1
|
Scarinci N, Perez PL, Cantiello HF, Cantero MDR. Polycystin-2 (TRPP2) regulates primary cilium length in LLC-PK1 renal epithelial cells. Front Physiol 2022; 13:995473. [PMID: 36267587 PMCID: PMC9577394 DOI: 10.3389/fphys.2022.995473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 09/14/2022] [Indexed: 11/21/2022] Open
Abstract
Polycystin-2 (PC2, TRPP2) is a Ca2+ permeable nonselective cation channel whose dysfunction generates autosomal dominant polycystic kidney disease (ADPKD). PC2 is present in different cell locations, including the primary cilium of renal epithelial cells. However, little is known as to whether PC2 contributes to the primary cilium structure. Here, we explored the effect(s) of external Ca2+, PC2 channel blockers, and PKD2 gene silencing on the length of primary cilia in wild-type LLC-PK1 renal epithelial cells. Confluent cell monolayers were fixed and immuno-labeled with an anti-acetylated α-tubulin antibody to identify primary cilia and measure their length. Although primary cilia length measurements did not follow a Normal distribution, the data were normalized by Box-Cox transformation rendering statistical differences under all experimental conditions. Cells exposed to high external Ca2+ (6.2 mM) decreased a 13.5% (p < 0.001) primary cilia length as compared to controls (1.2 mM Ca2+). In contrast, the PC2 inhibitors amiloride (200 μM) and LiCl (10 mM), both increased primary ciliary length by 33.2% (p < 0.001), and 17.4% (p < 0.001), respectively. PKD2 gene silencing by siRNA elicited a statistically significant, 10.3% (p < 0.001) increase in primary cilia length compared to their respective scrambled RNA transfected cells. The data indicate that conditions that regulate PC2 function or gene expression modify the length of primary cilia in renal epithelial cells. Blocking of PC2 mitigates the effects of elevated external Ca2+ concentration on primary cilia length. Proper regulation of PC2 function in the primary cilium may be essential in the onset of mechanisms that trigger cyst formation in ADPKD.
Collapse
Affiliation(s)
| | | | | | - María del Rocío Cantero
- Laboratorio de Canales Iónicos, IMSaTeD, Instituto Multidisciplinario de Salud, Tecnología y Desarrollo (CONICET-UNSE), Santiago del Estero, Argentina
| |
Collapse
|
2
|
Daigneault BW, Miller DJ. Transient receptor potential polycystin-2 (TRPP2) regulates motility and intracellular calcium of porcine sperm. Andrologia 2021; 53:e14124. [PMID: 34042198 DOI: 10.1111/and.14124] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 04/01/2021] [Accepted: 05/01/2021] [Indexed: 12/17/2022] Open
Abstract
Polycystin-2, also known as transient receptor potential polycystin-2 (TRPP2), is a membrane protein that regulates calcium homeostasis in renal epithelial cells. Mutations in PKD2, the gene encoding human TRPP2, cause enlarged cystic kidneys and contribute to polycystic kidney disease (PKD). Male Drosophila melanogaster with mutations in amo, the homolog of PKD2, display a mild decrease in sperm motility but have a drastic reduction in fertility due to failed sperm migration and storage within the female tract. Although TRPP2 has critical roles for Drosophila sperm function, the protein has not been described in mammalian sperm. Herein, we report the localization of TRPP2 in porcine sperm and identify functions of TRPP2 in regulating intracellular Ca2+ and motility. Porcine sperm treated with an antibody to TRPP2 in capacitating medium had reduced average path velocity and curvilinear velocity (p < .05). Blocking TRPP2 also increased sperm tail beat-cross frequency (p < .05). After 90 min of capacitation, sperm incubated with TRPP2 antibody had decreased intracellular Ca2+ concentration compared to controls (p < .05), consistent with TRPP2 function as a plasma membrane cation channel. This is the first report that mammalian sperm contain TRPP2, which appears to regulate intracellular Ca2+ and motility patterns in porcine sperm.
Collapse
Affiliation(s)
- Bradford W Daigneault
- Department of Animal Sciences, University of Florida, Gainesville, FL, USA.,Department of Animal Sciences, University of Illinois, Urbana-Champaign, IL, USA
| | - David J Miller
- Department of Animal Sciences, University of Illinois, Urbana-Champaign, IL, USA
| |
Collapse
|
3
|
Guo J, Zhao R, Zhou M, Li J, Yao X, Du J, Chen J, Shen B. TRPP2 and STIM1 form a microdomain to regulate store-operated Ca 2+ entry and blood vessel tone. Cell Commun Signal 2020; 18:138. [PMID: 32867798 PMCID: PMC7457527 DOI: 10.1186/s12964-020-00560-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Accepted: 03/23/2020] [Indexed: 12/13/2022] Open
Abstract
Background Polycystin-2 (TRPP2) is a Ca2+ permeable nonselective cationic channel essential for maintaining physiological function in live cells. Stromal interaction molecule 1 (STIM1) is an important Ca2+ sensor in store-operated Ca2+ entry (SOCE). Both TRPP2 and STIM1 are expressed in endoplasmic reticular membrane and participate in Ca2+ signaling, suggesting a physical interaction and functional synergism. Methods We performed co-localization, co-immunoprecipitation, and fluorescence resonance energy transfer assay to identify the interactions of TRPP2 and STIM1 in transfected HEK293 cells and native vascular smooth muscle cells (VSMCs). The function of the TRPP2-STIM1 complex in thapsigargin (TG) or adenosine triphosphate (ATP)-induced SOCE was explored using specific small interfering RNA (siRNA). Further, we created TRPP2 conditional knockout (CKO) mouse to investigate the functional role of TRPP2 in agonist-induced vessel contraction. Results TRPP2 and STIM1 form a complex in transfected HEK293 cells and native VSMCs. Genetic manipulations with TRPP2 siRNA, dominant negative TRPP2 or STIM1 siRNA significantly suppressed ATP and TG-induced intracellular Ca2+ release and SOCE in HEK293 cells. Inositol triphosphate receptor inhibitor 2-aminoethyl diphenylborinate (2APB) abolished ATP-induced Ca2+ release and SOCE in HEK293 cells. In addition, TRPP2 and STIM1 knockdown significantly inhibited ATP- and TG-induced STIM1 puncta formation and SOCE in VSMCs. Importantly, knockdown of TRPP2 and STIM1 or conditional knockout TRPP2 markedly suppressed agonist-induced mouse aorta contraction. Conclusions Our data indicate that TRPP2 and STIM1 are physically associated and form a functional complex to regulate agonist-induced intracellular Ca2+ mobilization, SOCE and blood vessel tone. Video abstract
Collapse
Affiliation(s)
- Jizheng Guo
- School of Basic Medical Sciences, Anhui Medical University, 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Ren Zhao
- Department of Cardiology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230032, Anhui, China
| | - Muyao Zhou
- School of Basic Medical Sciences, Anhui Medical University, 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Jie Li
- School of Basic Medical Sciences, Anhui Medical University, 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Xiaoqiang Yao
- School of Biomedical Sciences the Chinese University of Hong Kong, Hong Kong, China.,Li Ka Shing Institute of Health Science, The Chinese University of Hong Kong, Hong Kong, China.,Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, China
| | - Juan Du
- School of Basic Medical Sciences, Anhui Medical University, 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Jiexia Chen
- Department of Geriatrics Cardiology, The First Affiliated Hospital of Anhui Medical University, 218 Jixi Road, Hefei, 230022, Anhui, China.
| | - Bing Shen
- School of Basic Medical Sciences, Anhui Medical University, 81 Meishan Road, Hefei, 230032, Anhui, China. .,Anhui Province Key Laboratory of Reproductive Health and Genetics, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, Anhui, China.
| |
Collapse
|
4
|
An Overview of In Vivo and In Vitro Models for Autosomal Dominant Polycystic Kidney Disease: A Journey from 3D-Cysts to Mini-Pigs. Int J Mol Sci 2020; 21:ijms21124537. [PMID: 32630605 PMCID: PMC7352572 DOI: 10.3390/ijms21124537] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 06/17/2020] [Accepted: 06/18/2020] [Indexed: 12/24/2022] Open
Abstract
Autosomal dominant polycystic kidney disease (ADPKD) is the most common inheritable cause of end stage renal disease and, as of today, only a single moderately effective treatment is available for patients. Even though ADPKD research has made huge progress over the last decades, the precise disease mechanisms remain elusive. However, a wide variety of cellular and animal models have been developed to decipher the pathophysiological mechanisms and related pathways underlying the disease. As none of these models perfectly recapitulates the complexity of the human disease, the aim of this review is to give an overview of the main tools currently available to ADPKD researchers, as well as their main advantages and limitations.
Collapse
|
5
|
Feng S, Streets AJ, Nesin V, Tran U, Nie H, Onopiuk M, Wessely O, Tsiokas L, Ong ACM. The Sorting Nexin 3 Retromer Pathway Regulates the Cell Surface Localization and Activity of a Wnt-Activated Polycystin Channel Complex. J Am Soc Nephrol 2017; 28:2973-2984. [PMID: 28620080 PMCID: PMC5619965 DOI: 10.1681/asn.2016121349] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Accepted: 05/07/2017] [Indexed: 02/04/2023] Open
Abstract
Autosomal dominant polycystic kidney disease (ADPKD) is caused by inactivating mutations in PKD1 (85%) or PKD2 (15%). The ADPKD proteins encoded by these genes, polycystin-1 (PC1) and polycystin-2 (PC2), form a plasma membrane receptor-ion channel complex. However, the mechanisms controlling the subcellular localization of PC1 and PC2 are poorly understood. Here, we investigated the involvement of the retromer complex, an ancient protein module initially discovered in yeast that regulates the retrieval, sorting, and retrograde transport of membrane receptors. Using yeast two-hybrid, biochemical, and cellular assays, we determined that PC2 binds two isoforms of the retromer-associated protein sorting nexin 3 (SNX3), including a novel isoform that binds PC2 in a direct manner. Knockdown of SNX3 or the core retromer protein VPS35 increased the surface expression of endogenous PC1 and PC2 in vitro and in vivo and increased Wnt-activated PC2-dependent whole-cell currents. These findings indicate that an SNX3-retromer complex regulates the surface expression and function of PC1 and PC2. Molecular targeting of proteins involved in the endosomal sorting of PC1 and PC2 could lead to new therapeutic approaches in ADPKD.
Collapse
Affiliation(s)
- Shuang Feng
- Kidney Genetics Group, Academic Nephrology Unit and the Bateson Centre, Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield Medical School, Sheffield, United Kingdom
| | - Andrew J Streets
- Kidney Genetics Group, Academic Nephrology Unit and the Bateson Centre, Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield Medical School, Sheffield, United Kingdom
| | - Vasyl Nesin
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma; and
| | - Uyen Tran
- Department of Cellular and Molecular Medicine, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, Ohio
| | - Hongguang Nie
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma; and
| | - Marta Onopiuk
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma; and
| | - Oliver Wessely
- Department of Cellular and Molecular Medicine, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, Ohio
| | - Leonidas Tsiokas
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma; and
| | - Albert C M Ong
- Kidney Genetics Group, Academic Nephrology Unit and the Bateson Centre, Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield Medical School, Sheffield, United Kingdom;
| |
Collapse
|
6
|
Dai XQ, Perez PL, Soria G, Scarinci N, Smoler M, Morsucci DC, Suzuki K, Cantero MDR, Cantiello HF. External Ca 2+ regulates polycystin-2 (TRPP2) cation currents in LLC-PK1 renal epithelial cells. Exp Cell Res 2016; 350:50-61. [PMID: 27836810 DOI: 10.1016/j.yexcr.2016.11.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Revised: 10/13/2016] [Accepted: 11/05/2016] [Indexed: 01/08/2023]
Abstract
Polycystin-2 (PC2, TRPP2) is a nonselective cation channel whose dysfunction is associated with the onset of autosomal dominant polycystic kidney disease (ADPKD). PC2 contributes to Ca2+ transport and cell signaling in renal epithelia and other tissues. Little is known however, as to the external Ca2+ regulation of PC2 channel function. In this study, we explored the effect of external Ca2+ on endogenous PC2 in wild type LLC-PK1 renal epithelial cells. We obtained whole cell currents at different external Ca2+ concentrations, and observed that the basal whole cell conductance in normal Ca2+(1.2mM), decreased by 30.2% in zero (nominal) Ca2+ and conversely, increased by 38% in high external Ca2+(6.2mM). The high Ca2+-increased whole cell currents were completely inhibited by either PC2 gene silencing, or intracellular dialysis with active, but not denatured by boiling, PC2 antibody. Exposure of cells to high Ca2+ was also associated with relocation of PC2 to the plasma membrane. To explore whether a Ca2+ sensing receptor (CaSR) was implicated in the external Ca2+ modulation of PC2 currents, we tested the effect of the CaSR agonists, spermine and the calcimimetic R-568, which largely mimicked the effect of high Ca2+ under Ca2+-free conditions. The CaSR agonist gentamicin also increased the PC2 currents in the presence of normal Ca2+. The presence of CaSR was confirmed by immunocytochemistry, which partially colocalized with the intracellular PC2 protein, in an external Ca2+-dependent manner. The data support a novel Ca2+ sensing mechanism for PC2 expression and functional regulation in renal epithelial cells.
Collapse
Affiliation(s)
- Xiao Qing Dai
- Alberta Diabetes Institute, Department of Pharmacology, University of Edmonton, Alberta, Canada
| | - Paula L Perez
- Laboratorio de Canales Iónicos, CONICET, Cátedra de Biofísica y Bioestadística, Facultad de Odontología, UBA, Buenos Aires, Argentina
| | - Gonzalo Soria
- Nephrology Division, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| | - Noelia Scarinci
- Laboratorio de Canales Iónicos, CONICET, Cátedra de Biofísica y Bioestadística, Facultad de Odontología, UBA, Buenos Aires, Argentina
| | - Mariano Smoler
- Laboratorio de Canales Iónicos, CONICET, Cátedra de Biofísica y Bioestadística, Facultad de Odontología, UBA, Buenos Aires, Argentina
| | - D Cristian Morsucci
- Nephrology Division, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| | - Kunimasa Suzuki
- Molecular Biology and Biochemistry Core Facility, Alberta Diabetes Institute, University of Alberta, Edmonton, Alberta, Canada
| | - María Del Rocío Cantero
- Laboratorio de Canales Iónicos, CONICET, Cátedra de Biofísica y Bioestadística, Facultad de Odontología, UBA, Buenos Aires, Argentina
| | - Horacio F Cantiello
- Nephrology Division, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA; Laboratorio de Canales Iónicos, CONICET, Cátedra de Biofísica y Bioestadística, Facultad de Odontología, UBA, Buenos Aires, Argentina.
| |
Collapse
|
7
|
He J, Li Q, Fang S, Guo Y, Liu T, Ye J, Yu Z, Zhang R, Zhao Y, Hu X, Bai X, Chen X, Li N. PKD1 mono-allelic knockout is sufficient to trigger renal cystogenesis in a mini-pig model. Int J Biol Sci 2015; 11:361-9. [PMID: 25798056 PMCID: PMC4366635 DOI: 10.7150/ijbs.10858] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Accepted: 12/03/2014] [Indexed: 11/13/2022] Open
Abstract
PKD1 and PKD2 mutations could lead to autosomal dominant polycystic kidney disease (ADPKD), which afflicts millions of people worldwide. Due to the marked differences in the lifespan, size, anatomy, and physiology from humans, rodent ADPKD models cannot fully mimic the disease. To obtain a large animal model that recapitulates the disease, we constructed a mini-pig model by mono-allelic knockout (KO) of PKD1 using zinc finger nuclease. The mono-allelic KO pigs had lower PKD1 expression than their wild-type littermates at both the transcriptional and translational levels. After approximately six months, renal cysts appeared and grew progressively in the KO pigs. Histological analysis showed that renal cysts were scatteredly distributed in the mutant pig kidneys and were lined by either cuboidal or flattened epithelial cells. Contrast-enhanced computed tomography confirmed that all of the mutant pigs had renal and hepatic cysts, when they were 11-month-old. Immunohistochemical analysis revealed that most of the cysts were derived from the proximal tubules and collecting ducts. Therefore, the PKD1 mono-allelic knockout is sufficient to trigger renal cystogenesis, and this pig model may provide a platform for future study of renal cyst formation.
Collapse
Affiliation(s)
- Jin He
- 1. State Key Laboratory for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, PR China ; 2. College of Animal Science and Technology, China Agricultural University, Beijing, PR China
| | - Qiuyan Li
- 1. State Key Laboratory for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, PR China
| | - Suyun Fang
- 1. State Key Laboratory for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, PR China
| | - Ying Guo
- 1. State Key Laboratory for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, PR China
| | - Tongxin Liu
- 1. State Key Laboratory for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, PR China
| | - Jianhua Ye
- 1. State Key Laboratory for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, PR China
| | - Zhengquan Yu
- 1. State Key Laboratory for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, PR China
| | - Ran Zhang
- 1. State Key Laboratory for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, PR China
| | - Yaofeng Zhao
- 1. State Key Laboratory for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, PR China
| | - Xiaoxiang Hu
- 1. State Key Laboratory for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, PR China
| | - Xueyuan Bai
- 3. Department of Nephrology, State Key Laboratory of Kidney Disease, Chinese PLA General Hospital, Beijing, PR China
| | - Xiangmei Chen
- 3. Department of Nephrology, State Key Laboratory of Kidney Disease, Chinese PLA General Hospital, Beijing, PR China
| | - Ning Li
- 1. State Key Laboratory for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, PR China ; 4. College of Animal Science and Technology, Yunnan Agricultural University, Kunming, PR China
| |
Collapse
|
8
|
Wang Q, Han G, Ye J, Gao X, Niu H, Zhao J, Chai Y, Li N, Yin H. Characterization of the polycystic kidney disease 2 gene promoter. Genomics 2014; 104:512-9. [DOI: 10.1016/j.ygeno.2014.08.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2014] [Revised: 08/13/2014] [Accepted: 08/15/2014] [Indexed: 12/25/2022]
|
9
|
Construction of a transgenic pig model overexpressing polycystic kidney disease 2 (PKD2) gene. Transgenic Res 2013; 22:861-7. [PMID: 23315160 DOI: 10.1007/s11248-012-9686-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2012] [Accepted: 12/28/2012] [Indexed: 12/13/2022]
Abstract
Autosomal dominant polycystic kidney disease (ADPKD) is a common human genetic disease, affecting millions of people worldwide. The progressive growth of cysts in kidneys eventually leads to renal failure in 50 % of patients, and there is currently no effective treatment. Various murine models have been studied to elucidate the disease mechanisms, and much information has been acquired. However, the course of the disease cannot be fully recapitulated using these models. The pig is a suitable model for biomedical research, and pig PKD2 has high similarity to the human ortholog at the molecular level. Here, a mini-pig PKD2 transgenic model was generated, driven by a ubiquitous cytomegalovirus enhancer/promoter. Using somatic cell nuclear transfer, four transgenic pigs with approximately 10 insertion events each were generated. Quantitative real-time PCR and western blotting showed that PKD2 was more highly expressed in transgenic pigs than in wild-type counterparts. Because of the chronic nature of ADPKD, blood urea nitrogen and serum creatinine levels were continuously measured to assess the pig kidney function. The transgenic pigs continue to show no significant alteration in kidney function; it is estimated that 1-2 more years may be required for manifestation of renal cystogenesis in these pigs.
Collapse
|
10
|
Identification of porcine polycystic kidney disease 1 (PKD1) gene: molecular cloning, expression profile, and implication in disease model. Gene 2011; 490:37-46. [PMID: 21945688 DOI: 10.1016/j.gene.2011.08.027] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2011] [Revised: 07/26/2011] [Accepted: 08/25/2011] [Indexed: 11/22/2022]
Abstract
The polycystic kidney disease 1 (PKD1) gene, which accounts for ~85% of human autosomal dominant polycystic kidney disease (ADPKD) cases, has been extensively studied in human and mouse. Much information about the pathogenesis of and treatments for ADPKD has been gained from the use of mouse models. However, because mouse models pose some limitations, further studies in other model systems are needed to investigate the biological basis of ADPKD. The pig is regarded as an important biomedical model. Thus, we isolated a pig PKD1 homolog and characterized its cDNA sequence, genomic structure, expression profile, alternative splicing, methylation status, protein characteristics, and immunohistochemical features in both neonatal and adult pigs. The pig PKD1 cDNA is 14,209bp long and encodes a 4305-residue polypeptide. The genomic sequence of PKD1 is ~50kb with 46 exons. An alternative splice acceptor site was identified in intron 9. PKD1 is expressed in all tissues tested in both neonatal and adult pigs and exhibits a developmentally regulated expression pattern. Western blotting revealed that the molecular mass of polycystin-1 is ~460kDa, but its expression level is relatively low. Immunohistochemical study of the kidneys shows that polycystin-1 is mainly expressed in the tubular epithelia. Bisulfite methylation analysis of CpG islands in the promoter region does not show a direct correlation between methylation status and expression level among different tissues/cells. The cloning and characterization of pig PKD1 indicates that the pig and human genes are highly similar in length of genomic and cDNA sequences, genomic structure and context, expression patterns, conserved transcription factor binding sites, and the molecular mass of the encoded polycystin-1. These data support our current understanding of PKD1, and suggest that the pig is an ideal candidate for development of an ADPKD disease model.
Collapse
|