2
|
Liu L, Huang X, Liu J, Li W, Ji Y, Tian D, Tian L, Yang X, Xu L, Yan R, Li X, Song X. Identification of common immunodominant antigens of Eimeria tenella, Eimeria acervulina and Eimeria maxima by immunoproteomic analysis. Oncotarget 2018; 8:34935-34945. [PMID: 28432276 PMCID: PMC5471023 DOI: 10.18632/oncotarget.16824] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Accepted: 03/24/2017] [Indexed: 11/25/2022] Open
Abstract
Clinical chicken coccidiosis is mostly caused by simultaneous infection of several Eimeria species, and host immunity against Eimeria is species-specific. It is urgent to identify common immunodominant antigen of Eimeria for developing multivalent anticoccidial vaccines. In this study, sporozoite proteins of Eimeria tenella, Eimeria acervulina and Eimeria maxima were analyzed by two-dimensional electrophoresis (2DE). Western bot analysis was performed on the yielded 2DE gel using antisera of E. tenella E. acervulina and E. maxima respectively. Next, the detected immunodominant spots were identified by comparing the data from MALDI-TOF-MS/MS with available databases. Finally, Eimeria common antigens were identified by comparing amino acid sequence between the three Eimeria species. The results showed that analysis by 2DE of sporozoite proteins detected 629, 626 and 632 protein spots from E. tenella, E. acervulina and E. maxima respectively. Western bot analysis revealed 50 (E. tenella), 64 (E. acervulina) and 57 (E. maxima) immunodominant spots from the sporozoite 2DE gels of the three Eimeria species. The immunodominant spots were identified as 33, 27 and 25 immunodominant antigens of E. tenella, E. acervulina and E. maxima respectively. Fifty-four immunodominant proteins were identified as 18 ortholog proteins among the three Eimeria species. Finally, 5 of the 18 ortholog proteins were identified as common immunodominant antigens including elongation factor 2 (EF-2), 14-3-3 protein, ubiquitin-conjugating enzyme domain-containing protein (UCE) and glyceraldehyde-3-phosphate dehydrogenase (GAPDH). In conclusion, our results not only provide Eimeria sporozoite immunodominant antigen map and additional immunodominant antigens, but also common immunodominant antigens for developing multivalent anticoccidial vaccines.
Collapse
Affiliation(s)
- Lianrui Liu
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Xinmei Huang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China.,Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Science, Nanjing, Jiangsu 210014, China
| | - Jianhua Liu
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Wenyu Li
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Yihong Ji
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Di Tian
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Lu Tian
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Xinchao Yang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Lixin Xu
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Ruofeng Yan
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Xiangrui Li
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Xiaokai Song
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
3
|
Yue JX, Kozmikova I, Ono H, Nossa CW, Kozmik Z, Putnam NH, Yu JK, Holland LZ. Conserved Noncoding Elements in the Most Distant Genera of Cephalochordates: The Goldilocks Principle. Genome Biol Evol 2016; 8:2387-405. [PMID: 27412606 PMCID: PMC5010895 DOI: 10.1093/gbe/evw158] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Cephalochordates, the sister group of vertebrates + tunicates, are evolving particularly slowly. Therefore, genome comparisons between two congeners of Branchiostoma revealed so many conserved noncoding elements (CNEs), that it was not clear how many are functional regulatory elements. To more effectively identify CNEs with potential regulatory functions, we compared noncoding sequences of genomes of the most phylogenetically distant cephalochordate genera, Asymmetron and Branchiostoma, which diverged approximately 120-160 million years ago. We found 113,070 noncoding elements conserved between the two species, amounting to 3.3% of the genome. The genomic distribution, target gene ontology, and enriched motifs of these CNEs all suggest that many of them are probably cis-regulatory elements. More than 90% of previously verified amphioxus regulatory elements were re-captured in this study. A search of the cephalochordate CNEs around 50 developmental genes in several vertebrate genomes revealed eight CNEs conserved between cephalochordates and vertebrates, indicating sequence conservation over >500 million years of divergence. The function of five CNEs was tested in reporter assays in zebrafish, and one was also tested in amphioxus. All five CNEs proved to be tissue-specific enhancers. Taken together, these findings indicate that even though Branchiostoma and Asymmetron are distantly related, as they are evolving slowly, comparisons between them are likely optimal for identifying most of their tissue-specific cis-regulatory elements laying the foundation for functional characterizations and a better understanding of the evolution of developmental regulation in cephalochordates.
Collapse
Affiliation(s)
- Jia-Xing Yue
- Biosciences at Rice, Rice University, Houston, Texas Present address: Institute for Research on Cancer and Aging, Nice (IRCAN), CNRS UMR 7284, INSERM U1081, Nice 06107 France
| | - Iryna Kozmikova
- Department of Transcriptional Regulation, Institute of Molecular Genetics, Prague 14220, Czech Republic
| | - Hiroki Ono
- Marine Biology Research Division, Scripps Institution of Oceanography, UC San Diego, La Jolla, California
| | - Carlos W Nossa
- Biosciences at Rice, Rice University, Houston, Texas Present address: Gene by Gene Ltd., Houston, TX 77008
| | - Zbynek Kozmik
- Department of Transcriptional Regulation, Institute of Molecular Genetics, Prague 14220, Czech Republic
| | - Nicholas H Putnam
- Biosciences at Rice, Rice University, Houston, Texas Present address: Dovetail Genomics, Santa Cruz, CA 95060
| | - Jr-Kai Yu
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan
| | - Linda Z Holland
- Marine Biology Research Division, Scripps Institution of Oceanography, UC San Diego, La Jolla, California
| |
Collapse
|
4
|
Disrupted auto-regulation of the spliceosomal gene SNRPB causes cerebro-costo-mandibular syndrome. Nat Commun 2014; 5:4483. [PMID: 25047197 PMCID: PMC4109005 DOI: 10.1038/ncomms5483] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2014] [Accepted: 06/23/2014] [Indexed: 01/22/2023] Open
Abstract
Elucidating the function of highly conserved regulatory sequences is a significant challenge in genomics today. Certain intragenic highly conserved elements have been associated with regulating levels of core components of the spliceosome and alternative splicing of downstream genes. Here we identify mutations in one such element, a regulatory alternative exon of SNRPB as the cause of cerebro-costo-mandibular syndrome. This exon contains a premature termination codon that triggers nonsense-mediated mRNA decay when included in the transcript. These mutations cause increased inclusion of the alternative exon and decreased overall expression of SNRPB. We provide evidence for the functional importance of this conserved intragenic element in the regulation of alternative splicing and development, and suggest that the evolution of such a regulatory mechanism has contributed to the complexity of mammalian development.
Collapse
|