1
|
Cuellar P, Castañeda-Ortiz EJ, Rosales-Zarza C, Martínez-Rodríguez CE, Canela-Pérez I, Rodríguez MA, Valdés J, Azuara-Liceaga E. Genome-Wide Classification of Myb Domain-Containing Protein Families in Entamoeba invadens. Genes (Basel) 2024; 15:201. [PMID: 38397191 PMCID: PMC10887745 DOI: 10.3390/genes15020201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 01/22/2024] [Accepted: 01/26/2024] [Indexed: 02/25/2024] Open
Abstract
Entamoeba histolytica, the causative agent of amebiasis, is the third leading cause of death among parasitic diseases globally. Its life cycle includes encystation, which has been mostly studied in Entamoeba invadens, responsible for reptilian amebiasis. However, the molecular mechanisms underlying this process are not fully understood. Therefore, we focused on the identification and characterization of Myb proteins, which regulate the expression of encystation-related genes in various protozoan parasites. Through bioinformatic analysis, we identified 48 genes in E. invadens encoding MYB-domain-containing proteins. These were classified into single-repeat 1R (20), 2R-MYB proteins (27), and one 4R-MYB protein. The in-silico analysis suggests that these proteins are multifunctional, participating in transcriptional regulation, chromatin remodeling, telomere maintenance, and splicing. Transcriptomic data analysis revealed expression signatures of eimyb genes, suggesting a potential orchestration in the regulation of early and late encystation-excystation genes. Furthermore, we identified probable target genes associated with reproduction, the meiotic cell cycle, ubiquitin-dependent protein catabolism, and endosomal transport. In conclusion, our findings suggest that E. invadens Myb proteins regulate stage-specific proteins and a wide array of cellular processes. This study provides a foundation for further exploration of the molecular mechanisms governing encystation and unveils potential targets for therapeutic intervention in amebiasis.
Collapse
Affiliation(s)
- Patricia Cuellar
- Posgrado en Ciencias Genómicas, Universidad Autónoma de la Ciudad de México, Mexico City C.P. 03100, Mexico; (P.C.); (E.J.C.-O.)
| | - Elizabeth J. Castañeda-Ortiz
- Posgrado en Ciencias Genómicas, Universidad Autónoma de la Ciudad de México, Mexico City C.P. 03100, Mexico; (P.C.); (E.J.C.-O.)
| | - César Rosales-Zarza
- Licenciatura Ciencias Genómicas, Universidad Autónoma de la Ciudad de México, Mexico City C.P. 03100, Mexico;
| | | | - Israel Canela-Pérez
- Departamento de Bioquímica, CINVESTAV-IPN, Mexico City C.P. 07360, Mexico; (I.C.-P.); (J.V.)
| | - Mario Alberto Rodríguez
- Departamento de Infectómica y Patogénesis Molecular, CINVESTAV-IPN, Mexico City C.P. 07360, Mexico;
| | - Jesús Valdés
- Departamento de Bioquímica, CINVESTAV-IPN, Mexico City C.P. 07360, Mexico; (I.C.-P.); (J.V.)
| | - Elisa Azuara-Liceaga
- Posgrado en Ciencias Genómicas, Universidad Autónoma de la Ciudad de México, Mexico City C.P. 03100, Mexico; (P.C.); (E.J.C.-O.)
| |
Collapse
|
2
|
Xie F, Chen C, Chen J, Chen J, Hua Q, Shah K, Zhang Z, Zhao J, Hu G, Chen J, Qin Y. Betalain biosynthesis in red pulp pitaya is regulated via HuMYB132: a R-R type MYB transcription factor. BMC PLANT BIOLOGY 2023; 23:28. [PMID: 36635619 PMCID: PMC9837905 DOI: 10.1186/s12870-023-04049-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 01/06/2023] [Indexed: 06/17/2023]
Abstract
BACKGROUND Multiple MYB transcription factors (TFs) are involved in the regulation of plant coloring. Betalain is a kind of natural plant pigment and its biosynthesis is regulated by a number of enzymes. Despite this, little is known about the molecular properties and roles of MYB TFs in pitaya betalain biosynthesis. RESULTS In the present study, we identified a 1R-MYB gene, HuMYB132, which is preferentially expressed in red-pulp pitaya at the mature stage. It was clustered with Arabidopsis R-R-type genes and had two DNA-binding domains and a histidine-rich region. The expression assays in N. benthamiana and yeast indicated that HuMYB132 is a nucleus-localized protein with transcriptional activation activity. Dual luciferase reporter assay and electrophoretic mobility shift assays (EMSA) demonstrated that HuMYB132 could promote the transcriptional activities of HuADH1, HuCYP76AD1-1, and HuDODA1 by binding to their promoters. Silencing HuMYB132 reduced betalain accumulation and the expression levels of betalain biosynthetic genes in pitaya pulps. CONCLUSIONS According to our findings, HuMYB132, a R-R type member of 1R-MYB TF subfamily, positively regulates pitaya betalain biosynthesis by regulating the expression of HuADH1, HuCYP76AD1-1, and HuDODA1. The present study provides a new theoretical reference for the management of pitaya betalain biosynthesis and also provides an essential basis for future regulation of betalain biosynthesis in Hylocereus.
Collapse
Affiliation(s)
- Fangfang Xie
- Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (South China), Ministry of Agriculture and Rural Affairs, College of Horticulture, South China Agricultural University, Guangzhou, 510642, China
- College of Agriculture, Guangxi University, Nanning, 530004, China
| | - Canbin Chen
- Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (South China), Ministry of Agriculture and Rural Affairs, College of Horticulture, South China Agricultural University, Guangzhou, 510642, China
| | - Jiayi Chen
- Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (South China), Ministry of Agriculture and Rural Affairs, College of Horticulture, South China Agricultural University, Guangzhou, 510642, China
| | - Jiaxuan Chen
- Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (South China), Ministry of Agriculture and Rural Affairs, College of Horticulture, South China Agricultural University, Guangzhou, 510642, China
| | - Qingzhu Hua
- Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (South China), Ministry of Agriculture and Rural Affairs, College of Horticulture, South China Agricultural University, Guangzhou, 510642, China
| | - Kamran Shah
- Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (South China), Ministry of Agriculture and Rural Affairs, College of Horticulture, South China Agricultural University, Guangzhou, 510642, China
| | - Zhike Zhang
- Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (South China), Ministry of Agriculture and Rural Affairs, College of Horticulture, South China Agricultural University, Guangzhou, 510642, China
| | - Jietang Zhao
- Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (South China), Ministry of Agriculture and Rural Affairs, College of Horticulture, South China Agricultural University, Guangzhou, 510642, China
| | - Guibing Hu
- Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (South China), Ministry of Agriculture and Rural Affairs, College of Horticulture, South China Agricultural University, Guangzhou, 510642, China
| | - Jianye Chen
- Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (South China), Ministry of Agriculture and Rural Affairs, College of Horticulture, South China Agricultural University, Guangzhou, 510642, China.
| | - Yonghua Qin
- Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (South China), Ministry of Agriculture and Rural Affairs, College of Horticulture, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|
3
|
In-depth comparative analysis of Tritrichomonas foetus transcriptomics reveals novel genes linked with adaptation to feline host. Sci Rep 2022; 12:10057. [PMID: 35710931 PMCID: PMC9203502 DOI: 10.1038/s41598-022-14310-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Accepted: 06/06/2022] [Indexed: 11/09/2022] Open
Abstract
Tritrichomonas foetus is a flagellated parasite able to infect cattle, cats, and pigs. Despite its prevalence, feline tritrichomonosis has received markedly less attention than venereal infection, and little information about the molecular mechanisms that participate in feline host infection is available. Through a bioinformatics approach, we integrated public transcriptomic data for three T. foetus isolates and explored the differences at transcript level with a focus on pathogenesis and adaptation processes, particularly for the feline isolate. Our analysis revealed higher abundance levels of predicted virulence factors, such as proteases and surface antigens. Additionally, by a comparative and expression analysis of T. foetus genes, we proposed putative virulence factors that could be involved in feline infection. Finally, we identified a great proportion of predicted transcription factors of the MYB protein family and, by a promoter analysis, we revealed that MYB-related proteins could participate in the regulation of gene transcription in T. foetus. In conclusion, this integrated approach is a valuable resource for future studies of host–pathogen interactions and identifying new gene targets for improved feline tritrichomonosis diagnosis and treatment.
Collapse
|
4
|
Gao Y, Suding Z, Wang L, Liu D, Su S, Xu J, Hu J, Tao J. Full-length transcriptome analysis and identification of transcript structures in Eimeria necatrix from different developmental stages by single-molecule real-time sequencing. Parasit Vectors 2021; 14:502. [PMID: 34579769 PMCID: PMC8474931 DOI: 10.1186/s13071-021-05015-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Accepted: 09/14/2021] [Indexed: 03/08/2023] Open
Abstract
Background Eimeria necatrix is one of the most pathogenic parasites, causing high mortality in chickens. Although its genome sequence has been published, the sequences and complete structures of its mRNA transcripts remain unclear, limiting exploration of novel biomarkers, drug targets and genetic functions in E. necatrix. Methods Second-generation merozoites (MZ-2) of E. necatrix were collected using Percoll density gradients, and high-quality RNA was extracted from them. Single-molecule real-time (SMRT) sequencing and Illumina sequencing were combined to generate the transcripts of MZ-2. Combined with the SMRT sequencing data of sporozoites (SZ) collected in our previous study, the transcriptome and transcript structures of E. necatrix were studied. Results SMRT sequencing yielded 21,923 consensus isoforms in MZ-2. A total of 17,151 novel isoforms of known genes and 3918 isoforms of novel genes were successfully identified. We also identified 2752 (SZ) and 3255 (MZ-2) alternative splicing (AS) events, 1705 (SZ) and 1874 (MZ-2) genes with alternative polyadenylation (APA) sites, 4019 (SZ) and 2588 (MZ-2) fusion transcripts, 159 (SZ) and 84 (MZ-2) putative transcription factors (TFs) and 3581 (SZ) and 2039 (MZ-2) long non-coding RNAs (lncRNAs). To validate fusion transcripts, reverse transcription-PCR was performed on 16 candidates, with an accuracy reaching up to 87.5%. Sanger sequencing of the PCR products further confirmed the authenticity of chimeric transcripts. Comparative analysis of transcript structures revealed a total of 3710 consensus isoforms, 815 AS events, 1139 genes with APA sites, 20 putative TFs and 352 lncRNAs in both SZ and MZ-2. Conclusions We obtained many long-read isoforms in E. necatrix SZ and MZ-2, from which a series of lncRNAs, AS events, APA events and fusion transcripts were identified. Information on TFs will improve understanding of transcriptional regulation, and fusion event data will greatly improve draft versions of gene models in E. necatrix. This information offers insights into the mechanisms governing the development of E. necatrix and will aid in the development of novel strategies for coccidiosis control. Graphical Abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s13071-021-05015-7.
Collapse
Affiliation(s)
- Yang Gao
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, China.,Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, 225009, China.,Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, 225009, China
| | - Zeyang Suding
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, China.,Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, 225009, China.,Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, 225009, China
| | - Lele Wang
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, China.,Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, 225009, China.,Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, 225009, China
| | - Dandan Liu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, China.,Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, 225009, China.,Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, 225009, China
| | - Shijie Su
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, China.,Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, 225009, China.,Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, 225009, China
| | - Jinjun Xu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, China.,Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, 225009, China.,Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, 225009, China
| | - Junjie Hu
- Biology Department, Yunnan University, Kunming, 650500, China
| | - Jianping Tao
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, China. .,Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, 225009, China. .,Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, 225009, China.
| |
Collapse
|
5
|
Cárdenas-Hernández H, Titaux-Delgado GA, Castañeda-Ortiz EJ, Torres-Larios A, Brieba LG, Del Río-Portilla F, Azuara-Liceaga E. Genome-wide and structural analysis of the Myb-SHAQKYF family in Entamoeba histolytica. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2021; 1869:140601. [PMID: 33422669 DOI: 10.1016/j.bbapap.2021.140601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 12/19/2020] [Accepted: 01/04/2021] [Indexed: 10/22/2022]
Abstract
Amoebiasis is the third leading cause of death among protozoon parasitic diseases in the lower-middle income countries. Understanding the molecular events that control gene expression such as transcription factors, their DNA binding mode and target sequences can help to develop new antiamoebic drugs against Entamoeba histolytica. In this paper we performed a genome and structural analysis of a specific transcription factor. The genome of E. histolytica codifies for 9 EhMybSHAQKYF proteins, which are a family within a large group of 34 Myb-DNA-binding domain (Myb-DBD) containing proteins. Here we compared Entamoeba Myb-SHAQKYF proteins with Myb-like proteins from the Reveille (RVE) family, important regulators of plant circadian networks. This comparison could lead to stablish their role in E. histolytica life cycle. We show that the ehmybshaqkyf genes are differentially expressed in trophozoites under basal cell culture conditions. An in-silico analysis predicts that members of this group harbor a highly conserved and structured Myb-DBD and a large portion of intrinsically disordered residues. As the Myb-DBD of these proteins harbors a distinctive Q[VI]R[ST]HAQK[YF]F sequence in its putative third α-helix, we consider relevant to determine the three-dimensional (3D) structure of one of them. An NMR structure of the Myb-DBD of EhMybS3 shows that this protein is composed of three α-helices stabilized by a hydrophobic core, similar to Myb proteins of different kingdoms. It is remarkable that despite not sharing similarities in their amino acid sequences, the structure of the Myb-DBD of the EhMybS3 is well conserved in this early branching eukaryote.
Collapse
Affiliation(s)
- Helios Cárdenas-Hernández
- Posgrado en Ciencias Genómicas, Universidad Autónoma de la Ciudad de México, Ciudad de México, México
| | | | | | - Alfredo Torres-Larios
- Departamento de Bioquímica y Biología Estructural, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - Luis G Brieba
- Grupo de Bioquímica Estructural, Laboratorio Nacional de Genómica para la Biodiversidad, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, México
| | | | - Elisa Azuara-Liceaga
- Posgrado en Ciencias Genómicas, Universidad Autónoma de la Ciudad de México, Ciudad de México, México.
| |
Collapse
|
6
|
Huerta M, Reyes L, García-Rivera G, Bañuelos C, Betanzos A, Díaz-Hernández M, Galindo A, Bolaños J, Cárdenas H, Azuara-Liceaga E, Chávez-Munguía B, Orozco E. A noncanonical GATA transcription factor of Entamoeba histolytica modulates genes involved in phagocytosis. Mol Microbiol 2020; 114:1019-1037. [PMID: 32808689 DOI: 10.1111/mmi.14592] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 08/12/2020] [Accepted: 08/14/2020] [Indexed: 12/21/2022]
Abstract
In this paper, we explored the presence of GATA in Entamoeba histolytica and their function as regulators of phagocytosis-related genes. Bioinformatics analyses evidenced a single 579 bp sequence encoding for a protein (EhGATA), smaller than GATA factors of other organisms. EhGATA appeared phylogenetically close to Dictyostelium discoideum and Schistosoma mansoni GATA proteins. Its sequence predicts the presence of a zinc-finger DNA binding domain and an AT-Hook motif; it also has two nuclear localization signals. By transmission electron and confocal microscopy, anti-EhGATA antibodies revealed the protein in the cytoplasm and nucleus, and 65% of nuclear signal was in the heterochromatin. EhGATA recombinant protein and trophozoites nuclear extracts bound to GATA-DNA consensus sequence. By in silico scrutiny, 1,610 gene promoters containing GATA-binding sequences appeared, including Ehadh and Ehvps32 promoters, whose genes participate in phagocytosis. Chromatin immunoprecipitation assays showed that EhGATA interact with Ehadh and Ehvps32 promoters. In EhGATA-overexpressing trophozoites (NeoGATA), the Ehadh and Ehvps32 mRNAs amount was modified, strongly supporting that EhGATA could regulate their transcription. NeoGATA trophozoites exhibited rounded shapes, high proliferation rates, and diminished erythrophagocytosis. Our results provide new insights into the role of EhGATA as a noncanonical transcription factor, regulating genes associated with phagocytosis.
Collapse
Affiliation(s)
- Miriam Huerta
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de México, México
| | - Luz Reyes
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de México, México
| | - Guillermina García-Rivera
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de México, México
| | - Cecilia Bañuelos
- Programa de Doctorado Transdisciplinario en Desarrollo Científico y Tecnológico para la Sociedad, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de México, México
| | - Abigail Betanzos
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de México, México.,Consejo Nacional de Ciencia y Tecnología, Ciudad de México, México
| | - Mitzi Díaz-Hernández
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de México, México
| | - Ausencio Galindo
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de México, México
| | - Jeni Bolaños
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de México, México
| | - Helios Cárdenas
- Posgrado en Ciencias Genómicas, Universidad Autónoma de la Ciudad de México, Ciudad de México, México
| | - Elisa Azuara-Liceaga
- Posgrado en Ciencias Genómicas, Universidad Autónoma de la Ciudad de México, Ciudad de México, México
| | - Bibiana Chávez-Munguía
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de México, México
| | - Esther Orozco
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de México, México
| |
Collapse
|
7
|
Singh V, Kumar N, Dwivedi AK, Sharma R, Sharma MK. Phylogenomic Analysis of R2R3 MYB Transcription Factors in Sorghum and their Role in Conditioning Biofuel Syndrome. Curr Genomics 2020; 21:138-154. [PMID: 32655308 PMCID: PMC7324873 DOI: 10.2174/1389202921666200326152119] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 03/17/2020] [Accepted: 03/19/2020] [Indexed: 11/30/2022] Open
Abstract
Background Large scale cultivation of sorghum for food, feed, and biofuel requires concerted efforts for engineering multipurpose cultivars with optimised agronomic traits. Due to their vital role in regulating the biosynthesis of phenylpropanoid-derived compounds, biomass composition, biotic, and abiotic stress response, R2R3-MYB family transcription factors are ideal targets for improving environmental resilience and economic value of sorghum. Methods We used diverse computational biology tools to survey the sorghum genome to identify R2R3-MYB transcription factors followed by their structural and phylogenomic analysis. We used in-house generated as well as publicly available high throughput expression data to analyse the R2R3 expression patterns in various sorghum tissue types. Results We have identified a total of 134 R2R3-MYB genes from sorghum and developed a framework to predict gene functions. Collating information from the physical location, duplication, structural analysis, orthologous sequences, phylogeny, and expression patterns revealed the role of duplications in clade-wise expansion of the R2R3-MYB family as well as intra-clade functional diversification. Using publicly available and in-house generated RNA sequencing data, we provide MYB candidates for conditioning biofuel syndrome by engineering phenylpropanoid biosynthesis and sugar signalling pathways in sorghum. Conclusion The results presented here are pivotal to prioritize MYB genes for functional validation and optimize agronomic traits in sorghum.
Collapse
Affiliation(s)
- Vinay Singh
- 1Crop Genetics & Informatics Group, School of Biotechnology, Jawaharlal Nehru University, New Mehrauli Road, New Delhi-110067, India; 2Crop Genetics & Informatics Group, School of Computational & Integrative Sciences, Jawaharlal Nehru University, New Mehrauli Road, New Delhi-110067, India
| | - Neeraj Kumar
- 1Crop Genetics & Informatics Group, School of Biotechnology, Jawaharlal Nehru University, New Mehrauli Road, New Delhi-110067, India; 2Crop Genetics & Informatics Group, School of Computational & Integrative Sciences, Jawaharlal Nehru University, New Mehrauli Road, New Delhi-110067, India
| | - Anuj K Dwivedi
- 1Crop Genetics & Informatics Group, School of Biotechnology, Jawaharlal Nehru University, New Mehrauli Road, New Delhi-110067, India; 2Crop Genetics & Informatics Group, School of Computational & Integrative Sciences, Jawaharlal Nehru University, New Mehrauli Road, New Delhi-110067, India
| | - Rita Sharma
- 1Crop Genetics & Informatics Group, School of Biotechnology, Jawaharlal Nehru University, New Mehrauli Road, New Delhi-110067, India; 2Crop Genetics & Informatics Group, School of Computational & Integrative Sciences, Jawaharlal Nehru University, New Mehrauli Road, New Delhi-110067, India
| | - Manoj K Sharma
- 1Crop Genetics & Informatics Group, School of Biotechnology, Jawaharlal Nehru University, New Mehrauli Road, New Delhi-110067, India; 2Crop Genetics & Informatics Group, School of Computational & Integrative Sciences, Jawaharlal Nehru University, New Mehrauli Road, New Delhi-110067, India
| |
Collapse
|
8
|
Ospina-Villa JD, Tovar-Ayona BJ, López-Camarillo C, Soto-Sánchez J, Ramírez-Moreno E, Castañón-Sánchez CA, Marchat LA. mRNA Polyadenylation Machineries in Intestinal Protozoan Parasites. J Eukaryot Microbiol 2020; 67:306-320. [PMID: 31898347 DOI: 10.1111/jeu.12781] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 12/16/2019] [Accepted: 12/22/2019] [Indexed: 12/22/2022]
Abstract
In humans, mRNA polyadenylation involves the participation of about 20 factors in four main complexes that recognize specific RNA sequences. Notably, CFIm25, CPSF73, and PAP have essential roles for poly(A) site selection, mRNA cleavage, and adenosine residues polymerization. Besides the relevance of polyadenylation for gene expression, information is scarce in intestinal protozoan parasites that threaten human health. To better understand polyadenylation in Entamoeba histolytica, Giardia lamblia, and Cryptosporidium parvum, which represent leading causes of diarrhea worldwide, genomes were screened for orthologs of human factors. Results showed that Entamoeba histolytica and C. parvum have 16 and 12 proteins out of the 19 human proteins used as queries, respectively, while G. lamblia seems to have the smallest polyadenylation machinery with only six factors. Remarkably, CPSF30, CPSF73, CstF77, PABP2, and PAP, which were found in all parasites, could represent the core polyadenylation machinery. Multiple genes were detected for several proteins in Entamoeba, while gene redundancy is lower in Giardia and Cryptosporidium. Congruently with their relevance in the polyadenylation process, CPSF73 and PAP are present in all parasites, and CFIm25 is only missing in Giardia. They conserve the functional domains and predicted folding of human proteins, suggesting they may have the same roles in polyadenylation.
Collapse
Affiliation(s)
- Juan David Ospina-Villa
- Independent Researcher, Transversal 27A Sur # 42-14, C.P. 055421, Envigado, Antioquia, Colombia
| | - Brisna Joana Tovar-Ayona
- Posgrados en Biomedicina Molecular y en Biotecnología, ENMH, Instituto Politécnico Nacional, Av. Guillermo Massieu Helguera 239, Col. La Escalera, Gustavo A. Madero, C.P. 07320, Ciudad de México, Mexico
| | - César López-Camarillo
- Posgrado en Ciencias Genómicas, Universidad Autónoma de la Ciudad de México, San Lorenzo 290, Col. del Valle Sur, Benito Juárez, C.P. 03100, Ciudad de México, Mexico
| | - Jacqueline Soto-Sánchez
- Posgrados en Biomedicina Molecular y en Biotecnología, ENMH, Instituto Politécnico Nacional, Av. Guillermo Massieu Helguera 239, Col. La Escalera, Gustavo A. Madero, C.P. 07320, Ciudad de México, Mexico
| | - Esther Ramírez-Moreno
- Posgrados en Biomedicina Molecular y en Biotecnología, ENMH, Instituto Politécnico Nacional, Av. Guillermo Massieu Helguera 239, Col. La Escalera, Gustavo A. Madero, C.P. 07320, Ciudad de México, Mexico
| | - Carlos A Castañón-Sánchez
- Hospital Regional de Alta Especialidad de Oaxaca, Aldama s/n, Col. Centro, C.P. 71256 San Bartolo Coyotepec, Oaxaca, Mexico
| | - Laurence A Marchat
- Posgrados en Biomedicina Molecular y en Biotecnología, ENMH, Instituto Politécnico Nacional, Av. Guillermo Massieu Helguera 239, Col. La Escalera, Gustavo A. Madero, C.P. 07320, Ciudad de México, Mexico
| |
Collapse
|
9
|
Trasviña-Arenas CH, David SS, Delaye L, Azuara-Liceaga E, Brieba LG. Evolution of Base Excision Repair in Entamoeba histolytica is shaped by gene loss, gene duplication, and lateral gene transfer. DNA Repair (Amst) 2019; 76:76-88. [DOI: 10.1016/j.dnarep.2019.02.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Revised: 01/14/2019] [Accepted: 02/19/2019] [Indexed: 12/22/2022]
|
10
|
Naiyer S, Kaur D, Ahamad J, Singh SS, Singh YP, Thakur V, Bhattacharya A, Bhattacharya S. Transcriptomic analysis reveals novel downstream regulatory motifs and highly transcribed virulence factor genes of Entamoeba histolytica. BMC Genomics 2019; 20:206. [PMID: 30866809 PMCID: PMC6416950 DOI: 10.1186/s12864-019-5570-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 02/27/2019] [Indexed: 11/16/2022] Open
Abstract
Background Promoter motifs in Entamoeba histolytica were earlier analysed using microarray data with lower dynamic range of gene expression. Additionally, previous transcriptomic studies did not provide information on the nature of highly transcribed genes, and downstream promoter motifs important for gene expression. To address these issues we generated RNA-Seq data and identified the high and low expressing genes, especially with respect to virulence potential. We analysed sequences both upstream and downstream of start site for important motifs. Results We used RNA-Seq data to classify genes according to expression levels, which ranged six orders of magnitude. Data were validated by reporter gene expression. Virulence-related genes (except AIG1) were amongst the highly expressed, while some kinases and BspA family genes were poorly expressed. We looked for conserved motifs in sequences upstream and downstream of the initiation codon. Following enrichment by AME we found seven motifs significantly enriched in high expression- and three in low expression-classes. Two of these motifs (M4 and M6) were located downstream of AUG, were exclusively enriched in high expression class, and were mostly found in ribosomal protein, and translation-related genes. Motif deletion resulted in drastic down regulation of reporter gene expression, showing functional relevance. Distribution of core promoter motifs (TATA, GAAC, and Inr) in all genes revealed that genes with downstream motifs were not preferentially associated with TATA-less promoters. We looked at gene expression changes in cells subjected to growth stress by serum starvation, and experimentally validated the data. Genes showing maximum up regulation belonged to the low or medium expression class, and included genes in signalling pathways, lipid metabolism, DNA repair, Myb transcription factors, BspA, and heat shock. Genes showing maximum down regulation belonged to the high or medium expression class. They included genes for signalling factors, actin, Ariel family, and ribosome biogenesis factors. Conclusion Our analysis has added important new information about the E. histolytica transcriptome. We report for the first time two downstream motifs required for gene expression, which could be used for over expression of E. histolytica genes. Most of the virulence-related genes in this parasite are highly expressed in culture. Electronic supplementary material The online version of this article (10.1186/s12864-019-5570-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Sarah Naiyer
- School of Environmental Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Devinder Kaur
- School of Environmental Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Jamaluddin Ahamad
- School of Environmental Sciences, Jawaharlal Nehru University, New Delhi, India
| | | | | | - Vivek Thakur
- Centre for Systems Biology, School of Life Sciences, University of Hyderabad, Hyderabad, India
| | - Alok Bhattacharya
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Sudha Bhattacharya
- School of Environmental Sciences, Jawaharlal Nehru University, New Delhi, India.
| |
Collapse
|
11
|
Rendón-Gandarilla FJ, Álvarez-Hernández V, Castañeda-Ortiz EJ, Cárdenas-Hernández H, Cárdenas-Guerra RE, Valdés J, Betanzos A, Chávez-Munguía B, Lagunes-Guillen A, Orozco E, López-Canovas L, Azuara-Liceaga E. Telomeric Repeat-Binding Factor Homologs in Entamoeba histolytica: New Clues for Telomeric Research. Front Cell Infect Microbiol 2018; 8:341. [PMID: 30333961 PMCID: PMC6175992 DOI: 10.3389/fcimb.2018.00341] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Accepted: 09/10/2018] [Indexed: 12/19/2022] Open
Abstract
Telomeric Repeat Binding Factors (TRFs) are architectural nuclear proteins with critical roles in telomere-length regulation, chromosome end protection and, fusion prevention, DNA damage detection, and senescence regulation. Entamoeba histolytica, the parasite responsible of human amoebiasis, harbors three homologs of human TRFs, based on sequence similarities to their Myb DNA binding domain. These proteins were dubbed EhTRF-like I, II and III. In this work, we revealed that EhTRF-like I and II share similarity with human TRF1, while EhTRF-like III shares similarity with human TRF2 by in silico approach. The analysis of ehtrf-like genes showed they are expressed differentially under basal culture conditions. We also studied the cellular localization of EhTRF-like I and III proteins using subcellular fractionation and western blot assays. EhTRF-like I and III proteins were enriched in the nuclear fraction, but they were also present in the cytoplasm. Indirect immunofluorescence showed that these proteins were located at the nuclear periphery co-localizing with Lamin B1 and trimethylated H4K20, which is a characteristic mark of heterochromatic regions and telomeres. We found by transmission electron microscopy that EhTRF-like III was located in regions of more condensed chromatin. Finally, EMSA assays showed that EhTRF-like III forms specific DNA-protein complexes with telomeric related sequences. Our data suggested that EhTRF-like proteins play a role in the maintenance of the chromosome ends in this parasite.
Collapse
Affiliation(s)
| | - Víctor Álvarez-Hernández
- Posgrado en Ciencias Genómicas, Universidad Autónoma de la Ciudad de Mexico, Mexico City, Mexico
| | | | | | | | - Jesús Valdés
- Departamento de Bioquímica, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Mexico City, Mexico
| | - Abigail Betanzos
- Consejo Nacional de Ciencia y Tecnología, Mexico City, Mexico.,Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Mexico City, Mexico
| | - Bibiana Chávez-Munguía
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Mexico City, Mexico
| | - Anel Lagunes-Guillen
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Mexico City, Mexico
| | - Esther Orozco
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Mexico City, Mexico
| | - Lilia López-Canovas
- Posgrado en Ciencias Genómicas, Universidad Autónoma de la Ciudad de Mexico, Mexico City, Mexico
| | - Elisa Azuara-Liceaga
- Posgrado en Ciencias Genómicas, Universidad Autónoma de la Ciudad de Mexico, Mexico City, Mexico
| |
Collapse
|
12
|
The Duality of the MAPK Signaling Pathway in the Control of Metabolic Processes and Cellulase Production in Trichoderma reesei. Sci Rep 2018; 8:14931. [PMID: 30297963 PMCID: PMC6175961 DOI: 10.1038/s41598-018-33383-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Accepted: 09/27/2018] [Indexed: 01/09/2023] Open
Abstract
In this study, through global transcriptional analysis by RNA-Sequencing, we identified the main changes in gene expression that occurred in two functional mutants of the MAPK genes tmk1 and tmk2 in Trichoderma reesei during sugarcane bagasse degradation. We found that the proteins encoded by these genes regulated independent processes, sometimes in a cross-talk manner, to modulate gene expression in T. reesei. In the Δtmk2 strain, growth in sugarcane bagasse modulated the expression of genes involved in carbohydrate metabolism, cell growth and development, and G-protein-coupled receptor-mediated cell signaling. On the other hand, deletion of tmk1 led to decreased expression of the major genes for cellulases and xylanases. Furthermore, TMK1 found to be involved in the regulation of the expression of major facilitator superfamily transporters. Our results revealed that the MAPK signaling pathway in T. reesei regulates many important processes that allow the fungus to recognize, transport, and metabolize different carbon sources during plant cell wall degradation.
Collapse
|
13
|
Azuara-Liceaga E, Betanzos A, Cardona-Felix CS, Castañeda-Ortiz EJ, Cárdenas H, Cárdenas-Guerra RE, Pastor-Palacios G, García-Rivera G, Hernández-Álvarez D, Trasviña-Arenas CH, Diaz-Quezada C, Orozco E, Brieba LG. The Sole DNA Ligase in Entamoeba histolytica Is a High-Fidelity DNA Ligase Involved in DNA Damage Repair. Front Cell Infect Microbiol 2018; 8:214. [PMID: 30050869 PMCID: PMC6052137 DOI: 10.3389/fcimb.2018.00214] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Accepted: 06/07/2018] [Indexed: 01/03/2023] Open
Abstract
The protozoan parasite Entamoeba histolytica is exposed to reactive oxygen and nitric oxide species that have the potential to damage its genome. E. histolytica harbors enzymes involved in DNA repair pathways like Base and Nucleotide Excision Repair. The majority of DNA repairs pathways converge in their final step in which a DNA ligase seals the DNA nicks. In contrast to other eukaryotes, the genome of E. histolytica encodes only one DNA ligase (EhDNAligI), suggesting that this ligase is involved in both DNA replication and DNA repair. Therefore, the aim of this work was to characterize EhDNAligI, its ligation fidelity and its ability to ligate opposite DNA mismatches and oxidative DNA lesions, and to study its expression changes and localization during and after recovery from UV and H2O2 treatment. We found that EhDNAligI is a high-fidelity DNA ligase on canonical substrates and is able to discriminate erroneous base-pairing opposite DNA lesions. EhDNAligI expression decreases after DNA damage induced by UV and H2O2 treatments, but it was upregulated during recovery time. Upon oxidative DNA damage, EhDNAligI relocates into the nucleus where it co-localizes with EhPCNA and the 8-oxoG adduct. The appearance and disappearance of 8-oxoG during and after both treatments suggest that DNA damaged was efficiently repaired because the mainly NER and BER components are expressed in this parasite and some of them were modulated after DNA insults. All these data disclose the relevance of EhDNAligI as a specialized and unique ligase in E. histolytica that may be involved in DNA repair of the 8-oxoG lesions.
Collapse
Affiliation(s)
- Elisa Azuara-Liceaga
- Posgrado en Ciencias Genómicas, Universidad Autónoma de la Ciudad de México, Mexico City, Mexico,*Correspondence: Elisa Azuara-Liceaga
| | - Abigail Betanzos
- Consejo Nacional de Ciencia y Tecnología, Mexico City, Mexico,Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Mexico City, Mexico
| | - Cesar S. Cardona-Felix
- Consejo Nacional de Ciencia y Tecnología, Mexico City, Mexico,Laboratorio Nacional de Genómica para la Biodiversidad, Centro de Investigación y de Estudios Avanzados, Irapuato, Mexico
| | | | - Helios Cárdenas
- Posgrado en Ciencias Genómicas, Universidad Autónoma de la Ciudad de México, Mexico City, Mexico
| | - Rosa E. Cárdenas-Guerra
- Posgrado en Ciencias Genómicas, Universidad Autónoma de la Ciudad de México, Mexico City, Mexico
| | - Guillermo Pastor-Palacios
- Laboratorio Nacional de Genómica para la Biodiversidad, Centro de Investigación y de Estudios Avanzados, Irapuato, Mexico
| | - Guillermina García-Rivera
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Mexico City, Mexico
| | - David Hernández-Álvarez
- Posgrado en Ciencias Genómicas, Universidad Autónoma de la Ciudad de México, Mexico City, Mexico
| | - Carlos H. Trasviña-Arenas
- Laboratorio Nacional de Genómica para la Biodiversidad, Centro de Investigación y de Estudios Avanzados, Irapuato, Mexico
| | - Corina Diaz-Quezada
- Laboratorio Nacional de Genómica para la Biodiversidad, Centro de Investigación y de Estudios Avanzados, Irapuato, Mexico
| | - Esther Orozco
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Mexico City, Mexico
| | - Luis G. Brieba
- Laboratorio Nacional de Genómica para la Biodiversidad, Centro de Investigación y de Estudios Avanzados, Irapuato, Mexico,Luis G. Brieba
| |
Collapse
|
14
|
Narayanasamy RK, Castañón-Sanchez CA, Luna-Arias JP, García-Rivera G, Avendaño-Borromeo B, Labra-Barrios ML, Valdés J, Herrera-Aguirre ME, Orozco E. The Entamoeba histolytica TBP and TRF1 transcription factors are GAAC-box binding proteins, which display differential gene expression under different stress stimuli and during the interaction with mammalian cells. Parasit Vectors 2018. [PMID: 29514716 PMCID: PMC5842622 DOI: 10.1186/s13071-018-2698-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Entamoeba histolytica is the protozoan parasite responsible for human amebiasis. It causes up to 100,000 deaths worldwide each year. This parasite has two closely related basal transcription factors, the TATA-box binding protein (EhTBP) and the TBP-related factor 1 (EhTRF1). TBP binds to the canonical TATTTAAA-box, as well as to different TATA variants. TRF1 also binds to the TATTTAAA-box. However, their binding capacity to diverse core promoter elements, including the GAAC-element, and their role in gene regulation in this parasite remains unknown. METHODS EMSA experiments were performed to determine the binding capacity of recombinant TBP and TRF1 to TATA variants, GAAC and GAAC-like boxes. For the functional analysis under different stress stimuli (e.g. growth curve, serum depletion, heat-shock, and UV-irradiation) and during the interaction with mammalian cells (erythrocytes, MDCK cell monolayers, and hepatocytes of hamsters), RT-qPCR, and gene knockdown were performed. RESULTS Both transcription factors bound to the different TATA variants tested, as well as to the GAAC-boxes, suggesting that they are GAAC-box-binding proteins. The K D values determined for TBP and TRF1 for the different TATA variants and GAAC-box were in the range of 10-12 M to 10-11 M. During the death phase of growth or in serum depletion, Ehtbp mRNA levels significantly increased, whereas the mRNA level of Ehtrf1 did not change under these conditions. Ehtrf1 gene expression was negatively regulated by UV-irradiation and heat-shock stress, with no changes in Ehtbp gene expression. Moreover, Ehtrf1 gene also showed a negative regulation during erythrophagocytosis, liver abscess formation, and a transient expression level increase at the initial phase of MDCK cell destruction. Finally, the Ehtbp gene knockdown displayed a drastic decrease in the efficiency of erythrophagocytosis in G3 trophozoites. CONCLUSIONS To our knowledge, this study reveals that these basal transcription factors are able to bind multiple core promoter elements. However, their immediate change in gene expression level in response to different stimuli, as well as during the interaction with mammalian cells, and the diminishing of erythrophagocytosis by silencing the Ehtbp gene indicate the different physiological roles of these transcription factors in E. histolytica.
Collapse
Affiliation(s)
- Ravi Kumar Narayanasamy
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (Cinvestav-IPN), Av. Instituto Politécnico Nacional 2508, Col. San Pedro Zacatenco, C.P, 07360, Ciudad de México, Mexico
| | - Carlos Alberto Castañón-Sanchez
- Programa de Biomedicina Molecular, Escuela Nacional de Medicina y Homeopatía del Instituto Politécnico Nacional (ENMH-IPN), Guillermo Massieu Helguera 239, Col. La Escalera, C.P, 07320, Ciudad de México, Mexico.,Laboratorio de Investigación Biomédica, Subdirección de Enseñanza e Investigación, Hospital Regional de Alta Especialidad de Oaxaca, Aldama S/N, San Bartolo Coyotepec, C.P, 71256, Oaxaca, Mexico
| | - Juan Pedro Luna-Arias
- Departamento de Biología Celular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (Cinvestav-IPN), Av. Instituto Politécnico Nacional 2508, Col. San Pedro Zacatenco, C.P, 07360, Ciudad de México, Mexico.
| | - Guillermina García-Rivera
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (Cinvestav-IPN), Av. Instituto Politécnico Nacional 2508, Col. San Pedro Zacatenco, C.P, 07360, Ciudad de México, Mexico
| | - Bartolo Avendaño-Borromeo
- Departamento de Biología Celular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (Cinvestav-IPN), Av. Instituto Politécnico Nacional 2508, Col. San Pedro Zacatenco, C.P, 07360, Ciudad de México, Mexico
| | - María Luisa Labra-Barrios
- Departamento de Biología Celular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (Cinvestav-IPN), Av. Instituto Politécnico Nacional 2508, Col. San Pedro Zacatenco, C.P, 07360, Ciudad de México, Mexico
| | - Jesús Valdés
- Departamento de Bioquímica, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (Cinvestav-IPN), Av. Instituto Politécnico Nacional 2508, Col. San Pedro Zacatenco, C.P, 07360, Ciudad de México, Mexico
| | - María Esther Herrera-Aguirre
- Departamento de Biología Celular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (Cinvestav-IPN), Av. Instituto Politécnico Nacional 2508, Col. San Pedro Zacatenco, C.P, 07360, Ciudad de México, Mexico
| | - Esther Orozco
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (Cinvestav-IPN), Av. Instituto Politécnico Nacional 2508, Col. San Pedro Zacatenco, C.P, 07360, Ciudad de México, Mexico
| |
Collapse
|
15
|
Development of RNA Interference Trigger-Mediated Gene Silencing in Entamoeba invadens. Infect Immun 2016; 84:964-975. [PMID: 26787723 DOI: 10.1128/iai.01161-15] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Accepted: 01/14/2016] [Indexed: 01/08/2023] Open
Abstract
Entamoeba histolytica, a protozoan parasite, is an important human pathogen and a leading parasitic cause of death. The organism has two life cycle stages, trophozoites, which are responsible for tissue invasion, and cysts, which are involved in pathogen transmission. Entamoeba invadens is the model system to study Entamoeba developmental biology, as high-grade regulated encystation and excystation are readily achievable. However, the lack of gene-silencing tools in E. invadens has limited the molecular studies that can be performed. Using the endogenous RNA interference (RNAi) pathway in Entamoeba, we developed an RNAi-based trigger gene-silencing approach inE. invadens We demonstrate that a gene's coding region that has abundant antisense small RNAs (sRNAs) can trigger silencing of a gene that is fused to it. The trigger fusion leads to the generation of abundant antisense sRNAs that map to the target gene, with silencing occurring independently of trigger location at the 5' or 3' end of a gene. Gene silencing is stably maintained during development, including encystation and excystation. We have used this approach to successfully silence two E. invadens genes: a putative rhomboid protease gene and a SHAQKY family Myb gene. The Myb gene is upregulated during oxidative stress and development, and its downregulation led, as predicted, to decreased viability under oxidative stress and decreased cyst formation. Thus, the RNAi trigger silencing method can be used to successfully investigate the molecular functions of genes inE. invadens Dissection of the molecular basis of Entamoeba stage conversion is now possible, representing an important technical advance for the system.
Collapse
|
16
|
Dos Santos Castro L, de Paula RG, Antoniêto ACC, Persinoti GF, Silva-Rocha R, Silva RN. Understanding the Role of the Master Regulator XYR1 in Trichoderma reesei by Global Transcriptional Analysis. Front Microbiol 2016; 7:175. [PMID: 26909077 PMCID: PMC4754417 DOI: 10.3389/fmicb.2016.00175] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2015] [Accepted: 02/01/2016] [Indexed: 11/13/2022] Open
Abstract
We defined the role of the transcriptional factor—XYR1—in the filamentous fungus Trichoderma reesei during cellulosic material degradation. In this regard, we performed a global transcriptome analysis using RNA-Seq of the Δxyr1 mutant strain of T. reesei compared with the parental strain QM9414 grown in the presence of cellulose, sophorose, and glucose as sole carbon sources. We found that 5885 genes were expressed differentially under the three tested carbon sources. Of these, 322 genes were upregulated in the presence of cellulose, while 367 and 188 were upregulated in sophorose and glucose, respectively. With respect to genes under the direct regulation of XYR1, 30 and 33 are exclusive to cellulose and sophorose, respectively. The most modulated genes in the Δxyr1 belong to Carbohydrate-Active Enzymes (CAZymes), transcription factors, and transporters families. Moreover, we highlight the downregulation of transporters belonging to the MFS and ABC transporter families. Of these, MFS members were mostly downregulated in the presence of cellulose. In sophorose and glucose, the expression of these transporters was mainly upregulated. Our results revealed that MFS and ABC transporters could be new players in cellulose degradation and their role was shown to be carbon source-dependent. Our findings contribute to a better understanding of the regulatory mechanisms of XYR1 to control cellulase gene expression in T. reesei in the presence of cellulosic material, thereby potentially enhancing its application in several biotechnology fields.
Collapse
Affiliation(s)
- Lilian Dos Santos Castro
- Molecular Biotechnology Laboratory, Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo Ribeirão Preto, Brazil
| | - Renato G de Paula
- Molecular Biotechnology Laboratory, Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo Ribeirão Preto, Brazil
| | - Amanda C C Antoniêto
- Molecular Biotechnology Laboratory, Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo Ribeirão Preto, Brazil
| | - Gabriela F Persinoti
- Laboratório Nacional de Ciência e Tecnologia do Bioetanol, Centro Nacional de Pesquisa em Energia e Materiais Campinas, Brazil
| | - Rafael Silva-Rocha
- Systems and Synthetic Biology Laboratory, Department of Cell and Molecular Biology, Ribeirão Preto Medical School, University of São Paulo Ribeirão Preto, Brazil
| | - Roberto N Silva
- Molecular Biotechnology Laboratory, Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo Ribeirão Preto, Brazil
| |
Collapse
|
17
|
The Evolutionary History of R2R3-MYB Proteins Across 50 Eukaryotes: New Insights Into Subfamily Classification and Expansion. Sci Rep 2015; 5:11037. [PMID: 26047035 PMCID: PMC4603784 DOI: 10.1038/srep11037] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2014] [Accepted: 04/28/2015] [Indexed: 01/21/2023] Open
Abstract
R2R3-MYB proteins (2R-MYBs) are one of the main transcription factor families in higher plants. Since the evolutionary history of this gene family across the eukaryotic kingdom remains unknown, we performed a comparative analysis of 2R-MYBs from 50 major eukaryotic lineages, with particular emphasis on land plants. A total of 1548 candidates were identified among diverse taxonomic groups, which allowed for an updated classification of 73 highly conserved subfamilies, including many newly identified subfamilies. Our results revealed that the protein architectures, intron patterns, and sequence characteristics were remarkably conserved in each subfamily. At least four subfamilies were derived from early land plants, 10 evolved from spermatophytes, and 19 from angiosperms, demonstrating the diversity and preferential expansion of this gene family in land plants. Moreover, we determined that their remarkable expansion was mainly attributed to whole genome and segmental duplication, where duplicates were preferentially retained within certain subfamilies that shared three homologous intron patterns (a, b, and c) even though up to 12 types of patterns existed. Through our integrated distributions, sequence characteristics, and phylogenetic tree analyses, we confirm that 2R-MYBs are old and postulate that 3R-MYBs may be evolutionarily derived from 2R-MYBs via intragenic domain duplication.
Collapse
|
18
|
Proteomic profiling reveals that EhPC4 transcription factor induces cell migration through up-regulation of the 16-kDa actin-binding protein EhABP16 in Entamoeba histolytica. J Proteomics 2014; 111:46-58. [PMID: 24721673 DOI: 10.1016/j.jprot.2014.03.041] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2014] [Revised: 03/24/2014] [Accepted: 03/28/2014] [Indexed: 11/20/2022]
Abstract
UNLABELLED Actin cytoskeleton is an essential structure involved in cell migration and invasion in parasites. In Entamoeba histolytica, the protozoan parasite causing human amoebiasis, the mechanisms underlying the expression of migration-related genes are poorly understood. Here, we investigated the biological effects of ectopic overexpression of EhPC4 (positive coactivator 4) in cell migration of E. histolytica trophozoites. Using differential in gel two-dimensional electrophoresis, 33 modulated proteins were detected in EhPC4-overexpressing cells. By electrospray ionization tandem mass spectrometry (ESI-MS/MS) analysis, 16 of these proteins were identified. Interestingly, four up-regulated proteins involved in cytoskeleton organization and cell migration were identified. Particularly, we found the up-regulation of a 16-kDa actin-binding protein (EhABP16) which is a putative member of the cofilin/tropomyosin family involved in actin polymerization. EhPC4 overexpression induced a significant increase in migration of trophozoites and in the destruction of human SW480 colon cells. Consistently, silencing of gene expression by RNA interference of EhABP16 significantly impairs cell migration. These changes were associated to alterations in the organization of actin cytoskeleton, and suppression of uropod-like structure formation in EhABP16-deficient cells. In summary, we have uncovered novel proteins modulated by EhPC4, including EhABP16, with a potential role in cell migration, cytopathogenicity and virulence in E. histolytica. BIOLOGICAL SIGNIFICANCE The human pathogen Entamoeba histolytica infects around 50million people worldwide resulting in 40,000-100,000 deaths annually. Cell motility is a complex trait that is critical for parasites adaptation, spread and invasion processes into host tissues; it has been associated with virulence. In this study, we used a differential proteomic approach to demonstrate that E. histolytica EhPC4 induces changes in the expression of actin cytoskeleton proteins, including EhABP16, promoting a significant increase in cell motility and destruction of intestinal human cells. Particularly, we demonstrated for the first time that abrogation of EhABP16 impairs cell migration by altering the actin cytoskeleton dynamics and uropod-like structure formation in trophozoites. These data contribute to the understanding of molecular mechanisms that regulate virulence properties in this neglected protozoan parasite.
Collapse
|
19
|
Thibeaux R, Weber C, Hon CC, Dillies MA, Avé P, Coppée JY, Labruyère E, Guillén N. Identification of the virulence landscape essential for Entamoeba histolytica invasion of the human colon. PLoS Pathog 2013; 9:e1003824. [PMID: 24385905 PMCID: PMC3868522 DOI: 10.1371/journal.ppat.1003824] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2013] [Accepted: 10/25/2013] [Indexed: 02/02/2023] Open
Abstract
Entamoeba histolytica is the pathogenic amoeba responsible for amoebiasis, an infectious disease targeting human tissues. Amoebiasis arises when virulent trophozoites start to destroy the muco-epithelial barrier by first crossing the mucus, then killing host cells, triggering inflammation and subsequently causing dysentery. The main goal of this study was to analyse pathophysiology and gene expression changes related to virulent (i.e. HM1:IMSS) and non-virulent (i.e. Rahman) strains when they are in contact with the human colon. Transcriptome comparisons between the two strains, both in culture conditions and upon contact with human colon explants, provide a global view of gene expression changes that might contribute to the observed phenotypic differences. The most remarkable feature of the virulent phenotype resides in the up-regulation of genes implicated in carbohydrate metabolism and processing of glycosylated residues. Consequently, inhibition of gene expression by RNA interference of a glycoside hydrolase (β-amylase absent from humans) abolishes mucus depletion and tissue invasion by HM1:IMSS. In summary, our data suggest a potential role of carbohydrate metabolism in colon invasion by virulent E. histolytica.
Collapse
Affiliation(s)
- Roman Thibeaux
- Institut Pasteur, Unité Biologie Cellulaire du Parasitisme, Paris, France
- INSERM U786, Paris, France
- Université de Versailles Saint-Quentin-en-Yvelines, Versailles, France
| | - Christian Weber
- Institut Pasteur, Unité Biologie Cellulaire du Parasitisme, Paris, France
- INSERM U786, Paris, France
| | - Chung-Chau Hon
- Institut Pasteur, Unité Biologie Cellulaire du Parasitisme, Paris, France
- INSERM U786, Paris, France
| | - Marie-Agnès Dillies
- Institut Pasteur, Transcriptome et Epigénome, Département Génomes et Génétique, Paris, France
| | - Patrick Avé
- Institut Pasteur, Unité Histopathologie Humaine et Modèles Animaux, Paris, France
| | - Jean-Yves Coppée
- Institut Pasteur, Transcriptome et Epigénome, Département Génomes et Génétique, Paris, France
| | - Elisabeth Labruyère
- Institut Pasteur, Unité Biologie Cellulaire du Parasitisme, Paris, France
- INSERM U786, Paris, France
- * E-mail: (EL); (NG)
| | - Nancy Guillén
- Institut Pasteur, Unité Biologie Cellulaire du Parasitisme, Paris, France
- INSERM U786, Paris, France
- * E-mail: (EL); (NG)
| |
Collapse
|
20
|
López-Camarillo C, López-Rosas I, Ospina-Villa JD, Marchat LA. Deciphering molecular mechanisms of mRNA metabolism in the deep-branching eukaryoteEntamoeba histolytica. WILEY INTERDISCIPLINARY REVIEWS-RNA 2013; 5:247-62. [DOI: 10.1002/wrna.1205] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2013] [Revised: 10/04/2013] [Accepted: 10/09/2013] [Indexed: 11/05/2022]
Affiliation(s)
| | - Itzel López-Rosas
- Genomics Sciences Program; Autonomous University of Mexico City; Mexico City Mexico
| | - Juan David Ospina-Villa
- Institutional Program of Molecular Biomedicine; National School of Medicine and Homeopathy of the National Polytechnic Institute; Mexico City Mexico
| | - Laurence A. Marchat
- Institutional Program of Molecular Biomedicine; National School of Medicine and Homeopathy of the National Polytechnic Institute; Mexico City Mexico
- Biotechnology Program; National School of Medicine and Homeopathy of the National Polytechnic Institute; Mexico City Mexico
| |
Collapse
|
21
|
De Cádiz AE, Jeelani G, Nakada-Tsukui K, Caler E, Nozaki T. Transcriptome analysis of encystation in Entamoeba invadens. PLoS One 2013; 8:e74840. [PMID: 24040350 PMCID: PMC3770568 DOI: 10.1371/journal.pone.0074840] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2012] [Accepted: 08/08/2013] [Indexed: 11/23/2022] Open
Abstract
Encystation is an essential differentiation process for the completion of the life cycle of a group of intestinal protozoa including Entamoeba histolytica, the causative agent of intestinal and extraintestinal amebiasis. However, regulation of gene expression during encystation is poorly understood. To comprehensively understand the process at the molecular level, the transcriptomic profiles of E. invadens, which is a related reptilian species that causes an invasive disease similar to that of E. histolytica, was investigated during encystation. Using a custom-generated Affymetrix platform microarray, we performed time course (0.5, 2, 8, 24, 48, and 120 h) gene expression analysis of encysting E. invadens. ANOVA analysis revealed that a total of 1,528 genes showed ≥3 fold up-regulation at one or more time points, relative to the trophozoite stage. Of these modulated genes, 8% (116 genes) were up-regulated at the early time points (0.5, 2 and 8h), while 63% (962 genes) were up-regulated at the later time points (24, 48, and 120 h). Twenty nine percent (450 genes) are either up-regulated at 2 to 5 time points or constitutively up-regulated in both early and late stages. Among the up-regulated genes are the genes encoding transporters, cytoskeletal proteins, proteins involved in vesicular trafficking (small GTPases), Myb transcription factors, cysteine proteases, components of the proteasome, and enzymes for chitin biosynthesis. This study represents the first kinetic analysis of gene expression during differentiation from the invasive trophozoite to the dormant, infective cyst stage in Entamoeba. Functional analysis on individual genes and their encoded products that are modulated during encystation may lead to the discovery of targets for the development of new chemotherapeutics that interfere with stage conversion of the parasite.
Collapse
Affiliation(s)
- Aleyla Escueta De Cádiz
- Department of Parasitology, National Institute of Infectious Diseases, Tokyo, Japan
- Department of Biological Science and Environmental Studies, College of Science and Mathematics, University of the Philippines Mindanao, Davao, Philippines
| | - Ghulam Jeelani
- Department of Parasitology, National Institute of Infectious Diseases, Tokyo, Japan
| | - Kumiko Nakada-Tsukui
- Department of Parasitology, National Institute of Infectious Diseases, Tokyo, Japan
| | - Elisabet Caler
- J. Craig Venter Institute, Rockville, Maryland, United States of America
| | - Tomoyoshi Nozaki
- Department of Parasitology, National Institute of Infectious Diseases, Tokyo, Japan
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
- * E-mail:
| |
Collapse
|
22
|
Morf L, Pearson RJ, Wang AS, Singh U. Robust gene silencing mediated by antisense small RNAs in the pathogenic protist Entamoeba histolytica. Nucleic Acids Res 2013; 41:9424-37. [PMID: 23935116 PMCID: PMC3814356 DOI: 10.1093/nar/gkt717] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
RNA interference uses small RNAs (sRNA), which target genes for sequence-specific silencing. The parasite Entamoeba histolytica contains an abundant repertoire of 27 nt antisense (AS) sRNA with 5′-polyphosphate termini, but their roles in regulating gene expression have not been well established. We demonstrate that a gene-coding region to which large numbers of AS sRNAs map can serve as a ‘trigger’ and silence the gene fused to it. Silencing is mediated by generation of AS sRNAs with 5′-polyphosphate termini that have sequence specificity to the fused gene. The mechanism of silencing is independent of the placement of the trigger relative to the silenced gene but is dependent on the sRNA concentration to the trigger. Silencing requires transcription of the trigger-gene fusion and is maintained despite loss of the trigger plasmid. We used this approach to silence multiple amebic genes, including an E. histolytica Myb gene, which is upregulated during oxidative stress response. Silencing of the EhMyb gene decreased parasite viability under oxidative stress conditions. Thus, we have developed a new tool for genetic manipulation in E. histolytica with many advantages over currently available technologies. Additionally, these data shed mechanistic insights into a eukaryotic RNA interference pathway with many novel aspects.
Collapse
Affiliation(s)
- Laura Morf
- Division of Infectious Diseases, Department of Internal Medicine, Stanford University School of Medicine, Stanford, California 94305-5107, USA and Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, California 94305-5107, USA
| | | | | | | |
Collapse
|
23
|
Ehrenkaufer GM, Weedall GD, Williams D, Lorenzi HA, Caler E, Hall N, Singh U. The genome and transcriptome of the enteric parasite Entamoeba invadens, a model for encystation. Genome Biol 2013; 14:R77. [PMID: 23889909 PMCID: PMC4053983 DOI: 10.1186/gb-2013-14-7-r77] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2013] [Accepted: 07/26/2013] [Indexed: 12/27/2022] Open
Abstract
Background Several eukaryotic parasites form cysts that transmit infection. The process is found in diverse organisms such as Toxoplasma, Giardia, and nematodes. In Entamoeba histolytica this process cannot be induced in vitro, making it difficult to study. In Entamoeba invadens, stage conversion can be induced, but its utility as a model system to study developmental biology has been limited by a lack of genomic resources. We carried out genome and transcriptome sequencing of E. invadens to identify molecular processes involved in stage conversion. Results We report the sequencing and assembly of the E. invadens genome and use whole transcriptome sequencing to characterize changes in gene expression during encystation and excystation. The E. invadens genome is larger than that of E. histolytica, apparently largely due to expansion of intergenic regions; overall gene number and the machinery for gene regulation are conserved between the species. Over half the genes are regulated during the switch between morphological forms and a key signaling molecule, phospholipase D, appears to regulate encystation. We provide evidence for the occurrence of meiosis during encystation, suggesting that stage conversion may play a key role in recombination between strains. Conclusions Our analysis demonstrates that a number of core processes are common to encystation between distantly related parasites, including meiosis, lipid signaling and RNA modification. These data provide a foundation for understanding the developmental cascade in the important human pathogen E. histolytica and highlight conserved processes more widely relevant in enteric pathogens.
Collapse
|
24
|
Pearson RJ, Morf L, Singh U. Regulation of H2O2 stress-responsive genes through a novel transcription factor in the protozoan pathogen Entamoeba histolytica. J Biol Chem 2012; 288:4462-74. [PMID: 23250742 DOI: 10.1074/jbc.m112.423467] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Outcome of infection depends upon complex interactions between the invading pathogen and the host. As part of the host's innate immune response, the release of reactive oxygen and nitrogen species by phagocytes represents a major obstacle to the establishment of infection. The ability of the human parasite Entamoeba histolytica to survive reactive oxygen and nitrogen species is central to its pathogenic potential and contributes to disease outcome. In order to define the transcriptional network associated with oxidative stress, we utilized the MEME and MAST programs to analyze the promoter regions of 57 amoebic genes that had increased expression specifically in response to H(2)O(2) exposure. We functionally characterized an H(2)O(2)-regulatory motif (HRM) ((1)AAACCTCAATGAAGA(15)), which was enriched in these promoters and specifically bound amoebic nuclear protein(s). Assays with promoter-luciferase fusions established the importance of key residues and that the HRM motif directly impacted the ability of H(2)O(2)-responsive promoters to drive gene expression. DNA affinity chromatography and mass spectrometry identified EHI_108720 as an HRM DNA-binding protein. Overexpression and down-regulation of EHI_108720 demonstrated the specificity of EHI_108720 protein binding to the HRM, and overexpression increased basal expression from an H(2)O(2)-responsive wild-type promoter but not from its mutant counterpart. Thus, EHI_108720, or HRM-binding protein, represents a new stress-responsive transcription factor in E. histolytica that controls a transcriptional regulatory network associated with oxidative stress. Overexpression of EHI_108720 increased parasite virulence. Insight into how E. histolytica responds to oxidative stress increases our understanding of how this important human pathogen establishes invasive disease.
Collapse
Affiliation(s)
- Richard J Pearson
- Division of Infectious Diseases, Department of Internal Medicine, Stanford University School of Medicine, Stanford, California 94305, USA
| | | | | |
Collapse
|
25
|
Arratia-Quijada J, Sánchez O, Scazzocchio C, Aguirre J. FlbD, a Myb transcription factor of Aspergillus nidulans, is uniquely involved in both asexual and sexual differentiation. EUKARYOTIC CELL 2012; 11:1132-42. [PMID: 22798393 PMCID: PMC3445977 DOI: 10.1128/ec.00101-12] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2012] [Accepted: 07/06/2012] [Indexed: 01/01/2023]
Abstract
In the fungus Aspergillus nidulans, inactivation of the flbA to -E, fluG, fluF, and tmpA genes results in similar phenotypes, characterized by a delay in conidiophore and asexual spore production. flbB to -D encode transcription factors needed for proper expression of the brlA gene, which is essential for asexual development. However, recent evidence indicates that FlbB and FlbE also have nontranscriptional functions. Here we show that fluF1 is an allele of flbD which results in an R47P substitution. Amino acids C46 and R47 are highly conserved in FlbD and many other Myb proteins, and C46 has been proposed to mediate redox regulation. Comparison of ΔflbD and flbD(R47P) mutants uncovered a new and specific role for flbD during sexual development. While flbD(R47P) mutants retain partial function during conidiation, both ΔflbD and flbD(R47P) mutants are unable to develop the peridium, a specialized external tissue that differentiates during fruiting body formation and ends up surrounding the sexual spores. This function, unique among other fluffy genes, does not affect the viability of the naked ascospores produced by mutant strains. Notably, ascospore development in these mutants is still dependent on the NADPH oxidase NoxA. We generated R47K, C46D, C46S, and C46A mutant alleles and evaluated their effects on asexual and sexual development. Conidiation defects were most severe in ΔflbD mutants and stronger in R47P, C46D, and C46S strains than in R47K strains. In contrast, mutants carrying the flbD(C46A) allele exhibited conidiation defects in liquid culture only under nitrogen starvation conditions. The R47K, R47P, C46D, and C46S mutants failed to develop any peridial tissue, while the flbD(C46A) strain showed normal peridium development and increased cleistothecium formation. Our results show that FlbD regulates both asexual and sexual differentiation, suggesting that both processes require FlbD DNA binding activity and that FlbD is involved in the response to nitrogen starvation.
Collapse
Affiliation(s)
- Jenny Arratia-Quijada
- Departamento de Biología Celular y Desarrollo, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Olivia Sánchez
- Departamento de Biología Celular y Desarrollo, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Claudio Scazzocchio
- Institut de Génétique et Microbiologie, Université Paris-Sud (XI), Orsay, France
- Department of Microbiology, Imperial College London, London, United Kingdom
| | - Jesús Aguirre
- Departamento de Biología Celular y Desarrollo, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico
| |
Collapse
|
26
|
In silico analysis of ubiquitin/ubiquitin-like modifiers and their conjugating enzymes in Entamoeba species. Parasitol Res 2012; 111:37-51. [DOI: 10.1007/s00436-011-2799-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2011] [Accepted: 12/19/2011] [Indexed: 10/14/2022]
|
27
|
Prouse MB, Campbell MM. The interaction between MYB proteins and their target DNA binding sites. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2012; 1819:67-77. [DOI: 10.1016/j.bbagrm.2011.10.010] [Citation(s) in RCA: 106] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2011] [Revised: 10/17/2011] [Accepted: 10/18/2011] [Indexed: 02/02/2023]
|
28
|
Identification of a polypeptide containing Tudor and staphyloccocal nuclease-like domains as the sequence-specific binding protein to the upstream regulatory element 1 of Entamoeba histolytica. Int J Parasitol 2011; 41:775-82. [DOI: 10.1016/j.ijpara.2011.02.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2010] [Revised: 02/02/2011] [Accepted: 02/04/2011] [Indexed: 11/21/2022]
|
29
|
Pearson RJ, Singh U. Approaches to characterizing Entamoeba histolytica transcriptional regulation. Cell Microbiol 2010; 12:1681-90. [DOI: 10.1111/j.1462-5822.2010.01524.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
30
|
Cardona-Felix CS, Pastor-Palacios G, Cardenas H, Azuara-Liceaga E, Brieba LG. Biochemical characterization of the DNA ligase I from Entamoeba histolytica. Mol Biochem Parasitol 2010; 174:26-35. [PMID: 20603158 DOI: 10.1016/j.molbiopara.2010.06.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2009] [Revised: 06/19/2010] [Accepted: 06/24/2010] [Indexed: 11/16/2022]
Abstract
DNA ligases play an essential role in DNA replication and repair. Herein, we report the cloning and biochemical characterization of DNA ligase I from the protozoan parasite Entamoeba histolytica (EhDNAligI). EhDNAligI is an ATP-dependent DNA ligase of 685 amino acids with 35% identity to human DNA ligase I. This report shows that heterologous expressed EhDNAligI is able to perform the three conserved steps of a DNA ligation reaction: adenylation, binding to a 5'-phosphorylated nicked DNA substrate and sealing of the nick. EhDNAligI is strongly inhibited by NaCl and displays optimal activity at pH 7.5. EhDNAligI uses Mn2+ or Mg2+ as metal cofactors and ATP as nucleotide cofactor. EhDNAligI has a nicked DNA binding constant of 6.6microM and follows Michaelis-Menten steady-state kinetics with a K(m) ATP of 64nM and a k(cat) of 2.4min(-1). Accordingly to its properties as a family I DNA ligase, EhDNAligI is able to ligate a RNA strand upstream of a nucleic acid nick, but not in the downstream or the template position. We propose that EhDNAligI is involved in sealing DNA nicks during lagging strand synthesis and may have a role in base excision repair in E. histolytica.
Collapse
Affiliation(s)
- Cesar S Cardona-Felix
- Laboratory for Genomics and Biodiversity, Centro de Investigación y de Estudios Avanzados Unidad Irapuato, Apartado Postal 629, CP 36500, Irapuato, Guanajuato, Mexico
| | | | | | | | | |
Collapse
|