génétique Humaine, CNRS, Equipe Labellisée Ligue contre le Cancer, Université de Montpellier, Montpellier, France
| | - Antoine Barthe
- Institut de Génétique Humaine, CNRS, Equipe Labellisée Ligue contre le Cancer, Université de Montpellier, Montpellier, France
| | - Sushma Sharma
- Department of Medical Biochemistry and Biophysics and Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå University, Umeå, Sweden
| | - Andrei Chabes
- Department of Medical Biochemistry and Biophysics and Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå University, Umeå, Sweden
| | - Armelle Lengronne
- Institut de Génétique Humaine, CNRS, Equipe Labellisée Ligue contre le Cancer, Université de Montpellier, Montpellier, France
| | - Philippe Pasero
- Institut de Génétique Humaine, CNRS, Equipe Labellisée Ligue contre le Cancer, Université de Montpellier, Montpellier, France
| |
Collapse
|
12
|
Sasi NK, Coquel F, Lin YL, MacKeigan JP, Pasero P, Weinreich M. DDK Has a Primary Role in Processing Stalled Replication Forks to Initiate Downstream Checkpoint Signaling. Neoplasia 2018; 20:985-995. [PMID: 30157471 PMCID: PMC6111017 DOI: 10.1016/j.neo.2018.08.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/20/2018] [Revised: 08/01/2018] [Accepted: 08/02/2018] [Indexed: 02/05/2023]
Abstract
CDC7-DBF4 kinase (DDK) initiates DNA replication in eukaryotes by activating the replicative MCM helicase. DDK has diverse and apparently conflicting roles in the replication checkpoint response in various organisms, but the underlying mechanisms are far from settled. We show that human DDK promotes limited resection of newly synthesized DNA at stalled replication forks or sites of DNA damage to initiate replication checkpoint signaling. DDK is also required for efficient fork restart and G2/M cell cycle arrest. DDK exhibits genetic interactions with the ssDNA exonuclease EXO1 and phosphorylates EXO1 in vitro. EXO1 is also required for nascent strand degradation following exposure to HU, so DDK might regulate EXO1 directly. Lastly, sublethal DDK inhibition causes various mitotic abnormalities, which is consistent with a checkpoint deficiency. In summary, DDK has a primary and previously undescribed role in the replication checkpoint to promote ssDNA accumulation at stalled forks, which is required to initiate a robust checkpoint response and cell cycle arrest to maintain genome integrity.
Collapse
Affiliation(s)
- Nanda Kumar Sasi
- Laboratory of Genome Integrity and Tumorigenesis, Van Andel Research Institute (VARI), Grand Rapids, MI 49503; Laboratory of Systems Biology, VARI; Graduate Program in Genetics, Michigan State University, East Lansing, MI 48824
| | - Flavie Coquel
- IGH, Institute of Human Genetics CNRS UMR 9002 and University of Montpellier, Equipe Labellisée Ligue contre le Cancer, 141 rue de la Cardonille 34396 Cedex 5, Montpellier, France
| | - Yea-Lih Lin
- IGH, Institute of Human Genetics CNRS UMR 9002 and University of Montpellier, Equipe Labellisée Ligue contre le Cancer, 141 rue de la Cardonille 34396 Cedex 5, Montpellier, France
| | | | - Philippe Pasero
- IGH, Institute of Human Genetics CNRS UMR 9002 and University of Montpellier, Equipe Labellisée Ligue contre le Cancer, 141 rue de la Cardonille 34396 Cedex 5, Montpellier, France
| | - Michael Weinreich
- Laboratory of Genome Integrity and Tumorigenesis, Van Andel Research Institute (VARI), Grand Rapids, MI 49503.
| |
Collapse
|
13
|
Almawi AW, Matthews LA, Larasati, Myrox P, Boulton S, Lai C, Moraes T, Melacini G, Ghirlando R, Duncker BP, Guarné A. 'AND' logic gates at work: Crystal structure of Rad53 bound to Dbf4 and Cdc7. Sci Rep 2016; 6:34237. [PMID: 27681475 PMCID: PMC5041073 DOI: 10.1038/srep34237] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/27/2016] [Accepted: 09/07/2016] [Indexed: 01/07/2023] Open
Abstract
Forkhead-associated (FHA) domains are phosphopeptide recognition modules found in many signaling proteins. The Saccharomyces cerevisiae protein kinase Rad53 is a key regulator of the DNA damage checkpoint and uses its two FHA domains to interact with multiple binding partners during the checkpoint response. One of these binding partners is the Dbf4-dependent kinase (DDK), a heterodimer composed of the Cdc7 kinase and its regulatory subunit Dbf4. Binding of Rad53 to DDK, through its N-terminal FHA (FHA1) domain, ultimately inhibits DDK kinase activity, thereby preventing firing of late origins. We have previously found that the FHA1 domain of Rad53 binds simultaneously to Dbf4 and a phosphoepitope, suggesting that this domain functions as an 'AND' logic gate. Here, we present the crystal structures of the FHA1 domain of Rad53 bound to Dbf4, in the presence and absence of a Cdc7 phosphorylated peptide. Our results reveal how the FHA1 uses a canonical binding interface to recognize the Cdc7 phosphopeptide and a non-canonical interface to bind Dbf4. Based on these data we propose a mechanism to explain how Rad53 enhances the specificity of FHA1-mediated transient interactions.
Collapse
Affiliation(s)
- Ahmad W. Almawi
- Department of Biochemistry and Biomedical Sciences, ON, Canada
| | | | - Larasati
- Department of Biology, University of Waterloo, Waterloo, ON, Canada
| | - Polina Myrox
- Department of Biology, University of Waterloo, Waterloo, ON, Canada
| | - Stephen Boulton
- Department of Chemistry and Chemical Biology, McMaster University, ON, Canada
| | - Christine Lai
- Department of Biochemistry, University of Toronto, Toronto, Canada
| | - Trevor Moraes
- Department of Biochemistry, University of Toronto, Toronto, Canada
| | - Giuseppe Melacini
- Department of Chemistry and Chemical Biology, McMaster University, ON, Canada
| | - Rodolfo Ghirlando
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | | | - Alba Guarné
- Department of Biochemistry and Biomedical Sciences, ON, Canada,
| |
Collapse
|
14
|
Simpson-Lavy KJ, Zenvirth D, Brandeis M. Phosphorylation and dephosphorylation regulate APC/C(Cdh1) substrate degradation. Cell Cycle 2015; 14:3138-45. [PMID: 26252546 DOI: 10.1080/15384101.2015.1078036] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/11/2022] Open
Abstract
The Anaphase Promoting Complex/Cyclosome (APC/C) ubiquitin ligase activated by its G1 specific adaptor protein Cdh1 is a major regulator of the cell cycle. The APC/C(Cdh1) mediates degradation of dozens of proteins, however, the kinetics and requirements for their degradation are largely unknown. We demonstrate that overexpression of the constitutive active CDH1(m11) mutant that is not inhibited by phosphorylation results in mitotic exit in the absence of the FEAR and MEN pathways, and DNA re-replication in the absence of Cdc7 activity. This mode of mitotic exit also reveals additional requirements for APC/C(Cdh1) substrate degradation, which for some substrates such as Pds1 or Clb5 is dephosphorylation, but for others such as Cdc5 is phosphorylation.
Collapse
Key Words
- APC/C, Cdc5, Cdc14, Cdh1, Clb5, Dbf4, DNA replication, exit from mitosis, Pds1, substrate phosphorylation, yeast
Collapse
Affiliation(s)
- Kobi J Simpson-Lavy
- a The Department of Genetics ; The Alexander Silberman Institute of Life Sciences; The Hebrew University of Jerusalem ; Jerusalem , Israel
| | - Drora Zenvirth
- a The Department of Genetics ; The Alexander Silberman Institute of Life Sciences; The Hebrew University of Jerusalem ; Jerusalem , Israel
| | - Michael Brandeis
- a The Department of Genetics ; The Alexander Silberman Institute of Life Sciences; The Hebrew University of Jerusalem ; Jerusalem , Israel
| |
Collapse
|
15
|
Li Z, Zhang X, Jiang X, Wei D, Zhang C. Preparation and identification of a novel antibody against human CDC7 kinase. Monoclon Antib Immunodiagn Immunother 2013; 32:349-53. [PMID: 24111867 DOI: 10.1089/mab.2013.0022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/13/2022] Open
Abstract
Cell division cycle 7-related protein kinase (CDC7), which is conservatively expressed in the eukaryotic cells, is being intensely studied because of its significant function in DNA replication. In order to get further information on human CDC7, we generated a novel antibody against human CDC7. The steady strain of hybridoma (2G12) that can secrete specific monoclonal antibodies against human CDC7 was obtained by hybridoma technique. It is poised to contribute novel ways to study the cell cycle. The isotope of the monoclonal antibody was tested to be IgG2a/κ, and its characterizations were shown by enzyme-linked immunosorbent assay (ELISA) and Western blot analysis. The affinity constant (Kaff) of the monoclonal antibody was measured by non-competitive ELISA. By Western blot analysis, we found that CDC7 was largely expressed on the HCCLM3 cell line. Further identifications were adopted by the HRP-labeled MAbs. Thus, the antibody might boost studies on tumor cell lines.
Collapse
Affiliation(s)
- Zhiguang Li
- Department of Immunology, School of Preclinical and Forensic Medicine, West China Medical Centre, Sichuan University , Chengdu, China
| | | | | | | | | |
Collapse
|
16
|
Zhong Y, Nellimoottil T, Peace JM, Knott SRV, Villwock SK, Yee JM, Jancuska JM, Rege S, Tecklenburg M, Sclafani RA, Tavaré S, Aparicio OM. The level of origin firing inversely affects the rate of replication fork progression. ACTA ACUST UNITED AC 2013; 201:373-83. [PMID: 23629964 PMCID: PMC3639389 DOI: 10.1083/jcb.201208060] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 02/05/2023]
Abstract
Cells with reduced origin firing have an increased rate of replication fork progression, whereas fork progression is slowed in cells with excess origins. DNA damage slows DNA synthesis at replication forks; however, the mechanisms remain unclear. Cdc7 kinase is required for replication origin activation, is a target of the intra-S checkpoint, and is implicated in the response to replication fork stress. Remarkably, we found that replication forks proceed more rapidly in cells lacking Cdc7 function than in wild-type cells. We traced this effect to reduced origin firing, which results in fewer replication forks and a consequent decrease in Rad53 checkpoint signaling. Depletion of Orc1, which acts in origin firing differently than Cdc7, had similar effects as Cdc7 depletion, consistent with decreased origin firing being the source of these defects. In contrast, mec1-100 cells, which initiate excess origins and also are deficient in checkpoint activation, showed slower fork progression, suggesting the number of active forks influences their rate, perhaps as a result of competition for limiting factors.
Collapse
Affiliation(s)
- Yuan Zhong
- Molecular and Computational Biology Program, University of Southern California, Los Angeles, CA 90089, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Matthews LA, Guarné A. Dbf4: the whole is greater than the sum of its parts. Cell Cycle 2013; 12:1180-8. [PMID: 23549174 PMCID: PMC3674083 DOI: 10.4161/cc.24416] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/25/2013] [Accepted: 03/22/2013] [Indexed: 12/29/2022] Open
Abstract
Together with cyclin-dependent kinases, the Dbf4-dependent kinase (DDK) is essential to activate the Mcm2-7 helicase and, hence, initiate DNA replication in eukaryotes. Beyond its role as the regulatory subunit of the DDK complex, the Dbf4 protein also regulates the activity of other cell cycle kinases to mediate the checkpoint response and prevent premature mitotic exit under stress. Two features that are unusual in DNA replication proteins characterize Dbf4. The first is its evolutionary divergence; the second is how its conserved motifs are combined to form distinct functional units. This structural plasticity appears to be at odds with the conserved functions of Dbf4. In this review, we summarize recent genetic, biochemical and structural work delineating the multiple interactions mediated by Dbf4 and its various functions during the cell cycle. We also discuss how the limited sequence conservation of Dbf4 may be an advantage to regulate the activities of multiple cell cycle kinases.
Collapse
Affiliation(s)
- Lindsay A Matthews
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, Canada
| | | |
Collapse
|
18
|
Stead BE, Brandl CJ, Sandre MK, Davey MJ. Mcm2 phosphorylation and the response to replicative stress. BMC Genet 2012; 13:36. [PMID: 22564307 PMCID: PMC3517340 DOI: 10.1186/1471-2156-13-36] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/29/2012] [Accepted: 05/07/2012] [Indexed: 12/30/2022] Open
Abstract
Background The replicative helicase in eukaryotic cells is comprised of minichromosome maintenance (Mcm) proteins 2 through 7 (Mcm2-7) and is a key target for regulation of cell proliferation. In addition, it is regulated in response to replicative stress. One of the protein kinases that targets Mcm2-7 is the Dbf4-dependent kinase Cdc7 (DDK). In a previous study, we showed that alanine mutations of the DDK phosphorylation sites at S164 and S170 in Saccharomyces cerevisiae Mcm2 result in sensitivity to caffeine and methyl methanesulfonate (MMS) leading us to suggest that DDK phosphorylation of Mcm2 is required in response to replicative stress. Results We show here that a strain with the mcm2 allele lacking DDK phosphorylation sites (mcm2AA) is also sensitive to the ribonucleotide reductase inhibitor, hydroxyurea (HU) and to the base analogue 5-fluorouracil (5-FU) but not the radiomimetic drug, phleomycin. We screened the budding yeast non-essential deletion collection for synthetic lethal interactions with mcm2AA and isolated deletions that include genes involved in the control of genome integrity and oxidative stress. In addition, the spontaneous mutation rate, as measured by mutations in CAN1, was increased in the mcm2AA strain compared to wild type, whereas with a phosphomimetic allele (mcm2EE) the mutation rate was decreased. These results led to the idea that the mcm2AA strain is unable to respond properly to DNA damage. We examined this by screening the deletion collection for suppressors of the caffeine sensitivity of mcm2AA. Deletions that decrease spontaneous DNA damage, increase homologous recombination or slow replication forks were isolated. Many of the suppressors of caffeine sensitivity suppressed other phenotypes of mcm2AA including sensitivity to genotoxic drugs, the increased frequency of cells with RPA foci and the increased mutation rate. Conclusions Together these observations point to a role for DDK-mediated phosphorylation of Mcm2 in the response to replicative stress, including some forms of DNA damage. We suggest that phosphorylation of Mcm2 modulates Mcm2-7 activity resulting in the stabilization of replication forks in response to replicative stress.
Collapse
Affiliation(s)
- Brent E Stead
- Department of Biochemistry, Schulich School of Medicine & Dentistry, University of Western Ontario, London, ON, N6A 5C1, Canada
| | | | | | | |
Collapse
|
19
|
A synthetic human kinase can control cell cycle progression in budding yeast. G3-GENES GENOMES GENETICS 2011; 1:317-25. [PMID: 22384342 PMCID: PMC3276143 DOI: 10.1534/g3.111.000430] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Academic Contribution Register] [Received: 05/26/2011] [Accepted: 08/03/2011] [Indexed: 01/15/2023]
Abstract
The DDK kinase complex, composed of Cdc7 and Dbf4, is required for S-phase progression. The two component proteins show different degrees of sequence conservation between human and yeast. Here, we determine that Saccharomyces cerevisiae bearing human CDC7 and DBF4 grows comparably to cells with yeast DDK under standard growth conditions. HsDrf1 (a second human Dbf4-like protein) does not support growth, suggesting that HsDbf4 is the true ortholog of ScDbf4. Both human subunits are required to complement yeast cdc7Δ or dbf4Δ due to the inability of human Cdc7 or Dbf4 to interact with the corresponding yeast protein. Flow cytometry indicates normal cell cycle progression for yeast containing human DDK. However, yeast containing human DDK is sensitive to long-term exposure to hydroxyurea and fails to sporulate, suggesting that human DDK substitutes for some, but not all, of yeast DDK's functions. We mapped the region of Cdc7 required for species-specific function of DDK to the C-terminus of Cdc7 by substituting the yeast C-terminal 55 amino acid residues in place of the equivalent human residues. The resulting hybrid protein supported growth of a cdc7Δ strain only in the presence of ScDBF4. The strain supported by the hybrid CDC7 was not sensitive to HU and formed tetrads. Together, our data indicate that DDK's targeting of its essential substrate is conserved between species, whereas the interactions within DDK are species specific.
Collapse
|
20
|
Stead BE, Brandl CJ, Davey MJ. Phosphorylation of Mcm2 modulates Mcm2-7 activity and affects the cell's response to DNA damage. Nucleic Acids Res 2011; 39:6998-7008. [PMID: 21596784 PMCID: PMC3167627 DOI: 10.1093/nar/gkr371] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 02/07/2023] Open
Abstract
The S-phase kinase, DDK controls DNA replication through phosphorylation of the replicative helicase, Mcm2–7. We show that phosphorylation of Mcm2 at S164 and S170 is not essential for viability. However, the relevance of Mcm2 phosphorylation is demonstrated by the sensitivity of a strain containing alanine at these positions (mcm2AA) to methyl methanesulfonate (MMS) and caffeine. Consistent with a role for Mcm2 phosphorylation in response to DNA damage, the mcm2AA strain accumulates more RPA foci than wild type. An allele with the phosphomimetic mutations S164E and S170E (mcm2EE) suppresses the MMS and caffeine sensitivity caused by deficiencies in DDK function. In vitro, phosphorylation of Mcm2 or Mcm2EE reduces the helicase activity of Mcm2–7 while increasing DNA binding. The reduced helicase activity likely results from the increased DNA binding since relaxing DNA binding with salt restores helicase activity. The finding that the ATP site mutant mcm2K549R has higher DNA binding and less ATPase than mcm2EE, but like mcm2AA results in drug sensitivity, supports a model whereby a specific range of Mcm2–7 activity is required in response to MMS and caffeine. We propose that phosphorylation of Mcm2 fine-tunes the activity of Mcm2–7, which in turn modulates DNA replication in response to DNA damage.
Collapse
Affiliation(s)
- Brent E Stead
- Department of Biochemistry, Schulich School of Medicine & Dentistry, University of Western Ontario, London, ON, Canada, N6A 5C1
| | | | | |
Collapse
|
21
|
The Dbf4-Cdc7 kinase promotes S phase by alleviating an inhibitory activity in Mcm4. Nature 2010; 463:113-7. [PMID: 20054399 PMCID: PMC2805463 DOI: 10.1038/nature08647] [Citation(s) in RCA: 240] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/19/2009] [Accepted: 11/06/2009] [Indexed: 11/08/2022]
Abstract
Eukaryotic DNA replication uses kinase regulatory pathways to facilitate coordination with other processes during cell division cycles and response to environmental cues. At least two cell cycle-regulated protein kinase systems, the S-phase-specific cyclin-dependent protein kinases (S-CDKs) and the Dbf4-Cdc7 kinase (DDK, Dbf4-dependent protein kinase) are essential activators for initiation of DNA replication. Although the essential mechanism of CDK activation of DNA replication in Saccharomyces cerevisiae has been established, exactly how DDK acts has been unclear. Here we show that the amino terminal serine/threonine-rich domain (NSD) of Mcm4 has both inhibitory and facilitating roles in DNA replication control and that the sole essential function of DDK is to relieve an inhibitory activity residing within the NSD. By combining an mcm4 mutant lacking the inhibitory activity with mutations that bypass the requirement for CDKs for initiation of DNA replication, we show that DNA synthesis can occur in G1 phase when CDKs and DDK are limited. However, DDK is still required for efficient S phase progression. In the absence of DDK, CDK phosphorylation at the distal part of the Mcm4 NSD becomes crucial. Moreover, DDK-null cells fail to activate the intra-S-phase checkpoint in the presence of hydroxyurea-induced DNA damage and are unable to survive this challenge. Our studies establish that the eukaryote-specific NSD of Mcm4 has evolved to integrate several protein kinase regulatory signals for progression through S phase.
Collapse
|
22
|
Matthews LA, Duong A, Prasad AA, Duncker BP, Guarné A. Crystallization and preliminary X-ray diffraction analysis of motif N from Saccharomyces cerevisiae Dbf4. Acta Crystallogr Sect F Struct Biol Cryst Commun 2009; 65:890-4. [PMID: 19724125 PMCID: PMC2795593 DOI: 10.1107/s1744309109029376] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/24/2009] [Accepted: 07/23/2009] [Indexed: 11/10/2022]
Abstract
The Cdc7-Dbf4 complex plays an instrumental role in the initiation of DNA replication and is a target of replication-checkpoint responses in Saccharomyces cerevisiae. Cdc7 is a conserved serine/threonine kinase whose activity depends on association with its regulatory subunit, Dbf4. A conserved sequence near the N-terminus of Dbf4 (motif N) is necessary for the interaction of Cdc7-Dbf4 with the checkpoint kinase Rad53. To understand the role of the Cdc7-Dbf4 complex in checkpoint responses, a fragment of Saccharomyces cerevisiae Dbf4 encompassing motif N was isolated, overproduced and crystallized. A complete native data set was collected at 100 K from crystals that diffracted X-rays to 2.75 A resolution and structure determination is currently under way.
Collapse
Affiliation(s)
- Lindsay A. Matthews
- Department of Biochemistry and Biomedical Sciences, HSC-4N57A, McMaster University, Hamilton, ON L8N 3Z5, Canada
| | - Andrew Duong
- Department of Biochemistry and Biomedical Sciences, HSC-4N57A, McMaster University, Hamilton, ON L8N 3Z5, Canada
| | - Ajai A. Prasad
- Department of Biology, University of Waterloo, Waterloo, ON N2L 3G1, Canada
| | - Bernard P. Duncker
- Department of Biology, University of Waterloo, Waterloo, ON N2L 3G1, Canada
| | - Alba Guarné
- Department of Biochemistry and Biomedical Sciences, HSC-4N57A, McMaster University, Hamilton, ON L8N 3Z5, Canada
| |
Collapse
|
23
|
Lau E, Chiang GG, Abraham RT, Jiang W. Divergent S phase checkpoint activation arising from prereplicative complex deficiency controls cell survival. Mol Biol Cell 2009; 20:3953-64. [PMID: 19587119 DOI: 10.1091/mbc.e09-01-0022] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/11/2022] Open
Abstract
The DNA replication machinery plays additional roles in S phase checkpoint control, although the identities of the replication proteins involved in checkpoint activation remain elusive. Here, we report that depletion of the prereplicative complex (pre-RC) protein Cdc6 causes human nontransformed diploid cells to arrest nonlethally in G1-G1/S and S phase, whereas multiple cancer cell lines undergo G1-G1/S arrest and cell death. These divergent phenotypes are dependent on the activation, or lack thereof, of an ataxia telangiectasia and Rad3-related (ATR)-dependent S phase checkpoint that inhibits replication fork progression. Although pre-RC deficiency induces chromatin structural alterations in both nontransformed and cancer cells that normally lead to ATR checkpoint activation, the sensor mechanisms in cancer cells seem to be compromised such that higher levels of DNA replication stress/damage are required to trigger checkpoint response. Our results suggest that therapy-induced disruption of pre-RC function might exert selective cytotoxic effects on tumor cells in human patients.
Collapse
Affiliation(s)
- Eric Lau
- The Burnham Institute for Medical Research, La Jolla, CA 92037, USA
| | | | | | | |
Collapse
|
24
|
Putnam CD, Jaehnig EJ, Kolodner RD. Perspectives on the DNA damage and replication checkpoint responses in Saccharomyces cerevisiae. DNA Repair (Amst) 2009; 8:974-82. [PMID: 19477695 DOI: 10.1016/j.dnarep.2009.04.021] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/17/2022]
Abstract
The DNA damage and replication checkpoints are believed to primarily slow the progression of the cell cycle to allow DNA repair to occur. Here we summarize known aspects of the Saccharomyces cerevisiae checkpoints including how these responses are integrated into downstream effects on the cell cycle, chromatin, DNA repair, and cytoplasmic targets. Analysis of the transcriptional response demonstrates that it is far more complex and less relevant to the repair of DNA damage than the bacterial SOS response. We also address more speculative questions regarding potential roles of the checkpoint during the normal S-phase and how current evidence hints at a checkpoint activation mechanism mediated by positive feedback that amplifies initial damage signals above a minimum threshold.
Collapse
Affiliation(s)
- Christopher D Putnam
- Ludwig Institute for Cancer Research, Department of Medicine and Cancer Center, University of California School of Medicine, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0669, United States.
| | | | | |
Collapse
|
25
|
Sawa M, Masai H. Drug design with Cdc7 kinase: a potential novel cancer therapy target. DRUG DESIGN DEVELOPMENT AND THERAPY 2009; 2:255-64. [PMID: 19920912 PMCID: PMC2761190 DOI: 10.2147/dddt.s4303] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Academic Contribution Register] [Indexed: 01/14/2023]
Abstract
Identification of novel molecular targets is critical in development of new and efficient cancer therapies. Kinases are one of the most common drug targets with a potential for cancer therapy. Cell cycle progression is regulated by a number of kinases, some of which are being developed to treat cancer. Cdc7 is a serine-threonine kinase originally discovered in budding yeast, which has been shown to be necessary to initiate the S phase. Inhibition of Cdc7 in cancer cells retards the progression of the S phase, accumulates DNA damage, and induces p53-independent cell death, but the same treatment in normal cells does not significantly affect of less than viability. Low-molecular-weight compounds that inhibit Cdc7 kinase with an IC50 10 nM have been identified, and shown to be effective in the inhibition of tumor growth in animal models. Thus Cdc7 kinase can be recognized as a novel molecular target for cancer therapy.
Collapse
|
26
|
Current awareness on yeast. Yeast 2009. [DOI: 10.1002/yea.1567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/08/2022] Open
|