1
|
In Silico Identification of lncRNAs Regulating Sperm Motility in the Turkey (Meleagris gallopavo L.). Int J Mol Sci 2022; 23:ijms23147642. [PMID: 35887003 PMCID: PMC9324027 DOI: 10.3390/ijms23147642] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 07/06/2022] [Accepted: 07/09/2022] [Indexed: 11/16/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) are transcripts not translated into proteins with a length of more than 200 bp. LncRNAs are considered an important factor in the regulation of countless biological processes, mainly through the regulation of gene expression and interactions with proteins. However, the detailed mechanism of interaction as well as functions of lncRNAs are still unclear and therefore constitute a serious research challenge. In this study, for the first time, potential mechanisms of lncRNA regulation of processes related to sperm motility in turkey were investigated and described. Customized bioinformatics analysis was used to detect and identify lncRNAs, and their correlations with differentially expressed genes and proteins were also investigated. Results revealed the expression of 863 new/unknown lncRNAs in ductus deferens, testes and epididymis of turkeys. Moreover, potential relationships of the lncRNAs with the coding mRNAs and their products were identified in turkey reproductive tissues. The results obtained from the OMICS study may be useful in describing and characterizing the way that lncRNAs regulate genes and proteins as well as signaling pathways related to sperm motility.
Collapse
|
2
|
The Role of Chitooligosaccharidolytic β- N-Acetylglucosamindase in the Molting and Wing Development of the Silkworm Bombyx mori. Int J Mol Sci 2022; 23:ijms23073850. [PMID: 35409210 PMCID: PMC8998872 DOI: 10.3390/ijms23073850] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 03/21/2022] [Accepted: 03/27/2022] [Indexed: 02/01/2023] Open
Abstract
The insect glycoside hydrolase family 20 β-N-acetylhexosaminidases (HEXs) are key enzymes involved in chitin degradation. In this study, nine HEX genes in Bombyx mori were identified by genome-wide analysis. Bioinformatic analysis based on the transcriptome database indicated that each gene had a distinct expression pattern. qRT-PCR was performed to detect the expression pattern of the chitooligosaccharidolytic β-N-acetylglucosaminidase (BmChiNAG). BmChiNAG was highly expressed in chitin-rich tissues, such as the epidermis. In the wing disc and epidermis, BmChiNAG has the highest expression level during the wandering stage. CRISPR/Cas9-mediated BmChiNAG deletion was used to study the function. In the BmChiNAG-knockout line, 39.2% of female heterozygotes had small and curly wings. The ultrastructure of a cross-section showed that the lack of BmChiNAG affected the stratification of the wing membrane and the formation of the correct wing vein structure. The molting process of the homozygotes was severely hindered during the larva to pupa transition. Epidermal sections showed that the endocuticle of the pupa was not degraded in the mutant. These results indicate that BmChiNAG is involved in chitin catabolism and plays an important role in the molting and wing development of the silkworm, which highlights the potential of BmChiNAG as a pest control target.
Collapse
|
3
|
Prabhuling SH, Makwana P, Pradeep ANR, Vijayan K, Mishra RK. Release of Mediator Enzyme β-Hexosaminidase and Modulated Gene Expression Accompany Hemocyte Degranulation in Response to Parasitism in the Silkworm Bombyx mori. Biochem Genet 2021; 59:997-1017. [PMID: 33616803 DOI: 10.1007/s10528-021-10046-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 02/02/2021] [Indexed: 01/03/2023]
Abstract
In insects infections trigger hemocyte-mediated immune reactions including degranulation by exocytosis; however, involvement of mediator enzymes in degranulation process is unknown in insects. We report here that in silkworm Bombyx mori, infection by endoparasitoid Exorista bombycis and microsporidian Nosema bombycis activated granulation in granulocytes and promoted degranulation of accumulated structured granules. During degranulation the mediator lysosomal enzyme β-hexosaminidase showed increased activity and expression of β-hexosaminidase gene was enhanced. The events were confirmed in vitro after incubation of uninfected hemocytes with E. bombycis larval tissue protein. On infection, cytotoxicity marker enzyme lactate dehydrogenase (LDH) was released from the hemocytes illustrating cell toxicity. Strong positive correlation (R2 = 0.71) between LDH activity and β-hexosaminidase released after the infection showed parasitic-protein-induced hemocyte damage and accompanied release of the enzymes. Expression of β-hexosaminidase gene was enhanced in early stages after infection followed by down regulation. The expression showed positive correlation (R2 = 0.705) with hexosaminidase activity pattern. B. mori hexosaminidase showed 98% amino acid similarity with that of B. mandarina showing origin from same ancestral gene; however, 45-60% varied from other lepidopterans showing diversity. The observation signifies the less known association of hexosaminidase in degranulation of hemocytes induced by parasitic infection in B. mori and its divergence in different species.
Collapse
Affiliation(s)
- Shambhavi H Prabhuling
- Seribiotech Research Laboratory, CSB-Kodathi Campus, Carmelaram. P.O, Bangalore, Karnataka, 560035, India
| | - Pooja Makwana
- Seribiotech Research Laboratory, CSB-Kodathi Campus, Carmelaram. P.O, Bangalore, Karnataka, 560035, India.,Central Sericultural Research & Training Institute, Berhampore, West Bengal, India
| | - Appukuttan Nair R Pradeep
- Seribiotech Research Laboratory, CSB-Kodathi Campus, Carmelaram. P.O, Bangalore, Karnataka, 560035, India.
| | | | - Rakesh Kumar Mishra
- Seribiotech Research Laboratory, CSB-Kodathi Campus, Carmelaram. P.O, Bangalore, Karnataka, 560035, India
| |
Collapse
|
4
|
Yang WJ, Xu KK, Yan X, Li C. Knockdown of β- N-acetylglucosaminidase 2 Impairs Molting and Wing Development in Lasioderma serricorne (Fabricius). INSECTS 2019; 10:insects10110396. [PMID: 31717288 PMCID: PMC6921043 DOI: 10.3390/insects10110396] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 10/31/2019] [Accepted: 11/06/2019] [Indexed: 12/11/2022]
Abstract
β-N-acetylglucosaminidases (NAGs) are carbohydrate enzymes that degrade chitin oligosaccharides into N-acetylglucosamine monomers. This process is important for chitin degradation during insect development and metamorphosis. We identified and evaluated a β-N-acetylglucosaminidase 2 gene (LsNAG2) from the cigarette beetle, Lasioderma serricorne (Fabricius). The full-length open reading frame of LsNAG2 was 1776 bp and encoded a 591 amino acid protein. The glycoside hydrolase family 20 (GH20) catalytic domain and an additional GH20b domain of the LsNAG2 protein were highly conserved. Phylogenetic analysis revealed that LsNAG2 clustered with the group II NAGs. Quantitative real-time PCR analyses showed that LsNAG2 was expressed in all developmental stages and was most highly expressed in the late larval and late pupal stages. In the larval stage, LsNAG2 was predominantly expressed in the integument. Knockdown of LsNAG2 in fifth instar larvae disrupted larval-pupal molting and reduced the expression of four chitin synthesis genes (trehalase 1 (LsTRE1), UDP-N-acetylglucosamine pyrophosphorylase 1 and 2 (LsUAP1 and LsUAP2), and chitin synthase 1 (LsCHS1)). In late pupae, LsNAG2 depletion resulted in abnormal adult eclosion and wing deformities. The expression of five wing development-related genes (teashirt (LsTSH), vestigial (LsVG), wingless (LsWG), ventral veins lacking (LsVVL), and distal-less (LsDLL)) significantly declined in the LsNAG2-depleted beetles. These findings suggest that LsNAG2 is important for successful molting and wing development of L. serricorne.
Collapse
Affiliation(s)
| | | | | | - Can Li
- Correspondence: ; Tel.: +86-851-8540-5891
| |
Collapse
|
5
|
Scheys F, Van Damme EJM, Smagghe G. Let’s talk about sexes: sex-related N-glycosylation in ecologically important invertebrates. Glycoconj J 2019; 37:41-46. [DOI: 10.1007/s10719-019-09866-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2019] [Accepted: 03/15/2019] [Indexed: 11/30/2022]
|
6
|
Intra J, Veltri C, De Caro D, Perotti ME, Pasini ME. In vitro evidence for the participation of Drosophila melanogaster sperm β-N-acetylglucosaminidases in the interactions with glycans carrying terminal N-acetylglucosamine residues on the egg's envelopes. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2017; 96:e21403. [PMID: 28695569 DOI: 10.1002/arch.21403] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Fertilization is a complex and multiphasic process, consisting of several steps, where egg-coating envelope's glycoproteins and sperm surface receptors play a critical role. Sperm-associated β-N-acetylglucosaminidases, also known as hexosaminidases, have been identified in a variety of organisms. Previously, two isoforms of hexosaminidases, named here DmHEXA and DmHEXB, were found as intrinsic proteins in the sperm plasma membrane of Drosophila melanogaster. In the present work, we carried out different approaches using solid-phase assays in order to analyze the oligosaccharide recognition ability of D. melanogaster sperm hexosaminidases to interact with well-defined carbohydrate chains that might functionally mimic egg glycoconjugates. Our results showed that Drosophila hexosaminidases prefer glycans carrying terminal β-N-acetylglucosamine, but not core β-N-acetylglucosamine residues. The capacity of sperm β-N-acetylhexosaminidases to bind micropylar chorion and vitelline envelope was examined in vitro assays. Binding was completely blocked when β-N-acetylhexosaminidases were preincubated with the glycoproteins ovalbumin and transferrin, and the monosaccharide β-N-acetylglucosamine. Overall, these data support the hypothesis of the potential role of these glycosidases in sperm-egg interactions in Drosophila.
Collapse
Affiliation(s)
- Jari Intra
- Department of Biosciences, University of Milano, Milano, Italy
| | - Concetta Veltri
- Department of Biosciences, University of Milano, Milano, Italy
| | - Daniela De Caro
- Department of Biosciences, University of Milano, Milano, Italy
| | | | | |
Collapse
|
7
|
Intra J, Concetta V, Daniela DC, Perotti ME, Pasini ME. Drosophila sperm surface alpha-L-fucosidase interacts with the egg coats through its core fucose residues. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2015; 63:133-143. [PMID: 26101846 DOI: 10.1016/j.ibmb.2015.06.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2015] [Revised: 06/17/2015] [Accepted: 06/18/2015] [Indexed: 06/04/2023]
Abstract
Sperm-oocyte interaction during fertilization is multiphasic, with multicomponent events, taking place between egg's glycoproteins and sperm surface receptors. Protein-carbohydrate complementarities in gamete recognition have observed in cases throughout the whole evolutionary scale. Sperm-associated α-L-fucosidases have been identified in various organisms. Their wide distribution and known properties reflect the hypothesis that fucose and α-L-fucosidases have fundamental function(s) during gamete interactions. An α-L-fucosidase has been detected as transmembrane protein on the surface of spermatozoa of eleven species across the genus Drosophila. Immunofluorescence labeling showed that the protein is localized in the sperm plasma membrane over the acrosome and the tail, in Drosophila melanogaster. In the present study, efforts were made to analyze with solid phase assays the oligosaccharide recognition ability of fruit fly sperm α-L-fucosidase with defined carbohydrate chains that can functionally mimic egg glycoconjugates. Our results showed that α-L-fucosidase bound to fucose residue and in particular it prefers N-glycans carrying core α1,6-linked fucose and core α1,3-linked fucose in N-glycans carrying only a terminal mannose residue. The ability of sperm α-L-fucosidase to bind to the micropylar chorion and to the vitelline envelope was examined in in vitro assays in presence of α-L-fucosidase, either alone or in combination with molecules containing fucose residues. No binding was detected when α-L-fucosidase was pre-incubated with fucoidan, a polymer of α-L-fucose and the monosaccharide fucose. Furthermore, egg labeling with anti-horseradish peroxidase, that recognized only core α1,3-linked fucose, correlates with α-L-fucosidase micropylar binding. Collectively, these data support the hypothesis of the potential role of this glycosidase in sperm-egg interactions in Drosophila.
Collapse
Affiliation(s)
- Jari Intra
- Department of Biosciences, University of Milano, via Celoria 26, Milano 20133, Italy.
| | - Veltri Concetta
- Department of Biosciences, University of Milano, via Celoria 26, Milano 20133, Italy
| | - De Caro Daniela
- Department of Biosciences, University of Milano, via Celoria 26, Milano 20133, Italy
| | - Maria Elisa Perotti
- Department of Biosciences, University of Milano, via Celoria 26, Milano 20133, Italy
| | - Maria Enrica Pasini
- Department of Biosciences, University of Milano, via Celoria 26, Milano 20133, Italy
| |
Collapse
|
8
|
Dragosits M, Yan S, Razzazi-Fazeli E, Wilson IBH, Rendic D. Enzymatic properties and subtle differences in the substrate specificity of phylogenetically distinct invertebrate N-glycan processing hexosaminidases. Glycobiology 2014; 25:448-64. [PMID: 25488985 PMCID: PMC4339880 DOI: 10.1093/glycob/cwu132] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Fused lobes (FDL) hexosaminidases are the most recently genetically defined glycosidases involved in the biosynthesis of N-glycans in invertebrates, and their narrow specificity is essential for the generation of paucimannosidic N-glycans in insects. In this study, we explored the potential of FDL hexosaminidases in the utilization of different artificial and natural substrates, both as purified, native compounds or generated in vitro using various relevant glycosyltransferases. In addition to the already-known FDL enzyme from Drosophila melanogaster, we now have identified and characterized the Apis mellifera FDL homolog. The enzymatic properties of the soluble forms of the affinity-purified insect FDL enzymes, expressed in both yeast and insect cells, were compared with those of the phylogenetically distinct recombinant Caenorhabditis elegans FDL-like enzymes and the N-acetylgalactosamine (GalNAc)-specific Caenorhabditis hexosaminidase HEX-4. In tests with a range of substrates, including natural N-glycans, we show that the invertebrate FDL(-like) enzymes are highly specific for N-acetylglucosamine attached to the α1,3-mannose, but under extreme conditions also remove other terminal GalNAc and N-acetylglucosamine residues. Recombinant FDL also proved useful in the analysis of complex mixtures of N-glycans originating from wild-type and mutant Caenorhabditis strains, thereby aiding isomeric definition of paucimannosidic and hybrid N-glycans in this organism. Furthermore, differences in activity and specificity were shown for two site-directed mutants of Drosophila FDL, compatible with the high structural similarity of chitinolytic and N-glycan degrading exohexosaminidases in insects. Our studies are another indication for the variety of structural and function aspects in the GH20 hexosaminidase family important for both catabolism and biosynthesis of glycoconjugates in eukaryotes.
Collapse
Affiliation(s)
- Martin Dragosits
- Department of Chemistry, University of Natural Resources and Life Sciences, Vienna VetCore Facility for Research, University of Veterinary Medicine, Vienna, Austria
| | - Shi Yan
- Department of Chemistry, University of Natural Resources and Life Sciences, Vienna
| | | | - Iain B H Wilson
- Department of Chemistry, University of Natural Resources and Life Sciences, Vienna
| | - Dubravko Rendic
- Department of Chemistry, University of Natural Resources and Life Sciences, Vienna
| |
Collapse
|
9
|
Qu M, Liu T, Chen P, Yang Q. A sperm-plasma β-N-acetyl-D-hexosaminidase interacting with a Chitinolytic β-N-Acetyl-D-hexosaminidase in insect molting fluid. PLoS One 2013; 8:e71738. [PMID: 23951233 PMCID: PMC3741120 DOI: 10.1371/journal.pone.0071738] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2013] [Accepted: 07/03/2013] [Indexed: 11/25/2022] Open
Abstract
Insects require molting fluids to shed the old cuticle during molting. β-N-acetyl-D-hexosaminidase, known as Hex1, together with various chitinases, is responsible for degrading the chitin component of the old cuticle. This study showed that another β-N-acetyl-D-hexosaminidase, termed OfHex3, interacted with Hex1 and functioned in the molting fluid, although the homolog of OfHex3 was known as a sperm–plasma enzyme functioning in egg–sperm recognition. OfHex3 is an enzyme cloned from the insect Asian corn borer, Ostrinia furnacalis, which is one of the most destructive pests of maize. The enzymatic activity analysis indicated that OfHex3 was able to degrade chitooligosaccharides, but at a lower rate than that of OfHex1. Because OfHex3 did not have substrate inhibition, we deduced that the presence of OfHex3 might help OfHex1 relieve substrate inhibition during chitin degradation during molting. The expression patterns of OfHex3 during O. furnacalis development were studied by real-time PCR as well as western blot. The results showed that both gene transcription and protein translation levels of OfHex3 were up-regulated during larval–larval molting. The tissue-specific expression pattern analysis indicated that OfHex3 was mostly localized in the fat body and testis. All these data further supported that Hex3 was involved in molting as well as in fertilization. This study may help to understand the complexity of cuticle degradation during insect molting, and may provide a possible target for pest control.
Collapse
Affiliation(s)
- Mingbo Qu
- School of Life Science and Biotechnology, Dalian University of Technology, Dalian, China
| | - Tian Liu
- School of Life Science and Biotechnology, Dalian University of Technology, Dalian, China
| | - Peng Chen
- School of Life Science and Biotechnology, Dalian University of Technology, Dalian, China
| | - Qing Yang
- School of Life Science and Biotechnology, Dalian University of Technology, Dalian, China
- * E-mail:
| |
Collapse
|
10
|
Scolari F, Gomulski LM, Ribeiro JMC, Siciliano P, Meraldi A, Falchetto M, Bonomi A, Manni M, Gabrieli P, Malovini A, Bellazzi R, Aksoy S, Gasperi G, Malacrida AR. Transcriptional profiles of mating-responsive genes from testes and male accessory glands of the Mediterranean fruit fly, Ceratitis capitata. PLoS One 2012; 7:e46812. [PMID: 23071645 PMCID: PMC3469604 DOI: 10.1371/journal.pone.0046812] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2012] [Accepted: 09/05/2012] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Insect seminal fluid is a complex mixture of proteins, carbohydrates and lipids, produced in the male reproductive tract. This seminal fluid is transferred together with the spermatozoa during mating and induces post-mating changes in the female. Molecular characterization of seminal fluid proteins in the Mediterranean fruit fly, Ceratitis capitata, is limited, although studies suggest that some of these proteins are biologically active. METHODOLOGY/PRINCIPAL FINDINGS We report on the functional annotation of 5914 high quality expressed sequence tags (ESTs) from the testes and male accessory glands, to identify transcripts encoding putative secreted peptides that might elicit post-mating responses in females. The ESTs were assembled into 3344 contigs, of which over 33% produced no hits against the nr database, and thus may represent novel or rapidly evolving sequences. Extraction of the coding sequences resulted in a total of 3371 putative peptides. The annotated dataset is available as a hyperlinked spreadsheet. Four hundred peptides were identified with putative secretory activity, including odorant binding proteins, protease inhibitor domain-containing peptides, antigen 5 proteins, mucins, and immunity-related sequences. Quantitative RT-PCR-based analyses of a subset of putative secretory protein-encoding transcripts from accessory glands indicated changes in their abundance after one or more copulations when compared to virgin males of the same age. These changes in abundance, particularly evident after the third mating, may be related to the requirement to replenish proteins to be transferred to the female. CONCLUSIONS/SIGNIFICANCE We have developed the first large-scale dataset for novel studies on functions and processes associated with the reproductive biology of Ceratitis capitata. The identified genes may help study genome evolution, in light of the high adaptive potential of the medfly. In addition, studies of male recovery dynamics in terms of accessory gland gene expression profiles and correlated remating inhibition mechanisms may permit the improvement of pest management approaches.
Collapse
Affiliation(s)
- Francesca Scolari
- Department of Biology and Biotechnology, University of Pavia, Pavia, Italy
| | - Ludvik M. Gomulski
- Department of Biology and Biotechnology, University of Pavia, Pavia, Italy
| | - José M. C. Ribeiro
- Section of Vector Biology, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, Rockville, Maryland, United States of America
| | - Paolo Siciliano
- Department of Biology and Biotechnology, University of Pavia, Pavia, Italy
| | - Alice Meraldi
- Department of Biology and Biotechnology, University of Pavia, Pavia, Italy
| | - Marco Falchetto
- Department of Biology and Biotechnology, University of Pavia, Pavia, Italy
| | - Angelica Bonomi
- Department of Biology and Biotechnology, University of Pavia, Pavia, Italy
| | - Mosè Manni
- Department of Biology and Biotechnology, University of Pavia, Pavia, Italy
| | - Paolo Gabrieli
- Department of Biology and Biotechnology, University of Pavia, Pavia, Italy
| | - Alberto Malovini
- IRCCS, Fondazione Salvatore Maugeri, Pavia, Italy
- Istituto Universitario di Studi Superiori (IUSS), Pavia, Italy
- Department of Industrial and Information Engineering, University of Pavia, Pavia, Italy
| | - Riccardo Bellazzi
- Department of Industrial and Information Engineering, University of Pavia, Pavia, Italy
| | - Serap Aksoy
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, Connecticut, United States of America
| | - Giuliano Gasperi
- Department of Biology and Biotechnology, University of Pavia, Pavia, Italy
| | - Anna R. Malacrida
- Department of Biology and Biotechnology, University of Pavia, Pavia, Italy
| |
Collapse
|
11
|
Liu F, Liu T, Qu M, Yang Q. Molecular and biochemical characterization of a novel β-N-acetyl-D-hexosaminidase with broad substrate-spectrum from the Aisan corn borer, Ostrinia furnacalis. Int J Biol Sci 2012; 8:1085-96. [PMID: 22991497 PMCID: PMC3445047 DOI: 10.7150/ijbs.4406] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2012] [Accepted: 08/19/2012] [Indexed: 11/21/2022] Open
Abstract
Insect β-N-acetyl-D-hexosaminidases with broad substrate-spectrum (IBS-Hex) are the homologues of human β-N-acetyl-D-hexosaminidase A/B (HsHex A/ B). These enzymes are distributed in most insect species and vary in physiological roles. In this study, the gene encoding an IBS-Hex, OfHEX2, was cloned from the Asian corn borer, Ostrinia furnacalis. Recombinant OfHex2 was expressed in Pichia pastoris and purified to homogeneity. By structure-based sequence alignment, three sequence segments with high diversity among IBS-Hexs were firstly concluded. Furthermore, the residue pair N423-R424/ D452-L453 important for the specificity of human β-N-acetyl-D-hexosaminidase subunits α/β toward charged/ non-charged substrates was not conserved in OfHex2 and other IBS-Hexs. Unlike HsHex A, OfHex2 could not degrade charged substrates such as 4-methylumbelliferyl-6-sulfo-N-acetyl-β-D-glucosaminide, ganglioside GM2 and peptidoglycan. OfHex2 showed a broad substrate-spectrum by hydrolyzing β1-2 linked N-acetyl-D-glucosamines from both α3 and α6 branches of biantennary N-glycan and β1-4 linked GlcNAc from chitooligosaccharides as well as β1-3 linked or β1-4 linked N-acetyl-D-galactosamine from oligosaccharides of glycolipids. Real-time PCR analysis demonstrated that the expression of OfHEX2 was up-regulated in the intermolt stages (both larva and pupa), and mainly occurred in the carcass rather than in the midgut during the feeding stage of fifth (final) instar larva. This study reported a novel IBS-Hex with specific biochemical properties, suggesting biodiversity of this class of enzymes.
Collapse
Affiliation(s)
- Fengyi Liu
- School of Life Science and Biotechnology, Dalian University of Technology, Dalian, China
| | | | | | | |
Collapse
|