1
|
Maciąg-Dorszyńska M, Morcinek-Orłowska J, Barańska S. Concise Overview of Methodologies Employed in the Study of Bacterial DNA Replication. Int J Mol Sci 2025; 26:446. [PMID: 39859162 PMCID: PMC11764726 DOI: 10.3390/ijms26020446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 12/30/2024] [Accepted: 12/31/2024] [Indexed: 01/27/2025] Open
Abstract
DNA replication is a fundamental process in the cell on which the functioning of the entire cell as well as the maintenance of the entire species depends. This process is synchronized with all other processes within the cell as well as with external, environmental factors. This complex network of interconnections presents significant challenges in the field of DNA replication research, both in terms of identifying an appropriate approach to a question posed and in terms of methodology. This article aims to provide a roadmap to assist in navigating (to help overcome) these challenges and in selecting an appropriate research methodology. It should help to establish a research pathway, starting with arranging the host genetic background for analysis at different cellular levels, which can be achieved using complex or simple single-purpose techniques.
Collapse
Affiliation(s)
- Monika Maciąg-Dorszyńska
- Department of Bacterial Molecular Genetics, University of Gdansk, Wita Stwosza 59, 80-308 Gdansk, Poland
| | - Joanna Morcinek-Orłowska
- Structural Biology Laboratory, Intercollegiate Faculty of Biotechnology, University of Gdansk and Medical University of Gdansk, Abrahama 58, 80-307 Gdansk, Poland;
| | - Sylwia Barańska
- Department of Bacterial Molecular Genetics, University of Gdansk, Wita Stwosza 59, 80-308 Gdansk, Poland
| |
Collapse
|
2
|
Norris V. Hypothesis: bacteria live on the edge of phase transitions with a cell cycle regulated by a water-clock. Theory Biosci 2024; 143:253-277. [PMID: 39505803 DOI: 10.1007/s12064-024-00427-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 10/15/2024] [Indexed: 11/08/2024]
Abstract
A fundamental problem in biology is how cells obtain the reproducible, coherent phenotypes needed for natural selection to act or, put differently, how cells manage to limit their exploration of the vastness of phenotype space. A subset of this problem is how they regulate their cell cycle. Bacteria, like eukaryotic cells, are highly structured and contain scores of hyperstructures or assemblies of molecules and macromolecules. The existence and functioning of certain of these hyperstructures depend on phase transitions. Here, I propose a conceptual framework to facilitate the development of water-clock hypotheses in which cells use water to generate phenotypes by living 'on the edge of phase transitions'. I give an example of such a hypothesis in the case of the bacterial cell cycle and show how it offers a relatively novel 'view from here' that brings together a range of different findings about hyperstructures, phase transitions and water and that can be integrated with other hypotheses about differentiation, metabolism and the origins of life.
Collapse
Affiliation(s)
- Vic Norris
- CBSA UR 4312, University of Rouen Normandy, 76821, Rouen, Mont Saint Aignan, France.
| |
Collapse
|
3
|
Morcinek-Orłowska J, Walter B, Forquet R, Cysewski D, Carlier M, Mozolewski M, Meyer S, Glinkowska M. Interaction networks of Escherichia coli replication proteins under different bacterial growth conditions. Sci Data 2023; 10:788. [PMID: 37949936 PMCID: PMC10638427 DOI: 10.1038/s41597-023-02710-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 10/30/2023] [Indexed: 11/12/2023] Open
Abstract
In this work we analyzed protein-protein interactions (PPIs) formed by E. coli replication proteins under three disparate bacterial growth conditions. The chosen conditions corresponded to fast exponential growth, slow exponential growth and growth cessation at the stationary phase. We performed affinity purification coupled with mass spectrometry (AP-MS) of chromosomally expressed proteins (DnaA, DnaB, Hda, SeqA, DiaA, DnaG, HolD, NrdB), tagged with sequential peptide affinity (SPA) tag. Composition of protein complexes was characterized using MaxQuant software. To filter out unspecific interactions, we employed double negative control system and we proposed qualitative and quantitative data analysis strategies that can facilitate hits identification in other AP-MS datasets. Our motivation to undertake this task was still insufficient understanding of molecular mechanisms coupling DNA replication to cellular growth. Previous works suggested that such control mechanisms could involve physical interactions of replication factors with metabolic or cell envelope proteins. However, the dynamic replication protein interaction network (PIN) obtained in this study can be used to characterize links between DNA replication and various cellular processes in other contexts.
Collapse
Affiliation(s)
- Joanna Morcinek-Orłowska
- Department of Bacterial Molecular Genetics, Faculty of Biology, University of Gdansk, Gdansk, 80-308, Poland
| | - Beata Walter
- Department of Bacterial Molecular Genetics, Faculty of Biology, University of Gdansk, Gdansk, 80-308, Poland
| | - Raphaël Forquet
- Univ Lyon, Université Claude Bernard Lyon 1, INSA-Lyon, Lyon, CNRS, UMR5240 MAP, F-69622, France
| | - Dominik Cysewski
- Mass Spectrometry Laboratory, Institute of Biochemistry and Biophysics, PAS, Warsaw 02-106, Warszawa, Poland
| | - Maxime Carlier
- Univ Lyon, Université Claude Bernard Lyon 1, INSA-Lyon, Lyon, CNRS, UMR5240 MAP, F-69622, France
| | - Michał Mozolewski
- Department of Bacterial Molecular Genetics, Faculty of Biology, University of Gdansk, Gdansk, 80-308, Poland
| | - Sam Meyer
- Univ Lyon, Université Claude Bernard Lyon 1, INSA-Lyon, Lyon, CNRS, UMR5240 MAP, F-69622, France
| | - Monika Glinkowska
- Department of Bacterial Molecular Genetics, Faculty of Biology, University of Gdansk, Gdansk, 80-308, Poland.
| |
Collapse
|
4
|
Soultanas P, Janniere L. The metabolic control of DNA replication: mechanism and function. Open Biol 2023; 13:230220. [PMID: 37582405 PMCID: PMC10427196 DOI: 10.1098/rsob.230220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 07/26/2023] [Indexed: 08/17/2023] Open
Abstract
Metabolism and DNA replication are the two most fundamental biological functions in life. The catabolic branch of metabolism breaks down nutrients to produce energy and precursors used by the anabolic branch of metabolism to synthesize macromolecules. DNA replication consumes energy and precursors for faithfully copying genomes, propagating the genetic material from generation to generation. We have exquisite understanding of the mechanisms that underpin and regulate these two biological functions. However, the molecular mechanism coordinating replication to metabolism and its biological function remains mostly unknown. Understanding how and why living organisms respond to fluctuating nutritional stimuli through cell-cycle dynamic changes and reproducibly and distinctly temporalize DNA synthesis in a wide-range of growth conditions is important, with wider implications across all domains of life. After summarizing the seminal studies that founded the concept of the metabolic control of replication, we review data linking metabolism to replication from bacteria to humans. Molecular insights underpinning these links are then presented to propose that the metabolic control of replication uses signalling systems gearing metabolome homeostasis to orchestrate replication temporalization. The remarkable replication phenotypes found in mutants of this control highlight its importance in replication regulation and potentially genetic stability and tumorigenesis.
Collapse
Affiliation(s)
- Panos Soultanas
- Biodiscovery Institute, School of Chemistry, University of Nottingham, University Park, Nottingham NG7 2RD, UK
| | - Laurent Janniere
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Université Evry, Université Paris-Saclay, 91057 Evry, France
| |
Collapse
|
5
|
Holland A, Pitoulias M, Soultanas P, Janniere L. The Replicative DnaE Polymerase of Bacillus subtilis Recruits the Glycolytic Pyruvate Kinase (PykA) When Bound to Primed DNA Templates. Life (Basel) 2023; 13:life13040965. [PMID: 37109494 PMCID: PMC10143966 DOI: 10.3390/life13040965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/21/2023] [Accepted: 04/05/2023] [Indexed: 04/29/2023] Open
Abstract
The glycolytic enzyme PykA has been reported to drive the metabolic control of replication through a mechanism involving PykA moonlighting functions on the essential DnaE polymerase, the DnaC helicase and regulatory determinants of PykA catalytic activity in Bacillus subtilis. The mutants of this control suffer from critical replication and cell cycle defects, showing that the metabolic control of replication plays important functions in the overall rate of replication. Using biochemical approaches, we demonstrate here that PykA interacts with DnaE for modulating its activity when the replication enzyme is bound to a primed DNA template. This interaction is mediated by the CAT domain of PykA and possibly allosterically regulated by its PEPut domain, which also operates as a potent regulator of PykA catalytic activity. Furthermore, using fluorescence microscopy we show that the CAT and PEPut domains are important for the spatial localization of origins and replication forks, independently of their function in PykA catalytic activity. Collectively, our data suggest that the metabolic control of replication depends on the recruitment of PykA by DnaE at sites of DNA synthesis. This recruitment is likely highly dynamic, as DnaE is frequently recruited to and released from replication machineries to extend the several thousand RNA primers generated from replication initiation to termination. This implies that PykA and DnaE continuously associate and dissociate at replication machineries for ensuring a highly dynamic coordination of the replication rate with metabolism.
Collapse
Affiliation(s)
- Alexandria Holland
- Biodiscovery Institute, School of Chemistry, University of Nottingham, Nottingham NG7 2RD, UK
| | - Matthaios Pitoulias
- Biodiscovery Institute, School of Chemistry, University of Nottingham, Nottingham NG7 2RD, UK
| | - Panos Soultanas
- Biodiscovery Institute, School of Chemistry, University of Nottingham, Nottingham NG7 2RD, UK
| | - Laurent Janniere
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Université Evry, Université Paris-Saclay, 91057 Evry, CEDEX, France
| |
Collapse
|
6
|
Horemans S, Pitoulias M, Holland A, Pateau E, Lechaplais C, Ekaterina D, Perret A, Soultanas P, Janniere L. Pyruvate kinase, a metabolic sensor powering glycolysis, drives the metabolic control of DNA replication. BMC Biol 2022; 20:87. [PMID: 35418203 PMCID: PMC9009071 DOI: 10.1186/s12915-022-01278-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 03/11/2022] [Indexed: 12/04/2022] Open
Abstract
Background In all living organisms, DNA replication is exquisitely regulated in a wide range of growth conditions to achieve timely and accurate genome duplication prior to cell division. Failures in this regulation cause DNA damage with potentially disastrous consequences for cell viability and human health, including cancer. To cope with these threats, cells tightly control replication initiation using well-known mechanisms. They also couple DNA synthesis to nutrient richness and growth rate through a poorly understood process thought to involve central carbon metabolism. One such process may involve the cross-species conserved pyruvate kinase (PykA) which catalyzes the last reaction of glycolysis. Here we have investigated the role of PykA in regulating DNA replication in the model system Bacillus subtilis. Results On analysing mutants of the catalytic (Cat) and C-terminal (PEPut) domains of B. subtilis PykA we found replication phenotypes in conditions where PykA is dispensable for growth. These phenotypes are independent from the effect of mutations on PykA catalytic activity and are not associated with significant changes in the metabolome. PEPut operates as a nutrient-dependent inhibitor of initiation while Cat acts as a stimulator of replication fork speed. Disruption of either PEPut or Cat replication function dramatically impacted the cell cycle and replication timing even in cells fully proficient in known replication control functions. In vitro, PykA modulates activities of enzymes essential for replication initiation and elongation via functional interactions. Additional experiments showed that PEPut regulates PykA activity and that Cat and PEPut determinants important for PykA catalytic activity regulation are also important for PykA-driven replication functions. Conclusions We infer from our findings that PykA typifies a new family of cross-species replication control regulators that drive the metabolic control of replication through a mechanism involving regulatory determinants of PykA catalytic activity. As disruption of PykA replication functions causes dramatic replication defects, we suggest that dysfunctions in this new family of universal replication regulators may pave the path to genetic instability and carcinogenesis. Supplementary Information The online version contains supplementary material available at 10.1186/s12915-022-01278-3.
Collapse
Affiliation(s)
- Steff Horemans
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Université Evry, Université Paris-Saclay, 91057, Evry, France
| | - Matthaios Pitoulias
- Biodiscovery Institute, School of Chemistry, University of Nottingham, University Park, Nottingham, NG7 2RD, UK
| | - Alexandria Holland
- Biodiscovery Institute, School of Chemistry, University of Nottingham, University Park, Nottingham, NG7 2RD, UK
| | - Emilie Pateau
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Université Evry, Université Paris-Saclay, 91057, Evry, France
| | - Christophe Lechaplais
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Université Evry, Université Paris-Saclay, 91057, Evry, France
| | - Dariy Ekaterina
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Université Evry, Université Paris-Saclay, 91057, Evry, France
| | - Alain Perret
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Université Evry, Université Paris-Saclay, 91057, Evry, France
| | - Panos Soultanas
- Biodiscovery Institute, School of Chemistry, University of Nottingham, University Park, Nottingham, NG7 2RD, UK.
| | - Laurent Janniere
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Université Evry, Université Paris-Saclay, 91057, Evry, France.
| |
Collapse
|
7
|
Identification of Three Type II Toxin-Antitoxin Systems in Model Bacterial Plant Pathogen Dickeya dadantii 3937. Int J Mol Sci 2021; 22:ijms22115932. [PMID: 34073004 PMCID: PMC8198452 DOI: 10.3390/ijms22115932] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 05/28/2021] [Accepted: 05/28/2021] [Indexed: 11/17/2022] Open
Abstract
Type II toxin-antitoxin (TA) systems are genetic elements usually encoding two proteins: a stable toxin and an antitoxin, which binds the toxin and neutralizes its toxic effect. The disturbance in the intracellular toxin and antitoxin ratio typically leads to inhibition of bacterial growth or bacterial cell death. Despite the fact that TA modules are widespread in bacteria and archaea, the biological role of these systems is ambiguous. Nevertheless, a number of studies suggests that the TA modules are engaged in such important processes as biofilm formation, stress response or virulence and maintenance of mobile genetic elements. The Dickeya dadantii 3937 strain serves as a model for pathogens causing the soft-rot disease in a wide range of angiosperm plants. Until now, several chromosome-encoded type II TA systems were identified in silico in the genome of this economically important bacterium, however so far only one of them was experimentally validated. In this study, we investigated three putative type II TA systems in D. dadantii 3937: ccdAB2Dda, phd-docDda and dhiTA, which represents a novel toxin/antitoxin superfamily. We provide an experimental proof for their functionality in vivo both in D. dadantii and Escherichia coli. Finally, we examined the prevalence of those systems across the Pectobacteriaceae family by a phylogenetic analysis.
Collapse
|
8
|
Meunier A, Cornet F, Campos M. Bacterial cell proliferation: from molecules to cells. FEMS Microbiol Rev 2021; 45:fuaa046. [PMID: 32990752 PMCID: PMC7794046 DOI: 10.1093/femsre/fuaa046] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Accepted: 09/10/2020] [Indexed: 12/11/2022] Open
Abstract
Bacterial cell proliferation is highly efficient, both because bacteria grow fast and multiply with a low failure rate. This efficiency is underpinned by the robustness of the cell cycle and its synchronization with cell growth and cytokinesis. Recent advances in bacterial cell biology brought about by single-cell physiology in microfluidic chambers suggest a series of simple phenomenological models at the cellular scale, coupling cell size and growth with the cell cycle. We contrast the apparent simplicity of these mechanisms based on the addition of a constant size between cell cycle events (e.g. two consecutive initiation of DNA replication or cell division) with the complexity of the underlying regulatory networks. Beyond the paradigm of cell cycle checkpoints, the coordination between the DNA and division cycles and cell growth is largely mediated by a wealth of other mechanisms. We propose our perspective on these mechanisms, through the prism of the known crosstalk between DNA replication and segregation, cell division and cell growth or size. We argue that the precise knowledge of these molecular mechanisms is critical to integrate the diverse layers of controls at different time and space scales into synthetic and verifiable models.
Collapse
Affiliation(s)
- Alix Meunier
- Centre de Biologie Intégrative de Toulouse (CBI Toulouse), Laboratoire de Microbiologie et Génétique Moléculaires (LMGM), Université de Toulouse, UPS, CNRS, IBCG, 165 rue Marianne Grunberg-Manago, 31062 Toulouse, France
| | - François Cornet
- Centre de Biologie Intégrative de Toulouse (CBI Toulouse), Laboratoire de Microbiologie et Génétique Moléculaires (LMGM), Université de Toulouse, UPS, CNRS, IBCG, 165 rue Marianne Grunberg-Manago, 31062 Toulouse, France
| | - Manuel Campos
- Centre de Biologie Intégrative de Toulouse (CBI Toulouse), Laboratoire de Microbiologie et Génétique Moléculaires (LMGM), Université de Toulouse, UPS, CNRS, IBCG, 165 rue Marianne Grunberg-Manago, 31062 Toulouse, France
| |
Collapse
|
9
|
The Role of Metabolites in the Link between DNA Replication and Central Carbon Metabolism in Escherichia coli. Genes (Basel) 2020; 11:genes11040447. [PMID: 32325866 PMCID: PMC7231150 DOI: 10.3390/genes11040447] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 04/13/2020] [Accepted: 04/16/2020] [Indexed: 02/01/2023] Open
Abstract
A direct link between DNA replication regulation and central carbon metabolism (CCM) has been previously demonstrated in Bacillus subtilis and Escherichia coli, as effects of certain mutations in genes coding for replication proteins could be specifically suppressed by particular mutations in genes encoding CCM enzymes. However, specific molecular mechanism(s) of this link remained unknown. In this report, we demonstrate that various CCM metabolites can suppress the effects of mutations in different replication genes of E. coli on bacterial growth, cell morphology, and nucleoid localization. This provides evidence that the CCM-replication link is mediated by metabolites rather than direct protein-protein interactions. On the other hand, action of metabolites on DNA replication appears indirect rather than based on direct influence on the replication machinery, as rate of DNA synthesis could not be corrected by metabolites in short-term experiments. This corroborates the recent discovery that in B. subtilis, there are multiple links connecting CCM to DNA replication initiation and elongation. Therefore, one may suggest that although different in detail, the molecular mechanisms of CCM-dependent regulation of DNA replication are similar in E. coli and B. subtilis, making this regulation an important and common constituent of the control of cell physiology in bacteria.
Collapse
|
10
|
Boonstra M, Schaffer M, Sousa J, Morawska L, Holsappel S, Hildebrandt P, Sappa PK, Rath H, de Jong A, Lalk M, Mäder U, Völker U, Kuipers OP. Analyses of competent and non-competent subpopulations of Bacillus subtilis reveal yhfW, yhxC and ncRNAs as novel players in competence. Environ Microbiol 2020; 22:2312-2328. [PMID: 32249531 PMCID: PMC7317962 DOI: 10.1111/1462-2920.15005] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2019] [Accepted: 03/29/2020] [Indexed: 11/28/2022]
Abstract
Upon competence-inducing nutrient-limited conditions, only part of the Bacillus subtilis population becomes competent. Here, we separated the two subpopulations by fluorescence-assisted cell sorting (FACS). Using RNA-seq, we confirmed the previously described ComK regulon. We also found for the first time significantly downregulated genes in the competent subpopulation. The downregulated genes are not under direct control by ComK but have higher levels of corresponding antisense RNAs in the competent subpopulation. During competence, cell division and replication are halted. By investigating the proteome during competence, we found higher levels of the regulators of cell division, MinD and Noc. The exonucleases SbcC and SbcD were also primarily regulated at the post-transcriptional level. In the competent subpopulation, yhfW was newly identified as being highly upregulated. Its absence reduces the expression of comG, and has a modest, but statistically significant effect on the expression of comK. Although expression of yhfW is higher in the competent subpopulation, no ComK-binding site is present in its promoter region. Mutants of yhfW have a small but significant defect in transformation. Metabolomic analyses revealed significant reductions in tricarboxylic acid (TCA) cycle metabolites and several amino acids in a ΔyhfW mutant. RNA-seq analysis of ΔyhfW revealed higher expression of the NAD synthesis genes nadA, nadB and nadC.
Collapse
Affiliation(s)
- Mirjam Boonstra
- Molecular Genetics group, Groningen Biomolecular Sciences and Biotechnology Institute (GBB), University of Groningen, the Netherlands
| | - Marc Schaffer
- Department of Functional Genomics, Interfaculty Institute of Genetics and Functional Genomics, University Medicine Greifswald, Germany
| | - Joana Sousa
- Department of Cellular Biochemistry/Metabolomics, Institute of Biochemistry, University of Greifswald, Germany
| | - Luiza Morawska
- Molecular Genetics group, Groningen Biomolecular Sciences and Biotechnology Institute (GBB), University of Groningen, the Netherlands
| | - Siger Holsappel
- Molecular Genetics group, Groningen Biomolecular Sciences and Biotechnology Institute (GBB), University of Groningen, the Netherlands
| | - Petra Hildebrandt
- Department of Functional Genomics, Interfaculty Institute of Genetics and Functional Genomics, University Medicine Greifswald, Germany
| | - Praveen Kumar Sappa
- Department of Functional Genomics, Interfaculty Institute of Genetics and Functional Genomics, University Medicine Greifswald, Germany
| | - Hermann Rath
- Department of Functional Genomics, Interfaculty Institute of Genetics and Functional Genomics, University Medicine Greifswald, Germany
| | - Anne de Jong
- Molecular Genetics group, Groningen Biomolecular Sciences and Biotechnology Institute (GBB), University of Groningen, the Netherlands
| | - Michael Lalk
- Department of Cellular Biochemistry/Metabolomics, Institute of Biochemistry, University of Greifswald, Germany
| | - Ulrike Mäder
- Department of Functional Genomics, Interfaculty Institute of Genetics and Functional Genomics, University Medicine Greifswald, Germany
| | - Uwe Völker
- Department of Functional Genomics, Interfaculty Institute of Genetics and Functional Genomics, University Medicine Greifswald, Germany
| | - Oscar P Kuipers
- Molecular Genetics group, Groningen Biomolecular Sciences and Biotechnology Institute (GBB), University of Groningen, the Netherlands
| |
Collapse
|
11
|
Ts2631 Endolysin from the Extremophilic Thermus scotoductus Bacteriophage vB_Tsc2631 as an Antimicrobial Agent against Gram-Negative Multidrug-Resistant Bacteria. Viruses 2019; 11:v11070657. [PMID: 31323845 PMCID: PMC6669862 DOI: 10.3390/v11070657] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 07/12/2019] [Accepted: 07/15/2019] [Indexed: 12/27/2022] Open
Abstract
Bacteria that thrive in extreme conditions and the bacteriophages that infect them are sources of valuable enzymes resistant to denaturation at high temperatures. Many of these heat-stable proteins are useful for biotechnological applications; nevertheless, none have been utilized as antibacterial agents. Here, we demonstrate the bactericidal potential of Ts2631 endolysin from the extremophilic bacteriophage vB_Tsc2631, which infects Thermus scotoductus, against the alarming multidrug-resistant clinical strains of Acinetobacter baumannii, Pseudomonas aeruginosa and pathogens from the Enterobacteriaceae family. A 2–3.7 log reduction in the bacterial load was observed in antibacterial tests against A. baumannii and P. aeruginosa after 1.5 h. The Ts2631 activity was further enhanced by ethylenediaminetetraacetic acid (EDTA), a metal ion chelator (4.2 log reduction in carbapenem-resistant A. baumannii) and, to a lesser extent, by malic acid and citric acid (2.9 and 3.3 log reductions, respectively). The EDTA/Ts2631 combination reduced all pathogens of the Enterobacteriaceae family, particularly multidrug-resistant Citrobacter braakii, to levels below the detection limit (>6 log); these results indicate that Ts2631 endolysin could be useful to combat Gram-negative pathogens. The investigation of A. baumannii cells treated with Ts2631 endolysin variants under transmission electron and fluorescence microscopy demonstrates that the intrinsic antibacterial activity of Ts2631 endolysin is dependent on the presence of its N-terminal tail.
Collapse
|
12
|
Nouri H, Monnier AF, Fossum-Raunehaug S, Maciag-Dorszynska M, Cabin-Flaman A, Képès F, Wegrzyn G, Szalewska-Palasz A, Norris V, Skarstad K, Janniere L. Multiple links connect central carbon metabolism to DNA replication initiation and elongation in Bacillus subtilis. DNA Res 2019; 25:641-653. [PMID: 30256918 PMCID: PMC6289782 DOI: 10.1093/dnares/dsy031] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Accepted: 08/17/2018] [Indexed: 12/27/2022] Open
Abstract
DNA replication is coupled to growth by an unknown mechanism. Here, we investigated this coupling by analyzing growth and replication in 15 mutants of central carbon metabolism (CCM) cultivated in three rich media. In about one-fourth of the condition tested, defects in replication resulting from changes in initiation or elongation were detected. This uncovered 11 CCM genes important for replication and showed that some of these genes have an effect in one, two or three media. Additional results presented here and elsewhere (Jannière, L., Canceill, D., Suski, C., et al. (2007), PLoS One, 2, e447.) showed that, in the LB medium, the CCM genes important for DNA elongation (gapA and ackA) are genetically linked to the lagging strand polymerase DnaE while those important for initiation (pgk and pykA) are genetically linked to the replication enzymes DnaC (helicase), DnaG (primase) and DnaE. Our work thus shows that the coupling between growth and replication involves multiple, medium-dependent links between CCM and replication. They also suggest that changes in CCM may affect initiation by altering the functional recruitment of DnaC, DnaG and DnaE at the chromosomal origin, and may affect elongation by altering the activity of DnaE at the replication fork. The underlying mechanism is discussed.
Collapse
Affiliation(s)
- Hamid Nouri
- iSSB, Génopole, CNRS, UEVE, Université Paris-Saclay, Evry France.,MICALIS, INRA, Jouy en Josas, France
| | | | | | | | | | - François Képès
- iSSB, Génopole, CNRS, UEVE, Université Paris-Saclay, Evry France
| | - Grzegorz Wegrzyn
- Department of Molecular Biology, University of Gdansk, Gdansk, Poland
| | | | - Vic Norris
- Laboratoire MERCI, AMMIS, Faculté des Sciences, Mont-Saint-Aignan, France
| | - Kirsten Skarstad
- Department of Cell Biology, Oslo University Hospital, University of Oslo, Oslo, Norway
| | - Laurent Janniere
- iSSB, Génopole, CNRS, UEVE, Université Paris-Saclay, Evry France.,MICALIS, INRA, Jouy en Josas, France
| |
Collapse
|
13
|
Recent Advances and Current Trends in Nucleotide Second Messenger Signaling in Bacteria. J Mol Biol 2019; 431:908-927. [PMID: 30668970 DOI: 10.1016/j.jmb.2019.01.014] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 01/05/2019] [Accepted: 01/07/2019] [Indexed: 02/01/2023]
Abstract
The "International Symposium on Nucleotide Second Messenger Signaling in Bacteria" (September 30-October 3, 2018, Berlin), which was organized within the framework of DFG Priority Programme 1879 (www.spp1879.de), brought together 125 participants from 20 countries to discuss recent progress and future trends in this field. Even 50 years after its discovery, (p)ppGpp is venturing into exciting new fields, especially in gram-positive bacteria. After triggering the current renaissance in bacterial second messenger research, c-di-GMP is becoming ever more global with abounding new molecular mechanisms of action and physiological functions. The more recently discovered c-di-AMP is rapidly catching up and has now been found even in archaea, with its function in osmotic homeostasis being conserved across kingdom boundaries. Small modules associated with mobile genetic elements, which make and react to numerous novel mixed cyclic dinucleotides, seem to roam around rather freely in the bacterial world. Finally, many novel and old nucleotide molecules are still lurking around in search of a function. Across many talks it became apparent that (p)ppGpp, c-di-GMP and GTP/ATP can share and compete for binding sites (e.g., the Walker A motif in GTP/ATPases) with intriguing regulatory consequences, thus contributing to the emergent trend of systemwide networks that interconnect diverse signaling nucleotides. Overall, this inspiring conference made it clear that second messenger signaling is currently one of the most dynamic and exciting areas in microbial molecular biology and physiology, with major impacts ranging from microbial systems biology and ecology to infection biology.
Collapse
|
14
|
Wieczorek A, Fornalewicz K, Mocarski Ł, Łyżeń R, Węgrzyn G. Double silencing of relevant genes suggests the existence of the direct link between DNA replication/repair and central carbon metabolism in human fibroblasts. Gene 2018; 650:1-6. [PMID: 29407228 DOI: 10.1016/j.gene.2018.01.068] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2017] [Revised: 01/17/2018] [Accepted: 01/19/2018] [Indexed: 01/15/2023]
Abstract
Genetic evidence for a link between DNA replication and glycolysis has been demonstrated a decade ago in Bacillus subtilis, where temperature-sensitive mutations in genes coding for replication proteins could be suppressed by mutations in genes of glycolytic enzymes. Then, a strong influence of dysfunctions of particular enzymes from the central carbon metabolism (CCM) on DNA replication and repair in Escherichia coli was reported. Therefore, we asked if such a link occurs only in bacteria or it is a more general phenomenon. Here, we demonstrate that effects of silencing (provoked by siRNA) of expression of genes coding for proteins involved in DNA replication and repair (primase, DNA polymerase ι, ligase IV, and topoisomerase IIIβ) on these processes (less efficient entry into the S phase of the cell cycle and decreased level of DNA synthesis) could be suppressed by silencing of specific genes of enzymes from CMM. Silencing of other pairs of replication/repair and CMM genes resulted in enhancement of the negative effects of lower expression levels of replication/repair genes. We suggest that these results may be proposed as a genetic evidence for the link between DNA replication/repair and CMM in human cells, indicating that it is a common biological phenomenon, occurring from bacteria to humans.
Collapse
Affiliation(s)
- Aneta Wieczorek
- Department of Molecular Biology, University of Gdańsk, Wita Stwosza 59, 80-308 Gdańsk, Poland.
| | - Karolina Fornalewicz
- Department of Molecular Biology, University of Gdańsk, Wita Stwosza 59, 80-308 Gdańsk, Poland.
| | - Łukasz Mocarski
- Department of Molecular Biology, University of Gdańsk, Wita Stwosza 59, 80-308 Gdańsk, Poland
| | - Robert Łyżeń
- Department of Molecular Biology, University of Gdańsk, Wita Stwosza 59, 80-308 Gdańsk, Poland.
| | - Grzegorz Węgrzyn
- Department of Molecular Biology, University of Gdańsk, Wita Stwosza 59, 80-308 Gdańsk, Poland.
| |
Collapse
|
15
|
Cabin-Flaman A, Monnier AF, Coffinier Y, Audinot JN, Gibouin D, Wirtz T, Boukherroub R, Migeon HN, Bensimon A, Jannière L, Ripoll C, Norris V. Combining combing and secondary ion mass spectrometry to study DNA on chips using (13)C and (15)N labeling. F1000Res 2016; 5:1437. [PMID: 27429742 PMCID: PMC4943295 DOI: 10.12688/f1000research.8361.1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/02/2016] [Indexed: 11/20/2022] Open
Abstract
Dynamic secondary ion mass spectrometry ( D-SIMS) imaging of combed DNA - the combing, imaging by SIMS or CIS method - has been developed previously using a standard NanoSIMS 50 to reveal, on the 50 nm scale, individual DNA fibers labeled with different, non-radioactive isotopes in vivo and to quantify these isotopes. This makes CIS especially suitable for determining the times, places and rates of DNA synthesis as well as the detection of the fine-scale re-arrangements of DNA and of molecules associated with combed DNA fibers. Here, we show how CIS may be extended to (13)C-labeling via the detection and quantification of the (13)C (14)N (-) recombinant ion and the use of the (13)C: (12)C ratio, we discuss how CIS might permit three successive labels, and we suggest ideas that might be explored using CIS.
Collapse
Affiliation(s)
- Armelle Cabin-Flaman
- Equipe AMMIS, laboratoire MERCI EA 3829, faculté des Sciences et Techniques, University of Rouen, Mont-Saint-Aignan Cedex, France
| | - Anne-Francoise Monnier
- Equipe AMMIS, laboratoire MERCI EA 3829, faculté des Sciences et Techniques, University of Rouen, Mont-Saint-Aignan Cedex, France
| | - Yannick Coffinier
- Institute of Electronics, Microelectronics and Nanotechnology (IEMN), UMR CNRS 8520, Lille1 University, Villeneuve d'Ascq, France
| | - Jean-Nicolas Audinot
- Material Research & Technology Department (MRT), Luxembourg Institute of Science and Technology (LIST), Belvaux, Luxembourg
| | - David Gibouin
- Equipe AMMIS, laboratoire MERCI EA 3829, faculté des Sciences et Techniques, University of Rouen, Mont-Saint-Aignan Cedex, France
| | - Tom Wirtz
- Material Research & Technology Department (MRT), Luxembourg Institute of Science and Technology (LIST), Belvaux, Luxembourg
| | - Rabah Boukherroub
- Institute of Electronics, Microelectronics and Nanotechnology (IEMN), UMR CNRS 8520, Lille1 University, Villeneuve d'Ascq, France
| | - Henri-Noël Migeon
- Material Research & Technology Department (MRT), Luxembourg Institute of Science and Technology (LIST), Belvaux, Luxembourg
| | | | - Laurent Jannière
- iSSB, Génopole, CNRS, UEVE, Université Paris-Saclay, Evry, France
| | - Camille Ripoll
- Equipe AMMIS, laboratoire MERCI EA 3829, faculté des Sciences et Techniques, University of Rouen, Mont-Saint-Aignan Cedex, France
| | - Victor Norris
- Laboratory Microbiology Signals and Environment EA4312, Department of Biology, University of Rouen, Mont-Saint-Aignan Cedex, France
| |
Collapse
|
16
|
Konieczna A, Szczepańska A, Sawiuk K, Węgrzyn G, Łyżeń R. Effects of partial silencing of genes coding for enzymes involved in glycolysis and tricarboxylic acid cycle on the enterance of human fibroblasts to the S phase. BMC Cell Biol 2015; 16:16. [PMID: 26017754 PMCID: PMC4446904 DOI: 10.1186/s12860-015-0062-8] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Accepted: 05/15/2015] [Indexed: 11/16/2022] Open
Abstract
Background Previously published reports indicated that some enzymes of the central carbon metabolism (CCM), particularly those involved in glycolysis and the tricarboxylic acid cycle, may contribute to regulation of DNA replication. However, vast majority of such works was performed with the use of cancer cells, in the light of carcinogenesis. On the other hand, recent experiments conducted on bacterial models provided evidence for the direct genetic link between CCM and DNA replication. Therefore, we asked if silencing of genes coding for glycolytic and/or Krebs cycle enzymes may affect the control of DNA replication in normal human fibroblasts. Results Particular genes coding for these enzymes were partially silenced with specific siRNAs. Such cells remained viable. We found that silencing of certain genes resulted in either less efficient or delayed enterance to the S phase. This concerned following genes: HK2, PFKM, TPI, GAPDH, ENO1, LDHA, CS1, ACO2, SUCLG2, SDHA, FH and MDH2. Decreased levels of expression of HK2, GADPH, CS1, ACO2, FH and MDH2 caused also a substantial impairment in DNA synthesis efficiency. Conclusions The presented results illustrate the complexity of the influence of genes coding for enzymes of glycolysis and the tricarboxylic acid cycle on the control of DNA replication in human fibroblasts, and indicate which of them are especially important in this process. Electronic supplementary material The online version of this article (doi:10.1186/s12860-015-0062-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Aleksandra Konieczna
- Department of Molecular Biology, University of Gdańsk, Wita Stwosza 59, 80-308, Gdańsk, Poland.
| | - Aneta Szczepańska
- Department of Molecular Biology, University of Gdańsk, Wita Stwosza 59, 80-308, Gdańsk, Poland.
| | - Karolina Sawiuk
- Department of Molecular Biology, University of Gdańsk, Wita Stwosza 59, 80-308, Gdańsk, Poland.
| | - Grzegorz Węgrzyn
- Department of Molecular Biology, University of Gdańsk, Wita Stwosza 59, 80-308, Gdańsk, Poland.
| | - Robert Łyżeń
- Department of Molecular Biology, University of Gdańsk, Wita Stwosza 59, 80-308, Gdańsk, Poland.
| |
Collapse
|
17
|
Konieczna A, Szczepańska A, Sawiuk K, Łyżeń R, Węgrzyn G. Enzymes of the central carbon metabolism: Are they linkers between transcription, DNA replication, and carcinogenesis? Med Hypotheses 2015; 84:58-67. [DOI: 10.1016/j.mehy.2014.11.016] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2014] [Revised: 11/05/2014] [Accepted: 11/21/2014] [Indexed: 12/16/2022]
|
18
|
Hill EH, Pappas HC, Evans DG, Whitten DG. Cationic oligo-p-phenylene ethynylenes form complexes with surfactants for long-term light-activated biocidal applications. Photochem Photobiol Sci 2014; 13:247-53. [PMID: 24149833 DOI: 10.1039/c3pp50277e] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Cationic oligo-p-phenylene ethynylenes are highly effective light-activated biocides that deal broad-spectrum damage to a variety of pathogens, including bacteria. A potential problem arising in the long-term usage of these compounds is photochemical breakdown, which nullifies their biocidal activity. Recent work has shown that these molecules complex with oppositely-charged surfactants, and that the resulting complexes are protected from photodegradation. In this manuscript, we determine the biocidal activity of an oligomer and a complex formed between it and sodium dodecyl sulfate. The complexes are able to withstand prolonged periods of irradiation, continuing to effectively kill both Gram-negative and Gram-positive bacteria, while the oligomer by itself loses its biocidal effectiveness quickly in the presence of light. In addition, damage and stress responses induced by these biocides in both E. coli and S. aureus are discussed. This work shows that complexation with surfactants is a viable method for long-term light-activated biocidal applications.
Collapse
Affiliation(s)
- Eric H Hill
- Center for Biomedical Engineering, Department of Chemical and Nuclear Engineering, University of New Mexico, Albuquerque, New Mexico 87131-1341, USA.
| | | | | | | |
Collapse
|
19
|
Gonçalves GAL, Prather KLJ, Monteiro GA, Carnes AE, Prazeres DMF. Plasmid DNA production with Escherichia coli GALG20, a pgi-gene knockout strain: fermentation strategies and impact on downstream processing. J Biotechnol 2014; 186:119-27. [PMID: 24995846 DOI: 10.1016/j.jbiotec.2014.06.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Revised: 06/04/2014] [Accepted: 06/04/2014] [Indexed: 10/25/2022]
Abstract
The market development of plasmid biopharmaceuticals for gene therapy and DNA vaccination applications is critically dependent on the availability of cost-effective manufacturing processes capable of delivering large amounts of high-quality plasmid DNA (pDNA) for clinical trials and commercialization. The producer host strain used in these processes must be designed to meet the upstream and downstream processing challenges characteristic of large scale pDNA production. The goal of the present study was to investigate the effect of different glucose feeding strategies (batch and fed-batch) on the pDNA productivity of GALG20, a pgi Escherichia coli strain potentially useful in industrial fermentations, which uses the pentose phosphate pathway (PPP) as the main route for glucose metabolism. The parental strain, MG1655ΔendAΔrecA, and the common laboratory strain, DH5α, were used for comparison purposes and pVAX1GFP, a ColE1-type plasmid, was tested as a model. GALG20 produced 3-fold more pDNA (∼141 mg/L) than MG1655ΔendAΔrecA (∼48 mg/L) and DH5α (∼40 mg/L) in glucose-based fed-batch fermentations. The amount of pDNA in lysates obtained from these cells was also larger for GALG20 (41%) when compared with MG1655ΔendAΔrecA (31%) and DH5α (26%). However, the final quality of pDNA preparations obtained with a process that explores precipitation, hydrophobic interaction chromatography and size exclusion was not significantly affected by strain genotype. Finally, high cell density fed-batch cultures were performed with GALG20, this time using another ColE1-type plasmid, NTC7482-41H-HA, in pre-industrial facilities using glucose and glycerol. These experiments demonstrated the ability of GALG20 to produce high pDNA yields of the order of 2100-2200 mg/L.
Collapse
Affiliation(s)
- Geisa A L Gonçalves
- MIT-Portugal Program, Portugal; IBB - Institute for Biotechnology and Bioengineering, Centre for Biological and Chemical Engineering, Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| | - Kristala L J Prather
- MIT-Portugal Program, Portugal; Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Gabriel A Monteiro
- MIT-Portugal Program, Portugal; IBB - Institute for Biotechnology and Bioengineering, Centre for Biological and Chemical Engineering, Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| | - Aaron E Carnes
- Nature Technology Corporation, Lincoln, NE, United States
| | - Duarte M F Prazeres
- MIT-Portugal Program, Portugal; IBB - Institute for Biotechnology and Bioengineering, Centre for Biological and Chemical Engineering, Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal.
| |
Collapse
|
20
|
Barańska S, Glinkowska M, Herman-Antosiewicz A, Maciąg-Dorszyńska M, Nowicki D, Szalewska-Pałasz A, Węgrzyn A, Węgrzyn G. Replicating DNA by cell factories: roles of central carbon metabolism and transcription in the control of DNA replication in microbes, and implications for understanding this process in human cells. Microb Cell Fact 2013; 12:55. [PMID: 23714207 PMCID: PMC3698200 DOI: 10.1186/1475-2859-12-55] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2013] [Accepted: 05/26/2013] [Indexed: 12/29/2022] Open
Abstract
Precise regulation of DNA replication is necessary to ensure the inheritance of genetic features by daughter cells after each cell division. Therefore, determining how the regulatory processes operate to control DNA replication is crucial to our understanding and application to biotechnological processes. Contrary to early concepts of DNA replication, it appears that this process is operated by large, stationary nucleoprotein complexes, called replication factories, rather than by single enzymes trafficking along template molecules. Recent discoveries indicated that in bacterial cells two processes, central carbon metabolism (CCM) and transcription, significantly and specifically influence the control of DNA replication of various replicons. The impact of these discoveries on our understanding of the regulation of DNA synthesis is discussed in this review. It appears that CCM may influence DNA replication by either action of specific metabolites or moonlighting activities of some enzymes involved in this metabolic pathway. The role of transcription in the control of DNA replication may arise from either topological changes in nucleic acids which accompany RNA synthesis or direct interactions between replication and transcription machineries. Due to intriguing similarities between some prokaryotic and eukaryotic regulatory systems, possible implications of studies on regulation of microbial DNA replication on understanding such a process occurring in human cells are discussed.
Collapse
Affiliation(s)
- Sylwia Barańska
- Department of Molecular Biology, University of Gdańsk, Wita Stwosza 59, Gdańsk 80-308, Poland
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Norris V, Amar P. Chromosome Replication in Escherichia coli: Life on the Scales. Life (Basel) 2012; 2:286-312. [PMID: 25371267 PMCID: PMC4187155 DOI: 10.3390/life2040286] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2012] [Revised: 10/01/2012] [Accepted: 10/15/2012] [Indexed: 12/22/2022] Open
Abstract
At all levels of Life, systems evolve on the 'scales of equilibria'. At the level of bacteria, the individual cell must favor one of two opposing strategies and either take risks to grow or avoid risks to survive. It has been proposed in the Dualism hypothesis that the growth and survival strategies depend on non-equilibrium and equilibrium hyperstructures, respectively. It has been further proposed that the cell cycle itself is the way cells manage to balance the ratios of these types of hyperstructure so as to achieve the compromise solution of living on the two scales. Here, we attempt to re-interpret a major event, the initiation of chromosome replication in Escherichia coli, in the light of scales of equilibria. This entails thinking in terms of hyperstructures as responsible for intensity sensing and quantity sensing and how this sensing might help explain the role of the DnaA protein in initiation of replication. We outline experiments and an automaton approach to the cell cycle that should test and refine the scales concept.
Collapse
Affiliation(s)
- Vic Norris
- Theoretical Biology Unit, EA 3829, Department of Biology, University of Rouen, 76821, Mont Saint Aignan, France.
| | - Patrick Amar
- Laboratoire de Recherche en Informatique, Université Paris-Sud, and INRIA Saclay - Ile de France, AMIB Project, Orsay, France.
| |
Collapse
|