1
|
Liew Y, Capule FR, Makmor-Bakry M. Effects of genetic polymorphisms of ABCB1 on the efficacy of anesthetic and analgesic agents: a systematic review. Pharmacogenomics 2021; 22:1099-1106. [PMID: 34590490 DOI: 10.2217/pgs-2021-0079] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Aim: To perform a systematic review to determine the effect of ABCB1 (1236C>T, 2677G>T/A and 3435C>T) variants on the effects of anesthetic and analgesic agents in various surgical procedures. Materials & methods: Literature was obtained from established databases and reference tracking. The main outcome measures were efficacy of anesthetic and analgesic agents intraoperative or within 48 h post surgery of human population. Results: Seventeen studies were included for data extraction from 1127 screened studies. The influences of ABCB1 gene polymorphisms on analgesic effects showed conflicting results. The mutational homozygous TT genotypes of 1236C>T and 3435C>T polymorphisms demonstrated significant association with the anesthetic effects. Conclusion: The mutational homozygous TT genotype in both ABCB1 1236C>T and 3435C>T is associated with weaker anesthetic effect but there are no clearly demonstrated analgesic effects.
Collapse
Affiliation(s)
- Yee Liew
- Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Francis R Capule
- College of Pharmacy, University of the Philippines, Manila, Philippines
| | - Mohd Makmor-Bakry
- Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| |
Collapse
|
2
|
Magarbeh L, Gorbovskaya I, Le Foll B, Jhirad R, Müller DJ. Reviewing pharmacogenetics to advance precision medicine for opioids. Biomed Pharmacother 2021; 142:112060. [PMID: 34523422 DOI: 10.1016/j.biopha.2021.112060] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 08/14/2021] [Accepted: 08/16/2021] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Adequate opioid prescribing is critical for therapeutic success of pain management. Despite the widespread use of opioids, optimized opioid therapy remains unresolved with risk of accidental lethal overdosing. With the emergence of accumulating evidence linking genetic variation to opioid response, pharmacogenetic based treatment recommendations have been proposed. OBJECTIVE The aim of this review is to evaluate pharmacogenetic evidence and provide an overview on genes involved in the pharmacokinetics and pharmacodynamics of opioids. METHODS For this review, a systematic literature search of published articles was used in PubMed®, with no language restriction and between the time period of January 2000 to December 2020. We reviewed randomized clinical studies, study cohorts and case reports that investigated the influence of genetic variants on selected opioid pharmacokinetics and pharmacodynamics. In addition, we reviewed current CPIC clinical recommendations for pharmacogenetic testing. RESULTS Results of this review indicate consistent evidence supporting the association between selected genetic variants of CYP2D6 for opioid metabolism. CPIC guidelines include recommendations that indicate the avoidance of tramadol use, in addition to codeine, in CYP2D6 poor metabolizers and ultrarapid metabolizers, and to monitor intermediate metabolizers for less-than-optimal response. While there is consistent evidence for OPRM1 suggesting increased postoperative morphine dosing requirements in A118G G-allele carriers, the clinical relevance remains limited. CONCLUSION There is emerging evidence of clinical relevance of CYP2D6 and, to a lesser extent, OPRM1 polymorphism in personalized opioid drug dosing. As a result, first clinics have started to implement pharmacogenetic guidelines for CYP2D6 and codeine.
Collapse
Affiliation(s)
- Leen Magarbeh
- Department of Pharmacology and Toxicology, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada; Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - Ilona Gorbovskaya
- Institute of Medical Sciences, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada; Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - Bernard Le Foll
- Department of Pharmacology and Toxicology, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada; Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada; Department of Family and Community Medicine, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada; Centre for Addiction and Mental Health, Toronto, ON, Canada; Translational Addiction Research Laboratory, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada; Acute Care Program, Centre for Addiction and Mental Health, Toronto, ON, Canada; Dalla Lana School of Public Health, University of Toronto, Toronto, ON, Canada
| | - Reuven Jhirad
- Dalla Lana School of Public Health, University of Toronto, Toronto, ON, Canada; Office of the Chief Coroner and Ontario Forensic Pathology Service, Toronto, ON, Canada
| | - Daniel J Müller
- Department of Pharmacology and Toxicology, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada; Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada; Institute of Medical Sciences, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada; Centre for Addiction and Mental Health, Toronto, ON, Canada.
| |
Collapse
|
3
|
Comer SD, Cahill CM. Fentanyl: Receptor pharmacology, abuse potential, and implications for treatment. Neurosci Biobehav Rev 2018; 106:49-57. [PMID: 30528374 DOI: 10.1016/j.neubiorev.2018.12.005] [Citation(s) in RCA: 142] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Revised: 11/30/2018] [Accepted: 12/04/2018] [Indexed: 12/16/2022]
Abstract
Opioid overdoses, many of which are attributed to use of illicit fentanyl, are currently one of the leading causes of death in the U.S. Although fentanyl has been used safely for decades in clinical settings, the widespread use of illicit fentanyl is a recent phenomenon. Starting in 2013, illicitly manufactured fentanyl and its analogs began to appear on the streets. These substances were added to or sold as heroin, often unbeknownst to the user. Because fentanyl is so potent, only small amounts are needed to produce pharmacological effects, but the margin between safe and toxic doses is narrow. Surprisingly little is known about the exact signaling mechanisms underlying fentanyl-related respiratory depression or the effectiveness of naloxone in reversing this effect. Similarly, little is known about the ability of treatment medications such as buprenorphine, methadone, or naltrexone to reduce illicit fentanyl use. The present article reviews the receptor, preclinical and clinical pharmacology of fentanyl, and how its pharmacology may predict the effectiveness of currently approved medications for treating illicit fentanyl use.
Collapse
Affiliation(s)
- Sandra D Comer
- New York State Psychiatric Institute and Columbia University, New York, NY, 10027, United States.
| | - Catherine M Cahill
- Semel Institute for Neuroscience and Human Behavior, University of California Los Angeles, Los Angeles, California, 90095, United States
| |
Collapse
|
4
|
Packiasabapathy S, Sadhasivam S. Gender, genetics, and analgesia: understanding the differences in response to pain relief. J Pain Res 2018; 11:2729-2739. [PMID: 30519077 PMCID: PMC6235329 DOI: 10.2147/jpr.s94650] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Genetic variations and gender contribute significantly to the large interpatient variations in opioid-related serious adverse effects and differences in pain relief with other analgesics. Opioids are the most commonly used analgesics to relieve moderate-to-severe postoperative pain. Narrow therapeutic index and unexplained large interpatient variations in opioid-related serious adverse effects and analgesia negatively affect optimal perioperative outcomes. In surgical, experimental, chronic, and neuropathic pain models, females have been reported to have more pain than males. This review focuses on literature evidence of differences in pain relief due to multiple genetic variations and gender of the patient.
Collapse
Affiliation(s)
- Senthil Packiasabapathy
- Department of Anesthesia, Riley Hospital for Children at Indiana University Health, Indianapolis, IN, USA,
| | - Senthilkumar Sadhasivam
- Department of Anesthesia, Riley Hospital for Children at Indiana University Health, Indianapolis, IN, USA,
| |
Collapse
|
5
|
Zhang Y, Li Y, Wang H, Cai F, Shen S, Luo X. Correlation of MDR1 gene polymorphism with propofol combined with remifentanil anesthesia in pediatric tonsillectomy. Oncotarget 2017; 9:20294-20303. [PMID: 29755652 PMCID: PMC5945500 DOI: 10.18632/oncotarget.23168] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Accepted: 10/29/2017] [Indexed: 02/01/2023] Open
Abstract
The motive of this study was to investigate the interaction between polymorphisms in the MDR1 gene and anesthetic effects following pediatric tonsillectomy. In total, 240 children undergoing tonsillectomy with preoperative propofol-remifentanil anesthesia were selected. Genomic DNA was extracted from the peripheral blood of children after operation, and the MDR1 gene polymorphisms of 2677 G>T/A, 1236 C>T and 3435 C>T were detected by direct sequencing. We tested mean arterial pressure, diastolic blood pressure, systolic blood pressure, and heart rate at several time-points: T0 (5 mins after the repose), T1 (0 min after tracheal intubation), T2 (5 mins after the tracheal intubation), T3 (0 min after the tonsillectomy), T4 (0 min after removal of the mouth-gag) and T5 (5 min after the extubation). The visual analog scale, the face, legs, activity, cry, and consolability pain assessment, and the Ramsay sedation score were recorded after the patients regained consciousness. Adverse reactions were also recorded. The time of induction, respiration recovery, eye-opening, and extubation of children with the CC genotype were found to be shorter compared to the CT + TT genotype of MDR1 1236C > T (all P <.05). The mean arterial pressure, diastolic blood pressure, systolic blood pressure, and heart rate were significantly reduced at T5 in children with the CC genotype (all P <.05). The visual analog scale at 1, 2, 4, and 8 hours post-operation, and the Ramsay sedation score at 5, 10, and 30 min after the extubation were decreased, while the face, legs, activity, cry, and consolability pain assessment score increased (all P <0.05). There was no statistically significant difference in the adverse reaction of MDR1 mutations (P> 0.05). It could be concluded that anesthetic effect following pediatric tonsillectomy in patients with the MDR1 1236C > T CC genotype was stronger than in those carrying the CT + TT genotype.
Collapse
Affiliation(s)
- YunLong Zhang
- Department of Anesthesiology, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Yongpei Li
- Hangzhou Women's Hospital, Hangzhou Maternity and Child Health Care Hospital, Hangzhou, Zhejiang, China
| | - Hongfa Wang
- Department of Anesthesiology, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Fang Cai
- Department of Anesthesiology, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Sheliang Shen
- Department of Anesthesiology, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Xiaopan Luo
- Department of Anesthesiology, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang, China
| |
Collapse
|
6
|
Li KC, Yu SH, Zhuge BZ. PIK3CG single nucleotide polymorphisms are associated with poor responsiveness to clopidogrel and increased risk of ischemia in patients with coronary heart disease. Medicine (Baltimore) 2017; 96:e7566. [PMID: 28885323 PMCID: PMC6392743 DOI: 10.1097/md.0000000000007566] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND This study explores the associations between PIK3CG single nucleotide polymorphisms (SNPs, rs1129293 and rs17398575) and patient responsiveness to clopidogrel to evaluate the risks of ischemia in patients with coronary heart disease (CHD). METHODS The study consisted of 513 CHD patients who received clopidogrel as part of antiplatelet therapy, after percutaneous coronary intervention. According to the patient responsiveness to clopidogrel, the subjects were assigned to either clopidogrel-resistant (CR) or clopidogrel-sensitive (CS) groups. CR group was determined by patients' platelet aggregation rate of ≥70% and poor responsiveness to clopidogrel, and CS group by patients' platelet aggregation rates of <70% and good responsiveness to clopidogrel. Polymerase chain reaction using TaqMan probe was employed to detect PIK3CG polymorphism. Haplotype and linkage disequilibrium analyses were performed. Prognosis analysis was performed using the Kaplan-Meier curve. RESULTS Significant difference was found in genotype and rs1129293 and rs17398575 allele frequency between the CR and CS groups. Haplotype analysis indicated that the frequency of TG allele was higher in the CR group compared with the CS group, and the frequency of CA allele was lower in the CR group compared with the CS group. Patients with rs1129293 CT + TT genotype and T allele, rs1129293 AG + GG genotype and G allele exhibited an increased CR risk. Logistic regression analysis determined hypertension history as an independent risk factor for CR. The Kaplan-Meier curve suggests that distribution curve of cumulative probability nonischemic events was different between patients with rs1129293 and rs17398575 alleles. Stable CHD patients with TT genotype of rs1129293 allele and GG genotype of rs17398575 allele showed poorer prognosis compared to those with other genotypes and patients with acute coronary syndromes. CONCLUSION A positive correlation may exist between PIK3CG SNPs (rs1129293 and rs17398575) and patients with poor responsiveness to clopidogrel. These findings show that this factor may contribute to an increased risk of ischemia in patients suffering from CHD.
Collapse
Affiliation(s)
- Ke-Cheng Li
- Department of Clinical Laboratory, People's Hospital of Rongcheng, Rongcheng
| | - Shu-Hong Yu
- Department of Blood Transfusion, Yantai Yuhuangding Hospital, Yantai
| | - Bao-Zhong Zhuge
- Department of Clinical Laboratory, Linyi People's Hospital, Linyi, P.R. China
| |
Collapse
|
7
|
Dagenais R, Wilby KJ, Elewa H, Ensom MHH. Impact of Genetic Polymorphisms on Phenytoin Pharmacokinetics and Clinical Outcomes in the Middle East and North Africa Region. Drugs R D 2017; 17:341-361. [PMID: 28748348 PMCID: PMC5629135 DOI: 10.1007/s40268-017-0195-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Genetic polymorphisms are known to influence outcomes with phenytoin yet effects in the Middle East and North Africa region are poorly understood. OBJECTIVES The objective of this systematic review was to evaluate the impact of genetic polymorphisms on phenytoin pharmacokinetics and clinical outcomes in populations originating from the Middle East and North Africa region, and to characterize genotypic and allelic frequencies within the region for genetic polymorphisms assessed. METHODS MEDLINE (1946-3 May, 2017), EMBASE (1974-3 May, 2017), Pharmacogenomics Knowledge Base, and Public Health Genomics Knowledge Base online databases were searched. Studies were included if genotyping and analyses of phenytoin pharmacokinetics were performed in patients of the Middle East and North Africa region. Study quality was assessed using a National Institutes of Health assessment tool. A secondary search identified studies reporting genotypic and allelic frequencies of assessed genetic polymorphisms within the Middle East and North Africa region. RESULTS Five studies met the inclusion criteria. CYP2C9, CYP2C19, and multidrug resistance protein 1 C3435T variants were evaluated. While CYP2C9*2 and *3 variants significantly reduced phenytoin metabolism, the impacts of CYP2C19*2 and *3 variants were unclear. The multidrug resistance protein 1 CC genotype was associated with drug-resistant epilepsy, but reported impacts on phenytoin pharmacokinetics were conflicting. Appreciable variability in minor allele frequencies existed both between and within countries of the Middle East and North Africa region. CONCLUSIONS CYP2C9 decrease-of-function alleles altered phenytoin pharmacokinetics in patients originating from the Middle East and North Africa region. The impacts of CYP2C19 and multidrug resistance protein 1 C3435T variants on phenytoin pharmacokinetic and clinical outcomes are unclear and require further investigation. Future research should focus on the clinical outcomes associated with phenytoin therapy. PROSPERO 2017: CRD42017057850.
Collapse
Affiliation(s)
- Renée Dagenais
- Faculty of Pharmaceutical Sciences, Pharmaceutical Sciences Building, University of British Columbia, Vancouver, BC, Canada
| | - Kyle John Wilby
- College of Pharmacy, Qatar University, PO Box 2713, Doha, Qatar.
| | - Hazem Elewa
- College of Pharmacy, Qatar University, PO Box 2713, Doha, Qatar
| | - Mary H H Ensom
- Faculty of Pharmaceutical Sciences, Pharmaceutical Sciences Building, University of British Columbia, Vancouver, BC, Canada
- Department of Pharmacy, Children's and Women's Health Centre of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
8
|
ABCB1 genotype is associated with fentanyl requirements in critically ill children. Pediatr Res 2017; 82:29-35. [PMID: 28388599 PMCID: PMC5509475 DOI: 10.1038/pr.2017.103] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Accepted: 03/30/2017] [Indexed: 01/28/2023]
Abstract
BackgroundThe gene ABCB1 encodes p-glycoprotein, a xenobiotic efflux pump capable of transporting certain opioids, including fentanyl. ABCB1 genotype has been previously associated with patient opioid requirements and may influence fentanyl dosing requirements in critically ill children.MethodsA diagnostically diverse cohort of 61 children who received a fentanyl infusion while admitted to the pediatric intensive care unit (PICU) were included in this study. We examined associations between fentanyl requirements, pain and sedation scores, serum fentanyl levels, and ABCB1 genotype.ResultsPatients with the AA allele at ABCB1 locus rs1045642 received less fentanyl compared with patients with the AG or GG allele. A multivariable model demonstrated that patients with the AA allele received 18.6 mcg/kg/day less fentanyl than patients with either the AG or GG allele (95% confidence interval -33.4 to -3.8 mcg/kg/day; P=0.014). Incorporating race in this model demonstrated a similar association, but did not reach the threshold for multiple testing.ConclusionABCB1 genotype rs1045642 AA is associated with fentanyl administration in this cohort of children admitted to the PICU, likely because of decreased expression and activity of p-glycoprotein. Prospective evaluation of the influence of ABCB1 in sedative-analgesia administration in critically ill children is warranted.
Collapse
|
9
|
Shi NJ, Zhang WX, Zhang N, Zhong LN, Wang LP. Correlation of MDR1 gene polymorphisms with anesthetic effect of sevoflurane-remifentanil following pediatric tonsillectomy. Medicine (Baltimore) 2017; 96:e7002. [PMID: 28614221 PMCID: PMC5478306 DOI: 10.1097/md.0000000000007002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND The motive of this study was to investigate the collaboration between MDR1 gene polymorphisms and anesthetic effects following pediatric tonsillectomy. METHODS All together 178 children undergoing tonsillectomy with preoperative sevoflurane-remifentanil anesthesia were selected. In order to determine MDR1 gene polymorphisms of 3435C > T, 1236C > T, and 2677G > T/A, polymerase chain reaction-restriction fragment length polymorphism was used. Mean arterial pressure (MAP), diastolic blood pressure (DBP), systolic blood pressure (SBP), and heart rate (HR) at T0 (5 mins after the repose), T1 (0 min after tracheal intubation), T2 (5 mins after the tracheal intubation), T3 (0 min after the tonsillectomy), T4 (0 min after removal of the mouth-gag) and T5 (5 min after the extubation) were observed. The visual analog scale (VAS), the face, legs, activity, cry, and consolability (FLACC) pain assessment, and Ramsay sedation score were recorded after the patients gained consciousness. The adverse reactions were also observed. RESULTS As compared to the CT + TT genotype of MDR1 1236C > T, the time of induction, respiration recovery, eye-opening, and extubation of children with the CC genotype was found to be shorter (all P <.05); the MAP, SBP, DBP, and HR were significantly reduced at T5 in children that possessed the CC genotype (all P <.05), the VAS at postoperative 1, 2, 4, and 8 hours and Ramsay sedation score were decreased, while the FLACC score increased (all P <.05). It was found that the adverse reaction rate was lower in children bearing the CC genotype (P <.05). CONCLUSION It could be concluded that anesthetic effect in patients with the MDR1 1236C > T CC genotype was found to be superior to those carrying the CT + TT genotype.
Collapse
|
10
|
Chidambaran V, McAuliffe JJ. Opioid-induced respiratory depression: the role of genetics. EXPERT REVIEW OF PRECISION MEDICINE AND DRUG DEVELOPMENT 2017. [DOI: 10.1080/23808993.2017.1331704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Vidya Chidambaran
- Anesthesia and Pediatrics, Cincinnati Children’s Hospital, Cincinnati, OH, USA
| | - John J. McAuliffe
- Anesthesia and Pediatrics, Cincinnati Children’s Hospital, Cincinnati, OH, USA
| |
Collapse
|
11
|
Senagore AJ, Champagne BJ, Dosokey E, Brady J, Steele SR, Reynolds HL, Stein SL, Delaney CP. Pharmacogenetics-guided analgesics in major abdominal surgery: Further benefits within an enhanced recovery protocol. Am J Surg 2017; 213:467-472. [DOI: 10.1016/j.amjsurg.2016.11.008] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Revised: 11/03/2016] [Accepted: 11/05/2016] [Indexed: 11/15/2022]
|
12
|
Abstract
Pain is a common symptom that can be complex to treat. Analgesic medications are the mainstay treatment, but there is wide interindividual variability in analgesic response and adverse effects. Pharmacogenomics is the study of inherited genetic traits that result in these individual responses to drugs. This narrative review will attempt to cover the current understanding of the pharmacogenomics of pain, examining common genes affecting metabolism of analgesic medications, their distribution throughout the body, and end organ effects.
Collapse
Affiliation(s)
- Sonya Ting
- Department of Anaesthesia, Sir Charles Gairdner Hospital, Perth, WA, Australia
| | - Stephan Schug
- Anaesthesiology Unit, School of Medicine and Pharmacology, University of Western Australia, Perth, WA, Australia; Department of Anaesthesia and Pain Medicine, Royal Perth Hospital, University of Western Australia Anaesthesiology Unit, Royal Perth Hospital, Perth, WA, Australia
| |
Collapse
|
13
|
Pharmacogenomics and Opioid Analgesics: Clinical Implications. Int J Genomics 2015; 2015:368979. [PMID: 26075211 PMCID: PMC4446490 DOI: 10.1155/2015/368979] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Revised: 04/22/2015] [Accepted: 04/26/2015] [Indexed: 11/17/2022] Open
Abstract
Variation exists in patient response on analgesic treatment in terms of efficacy and safety. This variation may be in part explained by pharmacogenomics. This paper aimed to review data on pharmacogenomics of opioid analgesics focusing on the effect of genetic variation on the efficacy and safety of these agents. Current evidence suggests that pharmacogenomics contribute to variation in efficacy and safety of opioids. However, most data come from case control studies and case reports. In addition, a recognized drawback in the field of pharmacogenomics is the common occurrence of false positive association between polymorphisms and the investigated outcome. Prospective studies are needed to further elucidate the clinical implications of available data as well as to define the guidelines for the clinical application of pharmacogenomic data. Furthermore, basic research should focus on the identification of biologically meaningful polymorphisms enabling a hypothesis with biological plausibility driven research in the field of pharmacogenomics of analgesics. Moreover, the publication of relevant negative results should be favoured.
Collapse
|
14
|
Gharavi R, Hedrich W, Wang H, Hassan HE. Transporter-Mediated Disposition of Opioids: Implications for Clinical Drug Interactions. Pharm Res 2015; 32:2477-502. [PMID: 25972096 DOI: 10.1007/s11095-015-1711-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Accepted: 05/06/2015] [Indexed: 01/08/2023]
Abstract
Opioid-related deaths, abuse, and drug interactions are growing epidemic problems that have medical, social, and economic implications. Drug transporters play a major role in the disposition of many drugs, including opioids; hence they can modulate their pharmacokinetics, pharmacodynamics and their associated drug-drug interactions (DDIs). Our understanding of the interaction of transporters with many therapeutic agents is improving; however, investigating such interactions with opioids is progressing relatively slowly despite the alarming number of opioids-mediated DDIs that may be related to transporters. This review presents a comprehensive report of the current literature relating to opioids and their drug transporter interactions. Additionally, it highlights the emergence of transporters that are yet to be fully identified but may play prominent roles in the disposition of opioids, the growing interest in transporter genomics for opioids, and the potential implications of opioid-drug transporter interactions for cancer treatments. A better understanding of drug transporters interactions with opioids will provide greater insight into potential clinical DDIs and could help improve opioids safety and efficacy.
Collapse
Affiliation(s)
- Robert Gharavi
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, 20 N Pine Street, Rooms: N525 (Office), Baltimore, Maryland, 21201, USA
| | | | | | | |
Collapse
|
15
|
Biesiada J, Chidambaran V, Wagner M, Zhang X, Martin LJ, Meller J, Sadhasivam S. Genetic risk signatures of opioid-induced respiratory depression following pediatric tonsillectomy. Pharmacogenomics 2014; 15:1749-1762. [PMID: 25493568 PMCID: PMC4287371 DOI: 10.2217/pgs.14.137] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2014] [Accepted: 09/19/2014] [Indexed: 12/29/2022] Open
Abstract
Background: Respiratory depression is a clinically and economically important but preventable complication of opioids. Genetic factors can help identify patients with high risk for respiratory depression. Methods: In this prospective genotype blinded clinical study, we evaluated the effect of a panel of variants in candidate genes on opioid-related respiratory depression in 347 children following tonsillectomy. Results: Using unsupervised hierarchical clustering and a combination of candidate genotypes and clinical variables, we identified several distinct clusters of patients at high risk (36-38%) and low risk (10-17%) of respiratory depression; the relative risk of respiratory depression for high versus low risk clusters was 2.1-3.8 (p = 0.003). Conclusion: Genetic risk predictions (genetic signatures) along with clinical risk factors effectively identify children at higher and lower risks of opioid-induced respiratory depression. Genetic signatures of respiratory depression offer strategies for improved clinical decision support to guide clinicians to balance the risks of opioid adverse effects with analgesia. Original submitted 9 July 2014; Revision submitted 19 September 2014.
Collapse
Affiliation(s)
- Jacek Biesiada
- Division of Biomedical Informatics, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Department of Environmental Health, University of Cincinnati, Cincinnati, OH, USA
- Division of Informatics in Industry, Technical University of Silesia, Gliwice, Poland
| | - Vidya Chidambaran
- Department of Anesthesia, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Michael Wagner
- Division of Biomedical Informatics, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Xue Zhang
- Division of Human Genetics, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Lisa J Martin
- Division of Human Genetics, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Jaroslaw Meller
- Division of Biomedical Informatics, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Department of Environmental Health, University of Cincinnati, Cincinnati, OH, USA
- Department of Informatics, Nicholas Copernicus University, Torun, Poland
| | - Senthilkumar Sadhasivam
- Department of Anesthesia, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| |
Collapse
|
16
|
Sadhasivam S, Chidambaran V, Zhang X, Meller J, Esslinger H, Zhang K, Martin LJ, McAuliffe J. Opioid-induced respiratory depression: ABCB1 transporter pharmacogenetics. THE PHARMACOGENOMICS JOURNAL 2014; 15:119-26. [DOI: 10.1038/tpj.2014.56] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2014] [Revised: 08/18/2014] [Accepted: 08/21/2014] [Indexed: 11/09/2022]
|
17
|
Lötsch J, Walter C, Parnham MJ, Oertel BG, Geisslinger G. Pharmacokinetics of non-intravenous formulations of fentanyl. Clin Pharmacokinet 2013; 52:23-36. [PMID: 23100195 DOI: 10.1007/s40262-012-0016-7] [Citation(s) in RCA: 90] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Fentanyl was structurally designed by Paul Janssen in the early 1960s as a potent opioid analgesic (100-fold more potent than morphine). It is a full agonist at μ-opioid receptors and possesses physicochemical properties, in particular a high lipophilicity (octanol:water partition coefficient >700), which allow it to cross quickly between plasma and central nervous target sites (transfer half-life of 4.7-6.6 min). It undergoes first-pass metabolism via cytochrome P450 3A (bioavailability ~30 % after rapid swallowing), which can be circumvented by non-intravenous formulations (bioavailability 50-90 % for oral transmucosal or intranasal formulations). Non-intravenous preparations deliver fentanyl orally-transmucosally, intranasally or transdermally. Passive transdermal patches release fentanyl at a constant zero-order rate for 2-3 days, making them suitable for chronic pain management, as are iontophoretic transdermal systems. Oral transmucosal and intranasal routes provide fast delivery (time to reach maximum fentanyl plasma concentrations 20 min [range 20-180 min] and 12 min [range 12-21 min], respectively) suitable for rapid onset of analgesia in acute pain conditions with time to onset of analgesia of 5 or 2 min, respectively. Intranasal formulations partly bypass the blood-brain barrier and deliver a fraction of the dose directly to relevant brain target sites, providing ultra-fast analgesia for breakthrough pain. Thanks to the development of non-intravenous pharmaceutical formulations, fentanyl has become one of the most successful opioid analgesics, and can be regarded as an example of a successful reformulation strategy of an existing drug based on pharmacokinetic research and pharmaceutical technology. This development broadened the indications for fentanyl beyond the initial restriction to intra- or perioperative clinical uses. The clinical utility of fentanyl could be expanded further by more comprehensive mathematical characterizations of its parametric pharmacokinetic input functions as a basis for the rational selection of fentanyl formulations for individualized pain therapy.
Collapse
Affiliation(s)
- Jörn Lötsch
- Pharmazentrum frankfurt/ZAFES, Institute of Clinical Pharmacology, J. W. Goethe-University Hospital, Theodor-Stern-Kai 7, 60590, Frankfurt, Germany.
| | | | | | | | | |
Collapse
|
18
|
Ermini M, Mariani S, Scarano S, Minunni M. Direct detection of genomic DNA by surface plasmon resonance imaging: An optimized approach. Biosens Bioelectron 2013; 40:193-9. [DOI: 10.1016/j.bios.2012.07.018] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2012] [Revised: 07/12/2012] [Accepted: 07/13/2012] [Indexed: 10/28/2022]
|
19
|
Özhan G, Kara M, Sari FM, Yanar HT, Ercan G, Alpertunga B. Associations between the functional polymorphisms in the ABCB1 transporter gene and colorectal cancer risk: a case-control study in Turkish population. Toxicol Mech Methods 2013. [PMID: 23193993 DOI: 10.3109/15376516.2012.743639] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Colorectal cancer is among the most common cancer types in the world and its etiology involves the interaction of genetic and environmental factors. ABCB1 is highly expressed in the apical surface of colonic epithelial cells and acts as an efflux pump by transporting toxic endogenous substances, drugs and xenobiotics out of cells. ABCB1 polymorphisms may either change its protein expression or alter its function. Several studies have reported a possible association between ABCB1 variants and colorectal cancer, but no consistent conclusion has been arrived at. Therefore, we aimed to investigate the relationship between colorectal cancer and the functional common variants of ABCB1 (1236C > T; 2677G > T/A; 3435C > T). The distributions of the variants were determined in 103 patients with colorectal cancer and 150 healthy volunteers using polymerase chain reaction-restriction fragment length polymorphism methods. ABCB1 1236C > T was statistically significantly associated with colorectal cancer risk (OR, odd ratio = 1.91; 95% CI, confidence interval = 1.09-3.35; p = 0.034). In haplotype-based analysis, the proportion of individuals with the ABCB1 haplotype C1236-G2677-T3435 was significantly more common in patients than in controls (OR = 11.96; 95% CI = 2.59-55.32; p = 0.0004). We believe that the findings may be beneficial to the development of efficacious preventive strategies and therapies for colorectal cancer.
Collapse
Affiliation(s)
- Gül Özhan
- Department of Pharmaceutical Toxicology, Faculty of Pharmacy, Istanbul University, 34116 Beyazit, Istanbul, Turkey.
| | | | | | | | | | | |
Collapse
|