1
|
Broussard EM, Rodriguez ZB, Austin CC. Evolution of the albumin protein family in reptiles. Mol Phylogenet Evol 2022; 169:107435. [DOI: 10.1016/j.ympev.2022.107435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 01/21/2022] [Accepted: 01/25/2022] [Indexed: 10/19/2022]
|
2
|
Variations in the Human Serum Albumin Gene: Molecular and Functional Aspects. Int J Mol Sci 2022; 23:ijms23031159. [PMID: 35163085 PMCID: PMC8835714 DOI: 10.3390/ijms23031159] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 01/18/2022] [Accepted: 01/19/2022] [Indexed: 01/14/2023] Open
Abstract
The human albumin gene, the most abundant serum protein, is located in the long arm of chromosome 4, near the centromere, position 4q11–3. It is divided by 14 intervening introns into 15 exons, the last of which is untranslated. To date, 74 nucleotide substitutions (mainly missense) have been reported, determining the circulating variants of albumin or pre-albumin. In a heterozygous state, this condition is known as alloalbuminaemia or bisalbuminaemia (OMIM # 103600). The genetic variants are not associated with disease, neither in the heterozygous nor in the homozygous form. Only the variants resulting in familial dysalbuminaemic hyperthyroxinaemia and hypertriiodothyroninaemia are of clinical relevance because affected individuals are at risk of inappropriate treatment or may have adverse drug effects. In 28 other cases, the pathogenic variants (mainly affecting splicing, nonsense, and deletions), mostly in the homozygous form, cause a premature stop in the synthesis of the protein and lead to the condition known as congenital analbuminaemia. In this review, we will summarize the current knowledge of genetic and molecular aspects, functional consequences and potential therapeutic uses of the variants. We will also discuss the molecular defects resulting in congenital analbuminaemia, as well as the biochemical and clinical features of this rare condition
Collapse
|
3
|
Minchiotti L, Caridi G, Campagnoli M, Lugani F, Galliano M, Kragh-Hansen U. Diagnosis, Phenotype, and Molecular Genetics of Congenital Analbuminemia. Front Genet 2019; 10:336. [PMID: 31057599 PMCID: PMC6478806 DOI: 10.3389/fgene.2019.00336] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Accepted: 03/29/2019] [Indexed: 12/25/2022] Open
Abstract
Congenital analbuminemia (CAA) is an inherited, autosomal recessive disorder with an incidence of 1:1,000,000 live birth. Affected individuals have a strongly decreased concentration, or complete absence, of serum albumin. The trait is usually detected by serum protein electrophoresis and immunochemistry techniques. However, due to the existence of other conditions in which the albumin concentrations are very low or null, analysis of the albumin (ALB) gene is necessary for the molecular diagnosis. CAA can lead to serious consequences in the prenatal period, because it can cause miscarriages and preterm birth, which often is due to oligohydramnios and placental abnormalities. Neonatally and in early childhood the trait is a risk factor that can lead to death, mainly from fluid retention and infections in the lower respiratory tract. By contrast, CAA is better tolerated in adulthood. Clinically, in addition to the low level of albumin, the patients almost always have hyperlipidemia, but they usually also have mild oedema, reduced blood pressure and fatigue. The fairly mild symptoms in adulthood are due to compensatory increment of other plasma proteins. The condition is rare; clinically, only about 90 cases have been detected worldwide. Among these, 53 have been studied by sequence analysis of the ALB gene, allowing the identification of 27 different loss of function (LoF) pathogenic variants. These include a variant in the start codon, frame-shift/insertions, frame-shift/deletions, nonsense variants, and variants affecting splicing. Most are unique, peculiar for each affected family, but one, a frame-shift deletion called Kayseri, has been found to cause about one third of the known cases allowing to presume a founder effect. This review provides an overview of the literature about CAA, about supportive and additional physiological and pharmacological information obtained from albumin-deficient mouse and rat models and a complete and up-to-date dataset of the pathogenic variants identified in the ALB gene.
Collapse
Affiliation(s)
| | - Gianluca Caridi
- Laboratory of Molecular Nephrology, Istituto Giannina Gaslini (IRCCS), Genoa, Italy
| | | | - Francesca Lugani
- Laboratory of Molecular Nephrology, Istituto Giannina Gaslini (IRCCS), Genoa, Italy
| | - Monica Galliano
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
| | | |
Collapse
|
4
|
Mahmoud HM, Osman M, Elshabrawy O, Abdallah HMI, Khairallah A. AM-1241 CB2 Receptor Agonist Attenuates Inflammation, Apoptosis and Stimulate Progenitor Cells in Bile Duct Ligated Rats. Open Access Maced J Med Sci 2019; 7:925-936. [PMID: 30976335 PMCID: PMC6454175 DOI: 10.3889/oamjms.2019.194] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 02/19/2019] [Accepted: 02/20/2019] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND: The cannabinoid receptor 2 (CB2) plays a pleiotropic role in the innate immunity and is considered a crucial mediator of liver disease. Cannabinoid CB2 receptor activation has been reported to attenuate liver fibrosis in CCl4 exposed mice and also plays a potential role in liver regeneration in a mouse model of I/R and protection against alcohol-induced liver injury. AIM: In this study, we investigated the impact of CB2 receptors on the antifibrotic and regenerative process associated with cholestatic liver injury. METHODS: Twenty-six rats had bile duct ligation co-treated with silymarin and AM1241 for 3 consecutive weeks. Serum hepatotoxicity markers were determined, and histopathological evaluation was performed. RESULTS: Following bile duct ligation (BDL) for 3 weeks, there was increased aminotransferase levels, marked inflammatory infiltration and hepatocyte apoptosis with induced oxidative stress, as reflected by increased lipid peroxidation. Conversely, following treatment with the CB2 agonist, AM-1241, BDL rats displayed a reduction in liver injury and attenuation of fibrosis as reflected by expression of hydroxyproline and α-smooth muscle actin. AM1241 treatment also significantly attenuated lipid peroxidation end-products, p53-dependent apoptosis and also attenuated inflammatory process by stimulating IL-10 production. Moreover, AM1241 treated rats were associated with significant expression of hepatic progenitor/oval cell markers. CONCLUSION: In conclusion, this study points out that CB2 receptors reduce liver injury and promote liver regeneration via distinct mechanisms including IL-10 dependent inhibition of inflammation, reduction of p53-reliant apoptosis and through stimulation of oval/progenitor cells. These results suggest that CB2 agonists display potent hepatoregenrative properties, in addition to their antifibrogenic effects.
Collapse
Affiliation(s)
- Hesham M Mahmoud
- Cairo University Kasr Alainy, Faculty of Medicine, Pharmacology, Cairo, Egypt
| | - Mona Osman
- Cairo University Kasr Alainy, Faculty of Medicine, Pharmacology, Cairo, Egypt
| | | | | | - Ahmed Khairallah
- Pharmacology Department, National Research Centre, Dokki, Cairo 11211, Egypt
| |
Collapse
|
5
|
Vujanovic L, Stahl EC, Pardee AD, Geller DA, Tsung A, Watkins SC, Gibson GA, Storkus WJ, Butterfield LH. Tumor-Derived α-Fetoprotein Directly Drives Human Natural Killer-Cell Activation and Subsequent Cell Death. Cancer Immunol Res 2017; 5:493-502. [PMID: 28468916 DOI: 10.1158/2326-6066.cir-16-0216] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Revised: 03/22/2017] [Accepted: 04/28/2017] [Indexed: 11/16/2022]
Abstract
Hepatocellular carcinoma (HCC) patients with reduced natural killer (NK)-cell numbers and function have been shown to have a poor disease outcome. Mechanisms underlying NK-cell deficiency and dysfunction in HCC patients remain largely unresolved. α-Fetoprotein (AFP) is an oncofetal antigen produced by HCC. Previous studies demonstrated that tumor-derived AFP (tAFP) can indirectly impair NK-cell activity by suppressing dendritic cell function. However, a direct tAFP effect on NK cells remains unexplored. The purpose of this study was to examine the ability of cord blood-derived AFP (nAFP) and that of tAFP to directly modulate human NK-cell activity and longevity in vitro Short-term exposure to tAFP and, especially, nAFP proteins induced a unique proinflammatory, IL2-hyperresponsive phenotype in NK cells as measured by IL1β, IL6, and TNF secretion, CD69 upregulation, and enhanced tumor cell killing. In contrast, extended coculture with tAFP, but not nAFP, negatively affected long-term NK-cell viability. NK-cell activation was directly mediated by the AFP protein itself, whereas their viability was affected by hydrophilic components within the low molecular mass cargo that copurified with tAFP. Identification of the distinct impact of circulating tAFP on NK-cell function and viability may be crucial to developing a strategy to ameliorate HCC patient NK-cell functional deficits. Cancer Immunol Res; 5(6); 493-502. ©2017 AACR.
Collapse
Affiliation(s)
- Lazar Vujanovic
- University of Pittsburgh Cancer Institute, University of Pittsburgh, Pennsylvania.,Department of Medicine, University of Pittsburgh, Pennsylvania
| | - Elizabeth C Stahl
- University of Pittsburgh Cancer Institute, University of Pittsburgh, Pennsylvania
| | - Angela D Pardee
- University of Pittsburgh Cancer Institute, University of Pittsburgh, Pennsylvania.,Department of Medicine, University of Pittsburgh, Pennsylvania
| | - David A Geller
- University of Pittsburgh School of Medicine, Department of Surgery, University of Pittsburgh, Pennsylvania
| | - Allan Tsung
- University of Pittsburgh School of Medicine, Department of Surgery, University of Pittsburgh, Pennsylvania
| | - Simon C Watkins
- Department of Cell Biology and Physiology, University of Pittsburgh, Pennsylvania
| | - Gregory A Gibson
- Department of Cell Biology and Physiology, University of Pittsburgh, Pennsylvania
| | - Walter J Storkus
- University of Pittsburgh Cancer Institute, University of Pittsburgh, Pennsylvania.,Department of Dermatology, University of Pittsburgh, Pennsylvania.,Department of Immunology, University of Pittsburgh, Pennsylvania
| | - Lisa H Butterfield
- University of Pittsburgh Cancer Institute, University of Pittsburgh, Pennsylvania. .,Department of Medicine, University of Pittsburgh, Pennsylvania.,University of Pittsburgh School of Medicine, Department of Surgery, University of Pittsburgh, Pennsylvania.,Department of Immunology, University of Pittsburgh, Pennsylvania
| |
Collapse
|
6
|
Lakhi NA, Mizejewski GJ. Alpha-fetoprotein and Fanconi Anemia: Relevance to DNA Repair and Breast Cancer Susceptibility. Fetal Pediatr Pathol 2017; 36:49-61. [PMID: 27690720 DOI: 10.1080/15513815.2016.1225873] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Elevations of serum alpha-fetoprotein (sAFP) have been reported in fetal and infant states of anemia. Fanconi anemia (FA) belongs to a family of genetic instability disorders which lack the capability to repair DNA breaks. The lesion occurs at a checkpoint regulatory step of the G2 to mitotic transition, allowing FA cells to override cell-cycle arrest. FA DNA repair pathways contain complementation groups known as FANC proteins. FANC proteins form multi-protein complexes with BRCA proteins and are involved in homologous DNA repair. An impaired cascade in these events imparts an increased breast cancer susceptibility to female FA patients. Elevations of sAFP have availed this fetal protein to serve as a biomarker for FA disease. However, the origin of the synthesis of sAFA has not been determined in FA patients. We hypothesize that hematopoietic multipotent progenitor stem cells in the bone marrow are the source of sAFP production in FA patients.
Collapse
Affiliation(s)
- Nisha A Lakhi
- a Department of Obstetrics and Gynecology , Richmond University Medical Center , Staten Island , New York , USA
| | - Gerald J Mizejewski
- b Wadsworth Center , New York State Department of Health , Albany , New York , USA
| |
Collapse
|
7
|
The alpha-fetoprotein (AFP) third domain: a search for AFP interaction sites of cell cycle proteins. Tumour Biol 2016; 37:12697-12711. [DOI: 10.1007/s13277-016-5131-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Accepted: 06/29/2016] [Indexed: 01/28/2023] Open
|
8
|
Afamin--A pleiotropic glycoprotein involved in various disease states. Clin Chim Acta 2015; 446:105-10. [PMID: 25892677 DOI: 10.1016/j.cca.2015.04.010] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Revised: 03/28/2015] [Accepted: 04/02/2015] [Indexed: 12/31/2022]
Abstract
The human glycoprotein afamin was discovered as the fourth member of the albumin gene family. Despite intense research over the last 20 years, our knowledge of afamin's physiological or pathophysiological functions is still very limited. Circulating afamin is primarily of hepatic origin and abundant concentrations are found in plasma, cerebrospinal, ovarian follicular and seminal fluids. In vitro binding studies revealed specific binding properties for vitamin E. A previously performed analytical characterization and clinical evaluation study of an enzyme-linked immunosorbent assay for quantitative measurement of afamin in human plasma demonstrated that the afamin assay meets the quality specifications for laboratory medicine. Comparative proteomics has identified afamin as a potential biomarker for ovarian cancer and these findings were confirmed by quantitative immunoassay of afamin and validated in independent cohorts of patients with ovarian cancer. Afamin has also been investigated in other types of carcinoma. Most of these studies await further evaluation with validated quantitative afamin assays and require validation in larger patient cohorts. Transgenic mice overexpressing the human afamin gene revealed increased body weight and increased blood concentrations of lipids and glucose. These transgenic mouse data were in line with three large human population-based studies showing that afamin is strongly associated with the prevalence and development of the metabolic syndrome. This review summarizes and discusses the molecular, biochemical and analytical characterization of afamin as well as possible clinical applications of afamin measurement.
Collapse
|
9
|
Mizejewski GJ. The alpha-fetoprotein third domain receptor binding fragment: in search of scavenger and associated receptor targets. J Drug Target 2015; 23:538-51. [DOI: 10.3109/1061186x.2015.1015538] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
10
|
Kragh-Hansen U, Minchiotti L, Galliano M, Peters T. Human serum albumin isoforms: genetic and molecular aspects and functional consequences. Biochim Biophys Acta Gen Subj 2013; 1830:5405-17. [PMID: 23558059 DOI: 10.1016/j.bbagen.2013.03.026] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2013] [Revised: 03/21/2013] [Accepted: 03/23/2013] [Indexed: 12/25/2022]
Abstract
BACKGROUND At present, 67 different genetic variants of human serum albumin and proalbumin have been molecularly characterized at the protein and/or gene level. SCOPE OF REVIEW This review summarizes present knowledge about genetic and molecular aspects, functional consequences and potential uses of the variants. MAJOR CONCLUSIONS The frequency of bisalbuminemia in the general population is probably about 1:1000, but it can be much higher in isolated populations. Mutations are often due to hypermutable CpG dinucleotides, and in addition to single-amino acid substitutions, glycosylated variants and C-terminally modified alloalbumins have been found. Some mutants show altered stability in vivo and/or in vitro. High-affinity binding of Ni(++) and Cu(++) is blocked, or almost so, by amino acid changes at the N-terminus. In contrast, substitution of Leu90 and Arg242 leads to strong binding of triiodothyronine and l-thyroxine, respectively, resulting in two clinically important syndromes. Variants often have modified plasma half-lives and organ uptakes when studied in mice. GENERAL SIGNIFICANCE Because alloalbumins do not seem to be associated with disease, they can be used as markers of migration and provide a model for study of neutral molecular evolution. They can also give valuable molecular information about albumins binding sites, antioxidant and enzymatic properties, as well as stability. Mutants with increased affinity for endogenous or exogenous ligands could be therapeutically relevant as antidotes, both for in vivo and extracorporeal treatment. Variants with modified biodistribution could be used for drug targeting. In most cases, the desired function can be further elaborated by producing site-directed, recombinant mutants. This article is part of a Special Issue entitled Serum Albumin.
Collapse
|
11
|
Peterson ML, Ma C, Spear BT. Zhx2 and Zbtb20: novel regulators of postnatal alpha-fetoprotein repression and their potential role in gene reactivation during liver cancer. Semin Cancer Biol 2011; 21:21-7. [PMID: 21216289 PMCID: PMC3313486 DOI: 10.1016/j.semcancer.2011.01.001] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2010] [Revised: 12/22/2010] [Accepted: 01/04/2011] [Indexed: 12/21/2022]
Abstract
The mouse alpha-fetoprotein (AFP) gene is abundantly expressed in the fetal liver, normally silent in the adult liver but is frequently reactivated in hepatocellular carcinoma. The basis for AFP expression in the fetal liver has been studied extensively. However, the basis for AFP reactivation during hepatocarcinogenesis is not well understood. Two novel factors that control postnatal AFP repression, Zhx2 and Zbtb20, were recently identified. Here, we review the transcription factors that regulate AFP in the fetal liver, as well as Zhx2 and Zbtb20, and raise the possibility that the loss of these postnatal repressors may be involved in AFP reactivation in liver cancer.
Collapse
Affiliation(s)
- Martha L Peterson
- Department of Microbiology, Immunology & Molecular Genetics and Markey Cancer Center, University of Kentucky, Lexington, KY 40536, USA
| | | | | |
Collapse
|
12
|
Mizejewski GJ. Review of the putative cell-surface receptors for alpha-fetoprotein: identification of a candidate receptor protein family. Tumour Biol 2010; 32:241-58. [PMID: 21120646 DOI: 10.1007/s13277-010-0134-5] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2010] [Accepted: 11/07/2010] [Indexed: 11/28/2022] Open
Abstract
The identification of a receptor for alpha-fetoprotein (AFP) has long been sought in the field of medicine. The uptake and endocytosis of AFP by rat tumor cells in 1984 sparked a series of confirmatory reports and the original studies were then extended to include multiple tumor types in rats, mice, and humans. The following year, French investigators partially characterized the binding properties of the AFP receptor, but they were not able to purify the receptor. It was not until 1991-1992 that an AFP receptor was partially purified and characterized from both human monocytes and breast cancer cells. By 1993, a monoclonal antibody had been raised against the AFP receptor produced from a breast cancer extract with claims that the receptor was a widespread (universal) oncofetal biomarker for cancer. However, that receptor has yet to be cloned and/or purified due to its complex multimeric binding interactions and associations. The present report will review the literature of the multiple putative AFP receptors described to date, the cellular uptake and endocytosis of AFP, and the biochemical characterization of these putative cell-surface proteins. In addition, evidence derived from computer modeling, proteolytic degradation patterns, and amino acid sequence analysis will be presented in a proposed identification of a family of multi-ligand binding receptors; this family fits many, if not most, of the criteria required for an AFP receptor. The purposed receptor protein family is tentatively identified as the Scavenger receptors which comprise several classes of single- and double-pass integral transmembrane proteins. Present data do not support the concept that the AFP receptor is a "universal" tumor receptor and/or biomarker.
Collapse
Affiliation(s)
- Gerald J Mizejewski
- Wadsworth Center, Division of Translational Medicine, New York State Department of Health, Empire State Plaza, Albany, NY 12201, USA.
| |
Collapse
|
13
|
Liu H, Ren H, Spear BT. The mouse alpha-albumin (afamin) promoter is differentially regulated by hepatocyte nuclear factor 1α and hepatocyte nuclear factor 1β. DNA Cell Biol 2010; 30:137-47. [PMID: 20979532 DOI: 10.1089/dna.2010.1097] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Alpha-albumin (AFM), a member of the albumin gene family that also includes albumin, alpha-fetoprotein, and vitamin D-binding protein, is expressed predominantly in the liver and activated at birth. Here, we identify two hepatocyte nuclear factor 1 (HNF1)-binding sites in the AFM promoter that are highly conserved in different mammals. These two sites bind HNF1α and HNF1β. The distal site (centered at -132, relative to AFM exon 1) is more important than proximal site (centered at -58), based on HNF1 binding and mutational analysis in transfected cells. Our data indicate that HNF1α is a more potent activator of AFM promoter than is HNF1β. However, HNF1β can act in a dominant manner to inhibit HNF1α-dependent transactivation of the AFM promoter when both proteins are expressed together. This suggests that the differential timing with which the albumin family genes are activated in the liver may be influenced by their responsiveness to HNF1α and HNF1β. Our comparison of HNF1-binding sites in the promoters in the albumin family of genes indicates that the primordial albumin-like gene contained two HNF1 sites; one of these sites was lost from the albumin promoter, but both sites still are present in other members of this gene family.
Collapse
Affiliation(s)
- Hua Liu
- Department of Microbiology, Immunology, and Molecular Genetics, University of Kentucky, Lexington, Kentucky 40536, USA
| | | | | |
Collapse
|