2
|
Prieto-Ruiz JA, Alis R, García-Benlloch S, Sáez-Atiénzar S, Ventura I, Hernández-Andreu JM, Hernández-Yago J, Blesa JR. Expression of the human TIMM23 and TIMM23B genes is regulated by the GABP transcription factor. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2018; 1861:80-94. [PMID: 29413900 DOI: 10.1016/j.bbagrm.2018.01.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2017] [Revised: 01/10/2018] [Accepted: 01/10/2018] [Indexed: 12/26/2022]
Abstract
The TIM23 protein is a key component of the mitochondrial import machinery in yeast and mammals. TIM23 is the channel-forming subunit of the translocase of the inner mitochondrial membrane (TIM23) complex, which mediates preprotein translocation across the mitochondrial inner membrane. In this paper, we aimed to characterize the promoter region of the highly similar human TIM23 orthologs: TIMM23 and TIMM23B. Bioinformatic analysis revealed putative sites for the GA-binding protein (GABP) and the recombination signal binding protein for immunoglobulin kappa J (RBPJ) transcription factors in both promoters. Luciferase reporter assays, electrophoretic mobility shift assays, and chromatin immunoprecipitation experiments showed three functional sites for GABP and one functional site for RBPJ in both promoters. Moreover, silencing of GABPA, the gene encoding the DNA-binding subunit of the GABP transcription factor, resulted in reduced expression of TIMM23 and TIMM23B. Our results show an essential role of GABP in activating TIMM23 expression. More broadly, they suggest that physiological signals involved in activating mitochondrial biogenesis and oxidative function also enhance the transcription but not the protein level of TIMM23, which is essential for maintaining mitochondrial function and homeostasis.
Collapse
Affiliation(s)
- Jesús A Prieto-Ruiz
- Facultad de Medicina, Universidad Católica de Valencia San Vicente Mártir, c/ Quevedo 2, 46001, Valencia, Spain; Instituto Universitario de Investigación Dr. Viña Giner, Universidad Católica de Valencia San Vicente Mártir, c/ Quevedo 2, 46001, Valencia, Spain.
| | - Rafael Alis
- Facultad de Medicina, Universidad Católica de Valencia San Vicente Mártir, c/ Quevedo 2, 46001, Valencia, Spain; Instituto Universitario de Investigación Dr. Viña Giner, Universidad Católica de Valencia San Vicente Mártir, c/ Quevedo 2, 46001, Valencia, Spain.
| | - Sandra García-Benlloch
- Facultad de Medicina, Universidad Católica de Valencia San Vicente Mártir, c/ Quevedo 2, 46001, Valencia, Spain; Instituto Universitario de Investigación Dr. Viña Giner, Universidad Católica de Valencia San Vicente Mártir, c/ Quevedo 2, 46001, Valencia, Spain.
| | - Sara Sáez-Atiénzar
- Facultad de Medicina, Universidad Católica de Valencia San Vicente Mártir, c/ Quevedo 2, 46001, Valencia, Spain; Instituto Universitario de Investigación Dr. Viña Giner, Universidad Católica de Valencia San Vicente Mártir, c/ Quevedo 2, 46001, Valencia, Spain.
| | - Ignacio Ventura
- Facultad de Medicina, Universidad Católica de Valencia San Vicente Mártir, c/ Quevedo 2, 46001, Valencia, Spain; Instituto Universitario de Investigación Dr. Viña Giner, Universidad Católica de Valencia San Vicente Mártir, c/ Quevedo 2, 46001, Valencia, Spain.
| | - José M Hernández-Andreu
- Facultad de Medicina, Universidad Católica de Valencia San Vicente Mártir, c/ Quevedo 2, 46001, Valencia, Spain; Instituto Universitario de Investigación Dr. Viña Giner, Universidad Católica de Valencia San Vicente Mártir, c/ Quevedo 2, 46001, Valencia, Spain.
| | - José Hernández-Yago
- Instituto Universitario de Investigación Dr. Viña Giner, Universidad Católica de Valencia San Vicente Mártir, c/ Quevedo 2, 46001, Valencia, Spain; Facultad de Veterinaria y Ciencias Experimentales, Universidad Católica de Valencia San Vicente Mártir, c/ Guillem de Castro 94, 46001, Valencia, Spain.
| | - José R Blesa
- Facultad de Medicina, Universidad Católica de Valencia San Vicente Mártir, c/ Quevedo 2, 46001, Valencia, Spain; Instituto Universitario de Investigación Dr. Viña Giner, Universidad Católica de Valencia San Vicente Mártir, c/ Quevedo 2, 46001, Valencia, Spain.
| |
Collapse
|
3
|
Haas J, Frese KS, Park YJ, Keller A, Vogel B, Lindroth AM, Weichenhan D, Franke J, Fischer S, Bauer A, Marquart S, Sedaghat-Hamedani F, Kayvanpour E, Köhler D, Wolf NM, Hassel S, Nietsch R, Wieland T, Ehlermann P, Schultz JH, Dösch A, Mereles D, Hardt S, Backs J, Hoheisel JD, Plass C, Katus HA, Meder B. Alterations in cardiac DNA methylation in human dilated cardiomyopathy. EMBO Mol Med 2013; 5:413-29. [PMID: 23341106 PMCID: PMC3598081 DOI: 10.1002/emmm.201201553] [Citation(s) in RCA: 154] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2012] [Revised: 11/15/2012] [Accepted: 11/29/2012] [Indexed: 12/25/2022] Open
Abstract
Dilated cardiomyopathies (DCM) show remarkable variability in their age of onset, phenotypic presentation, and clinical course. Hence, disease mechanisms must exist that modify the occurrence and progression of DCM, either by genetic or epigenetic factors that may interact with environmental stimuli. In the present study, we examined genome-wide cardiac DNA methylation in patients with idiopathic DCM and controls. We detected methylation differences in pathways related to heart disease, but also in genes with yet unknown function in DCM or heart failure, namely Lymphocyte antigen 75 (LY75), Tyrosine kinase-type cell surface receptor HER3 (ERBB3), Homeobox B13 (HOXB13) and Adenosine receptor A2A (ADORA2A). Mass-spectrometric analysis and bisulphite-sequencing enabled confirmation of the observed DNA methylation changes in independent cohorts. Aberrant DNA methylation in DCM patients was associated with significant changes in LY75 and ADORA2A mRNA expression, but not in ERBB3 and HOXB13. In vivo studies of orthologous ly75 and adora2a in zebrafish demonstrate a functional role of these genes in adaptive or maladaptive pathways in heart failure.
Collapse
MESH Headings
- Adult
- Aged
- Animals
- Antigens, CD/genetics
- Antigens, CD/metabolism
- Biopsy
- Cardiomyopathy, Dilated/genetics
- Cardiomyopathy, Dilated/metabolism
- Cardiomyopathy, Dilated/physiopathology
- Case-Control Studies
- Cluster Analysis
- DNA Methylation
- Epigenesis, Genetic
- Female
- Gene Expression Regulation
- Gene Knockdown Techniques
- Genetic Predisposition to Disease
- HEK293 Cells
- Humans
- Lectins, C-Type/genetics
- Lectins, C-Type/metabolism
- Male
- Mass Spectrometry
- Middle Aged
- Minor Histocompatibility Antigens
- Molecular Sequence Data
- Myocardium/metabolism
- Phenotype
- RNA, Messenger/metabolism
- Rats
- Receptor, Adenosine A2A/genetics
- Receptor, Adenosine A2A/metabolism
- Receptors, Cell Surface/genetics
- Receptors, Cell Surface/metabolism
- Reproducibility of Results
- Sequence Analysis, DNA/methods
- Sequence Analysis, Protein
- Transfection
- Zebrafish/genetics
- Zebrafish/metabolism
- Zebrafish Proteins/genetics
- Zebrafish Proteins/metabolism
Collapse
Affiliation(s)
- Jan Haas
- Department of Internal Medicine III, University of HeidelbergHeidelberg, Germany
| | - Karen S Frese
- Department of Internal Medicine III, University of HeidelbergHeidelberg, Germany
| | - Yoon Jung Park
- Division of Epigenomics and Cancer Risk Factors, German Cancer Research Center (DKFZ)Heidelberg, Germany
- Department of Nutritional Science and Food Management, Ewha Womans UniversitySeoul, South Korea
| | - Andreas Keller
- Department of Human Genetics, Saarland UniversityGermany
| | - Britta Vogel
- Department of Internal Medicine III, University of HeidelbergHeidelberg, Germany
| | - Anders M Lindroth
- Division of Epigenomics and Cancer Risk Factors, German Cancer Research Center (DKFZ)Heidelberg, Germany
| | - Dieter Weichenhan
- Division of Epigenomics and Cancer Risk Factors, German Cancer Research Center (DKFZ)Heidelberg, Germany
| | - Jennifer Franke
- Department of Internal Medicine III, University of HeidelbergHeidelberg, Germany
| | - Simon Fischer
- Department of Internal Medicine III, University of HeidelbergHeidelberg, Germany
| | - Andrea Bauer
- Division of Functional Genome Analysis, German Cancer Research Center (DKFZ)Heidelberg, Germany
| | - Sabine Marquart
- Department of Internal Medicine III, University of HeidelbergHeidelberg, Germany
| | | | - Elham Kayvanpour
- Department of Internal Medicine III, University of HeidelbergHeidelberg, Germany
| | - Doreen Köhler
- Department of Internal Medicine III, University of HeidelbergHeidelberg, Germany
| | - Nadine M Wolf
- Department of Internal Medicine III, University of HeidelbergHeidelberg, Germany
- Medical Faculty Mannheim, Institute of Experimental and Clinical Pharmacology and Toxicology, Heidelberg UniversityMannheim, Germany
| | - Sarah Hassel
- Department of Internal Medicine III, University of HeidelbergHeidelberg, Germany
| | - Rouven Nietsch
- Department of Internal Medicine III, University of HeidelbergHeidelberg, Germany
| | - Thomas Wieland
- Medical Faculty Mannheim, Institute of Experimental and Clinical Pharmacology and Toxicology, Heidelberg UniversityMannheim, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Heidelberg/MannheimMannheim, Germany
| | - Philipp Ehlermann
- Department of Internal Medicine III, University of HeidelbergHeidelberg, Germany
| | - Jobst-Hendrik Schultz
- Department of General Internal Medicine and Psychosomatics, University Hospital HeidelbergHeidelberg, Germany
| | - Andreas Dösch
- Department of Internal Medicine III, University of HeidelbergHeidelberg, Germany
| | - Derliz Mereles
- Department of Internal Medicine III, University of HeidelbergHeidelberg, Germany
| | - Stefan Hardt
- Department of Internal Medicine III, University of HeidelbergHeidelberg, Germany
| | - Johannes Backs
- Department of Internal Medicine III, University of HeidelbergHeidelberg, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Heidelberg/MannheimHeidelberg, Germany
| | - Jörg D Hoheisel
- Division of Functional Genome Analysis, German Cancer Research Center (DKFZ)Heidelberg, Germany
| | - Christoph Plass
- Division of Epigenomics and Cancer Risk Factors, German Cancer Research Center (DKFZ)Heidelberg, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Heidelberg/MannheimHeidelberg, Germany
| | - Hugo A Katus
- Department of Internal Medicine III, University of HeidelbergHeidelberg, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Heidelberg/MannheimHeidelberg, Germany
| | - Benjamin Meder
- Department of Internal Medicine III, University of HeidelbergHeidelberg, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Heidelberg/MannheimHeidelberg, Germany
| |
Collapse
|
4
|
Scarpulla RC. Nucleus-encoded regulators of mitochondrial function: integration of respiratory chain expression, nutrient sensing and metabolic stress. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2011; 1819:1088-97. [PMID: 22080153 DOI: 10.1016/j.bbagrm.2011.10.011] [Citation(s) in RCA: 112] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2011] [Accepted: 10/28/2011] [Indexed: 12/23/2022]
Abstract
Nucleus-encoded regulatory factors are major contributors to mitochondrial biogenesis and function. Several act within the organelle to regulate mitochondrial transcription and translation while others direct the expression of nuclear genes encoding the respiratory chain and other oxidative functions. Loss-of-function studies for many of these factors reveal a wide spectrum of phenotypes. These range from embryonic lethality and severe respiratory chain deficiency to relatively mild mitochondrial defects seen only under conditions of physiological stress. The PGC-1 family of regulated coactivators (PGC-1α, PGC-1β and PRC) plays an important integrative role through their interactions with transcription factors (NRF-1, NRF-2, ERRα, CREB, YY1 and others) that control respiratory gene expression. In addition, recent evidence suggests that PGC-1 coactivators may balance the cellular response to oxidant stress by promoting a pro-oxidant environment or by orchestrating an inflammatory response to severe metabolic stress. These pathways may serve as essential links between the energy generating functions of mitochondria and the cellular REDOX environment associated with longevity, senescence and disease. This article is part of a Special Issue entitled: Mitochondrial Gene Expression.
Collapse
Affiliation(s)
- Richard C Scarpulla
- Department of Cell and Molecular Biology, Northwestern Medical School, Chicago, IL 60611, USA.
| |
Collapse
|
5
|
Chen JQ, Cammarata PR, Baines CP, Yager JD. Regulation of mitochondrial respiratory chain biogenesis by estrogens/estrogen receptors and physiological, pathological and pharmacological implications. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2009; 1793:1540-70. [PMID: 19559056 DOI: 10.1016/j.bbamcr.2009.06.001] [Citation(s) in RCA: 189] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2009] [Revised: 06/16/2009] [Accepted: 06/17/2009] [Indexed: 12/21/2022]
Abstract
There has been increasing evidence pointing to the mitochondrial respiratory chain (MRC) as a novel and important target for the actions of 17beta-estradiol (E(2)) and estrogen receptors (ER) in a number of cell types and tissues that have high demands for mitochondrial energy metabolism. This novel E(2)-mediated mitochondrial pathway involves the cooperation of both nuclear and mitochondrial ERalpha and ERbeta and their co-activators on the coordinate regulation of both nuclear DNA- and mitochondrial DNA-encoded genes for MRC proteins. In this paper, we have: 1) comprehensively reviewed studies that reveal a novel role of estrogens and ERs in the regulation of MRC biogenesis; 2) discussed their physiological, pathological and pharmacological implications in the control of cell proliferation and apoptosis in relation to estrogen-mediated carcinogenesis, anti-cancer drug resistance in human breast cancer cells, neuroprotection for Alzheimer's disease and Parkinson's disease in brain, cardiovascular protection in human heart and their beneficial effects in lens physiology related to cataract in the eye; and 3) pointed out new research directions to address the key questions in this important and newly emerging area. We also suggest a novel conceptual approach that will contribute to innovative regimens for the prevention or treatment of a wide variety of medical complications based on E(2)/ER-mediated MRC biogenesis pathway.
Collapse
Affiliation(s)
- Jin-Qiang Chen
- Breast Cancer Research Laboratory, Fox Chase Cancer Center, Philadelphia, PA 19111, USA.
| | | | | | | |
Collapse
|