1
|
Kalds P, Zhou S, Cai B, Liu J, Wang Y, Petersen B, Sonstegard T, Wang X, Chen Y. Sheep and Goat Genome Engineering: From Random Transgenesis to the CRISPR Era. Front Genet 2019; 10:750. [PMID: 31552084 PMCID: PMC6735269 DOI: 10.3389/fgene.2019.00750] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Accepted: 07/17/2019] [Indexed: 12/16/2022] Open
Abstract
Sheep and goats are valuable livestock species that have been raised for their production of meat, milk, fiber, and other by-products. Due to their suitable size, short gestation period, and abundant secretion of milk, sheep and goats have become important model animals in agricultural, pharmaceutical, and biomedical research. Genome engineering has been widely applied to sheep and goat research. Pronuclear injection and somatic cell nuclear transfer represent the two primary procedures for the generation of genetically modified sheep and goats. Further assisted tools have emerged to enhance the efficiency of genetic modification and to simplify the generation of genetically modified founders. These tools include sperm-mediated gene transfer, viral vectors, RNA interference, recombinases, transposons, and endonucleases. Of these tools, the four classes of site-specific endonucleases (meganucleases, ZFNs, TALENs, and CRISPRs) have attracted wide attention due to their DNA double-strand break-inducing role, which enable desired DNA modifications based on the stimulation of native cellular DNA repair mechanisms. Currently, CRISPR systems dominate the field of genome editing. Gene-edited sheep and goats, generated using these tools, provide valuable models for investigations on gene functions, improving animal breeding, producing pharmaceuticals in milk, improving animal disease resistance, recapitulating human diseases, and providing hosts for the growth of human organs. In addition, more promising derivative tools of CRISPR systems have emerged such as base editors which enable the induction of single-base alterations without any requirements for homology-directed repair or DNA donor. These precise editors are helpful for revealing desirable phenotypes and correcting genetic diseases controlled by single bases. This review highlights the advances of genome engineering in sheep and goats over the past four decades with particular emphasis on the application of CRISPR/Cas9 systems.
Collapse
Affiliation(s)
- Peter Kalds
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
- Department of Animal and Poultry Production, Faculty of Environmental Agricultural Sciences, Arish University, El-Arish, Egypt
| | - Shiwei Zhou
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Bei Cai
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Jiao Liu
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Ying Wang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Bjoern Petersen
- Institute of Farm Animal Genetics, Friedrich-Loeffler-Institut, Neustadt, Germany
| | | | - Xiaolong Wang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Yulin Chen
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| |
Collapse
|
2
|
Qu L, Wang L, Zhu X, Zhang Y, Ou Q, Ma A, Sheng F, Wei X, Dai Y, Li G, Xie S. Global mapping of binding sites for phic31 integrase in transgenic maden-darby bovine kidney cells using ChIP-seq. Hereditas 2019; 156:3. [PMID: 30675136 PMCID: PMC6332687 DOI: 10.1186/s41065-018-0079-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Accepted: 12/25/2018] [Indexed: 11/22/2022] Open
Abstract
Background ΦC31 integrase, a site-specific recombinase, can efficiently target attB-bearing transgenes to endogenous pseudo attP sites within mammalian genomes. The sequence features of endogenous binding sites will help us to fully understand the site-specific recognition function by ΦC31 integrase. The present study was aimed to uncover the global map of ΦC31 integrase binding sites in bovine cells and analysis the features of these binding sites by comprehensive bioinformatics methods. Results In this study, we constructed a ChIP-seq method that can be used to uncover the global binding sites by phiC31 integrase. 6740 potential ΦC31 integrase binding sites were identified. A sequence motif was found that contains inverted repeats and has similarities to wild-type attP site. Using REPEATMASKER, we identified a total of 20,183 repeat-regions distributed in 50 repeat types for the 6740 binding sites. These sites enriched in “regulation of GTPase activity” of in the GO category of biological process and KEGG pathway of signal transmembrane transporter activity. Conclusion This study is the first time to uncover the global map of binding sites for ΦC31 integrase using ChIP-sequencing method and analysis the features of these binding sites. This method will help us to fully understand the mechanism of the site-specific integration function by phiC31 integrase and will potentially boost its genetic manipulations in both gene therapy and generation of transgenic animals. Electronic supplementary material The online version of this article (10.1186/s41065-018-0079-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Lijuan Qu
- Department of Laboratory Medicine, Shanghai Eighth People's Hospital, Shanghai, 200040 China
| | - Lei Wang
- Department of Laboratory Medicine, Shanghai Eighth People's Hospital, Shanghai, 200040 China
| | - Xueyuan Zhu
- Department of Laboratory Medicine, Shanghai Eighth People's Hospital, Shanghai, 200040 China
| | - Yan Zhang
- Department of Laboratory Medicine, Shanghai Eighth People's Hospital, Shanghai, 200040 China
| | - Qiang Ou
- Department of Laboratory Medicine, Shanghai Eighth People's Hospital, Shanghai, 200040 China
| | - Aying Ma
- Department of Respiratory Medicine, Shanghai First People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 201620 China
| | - Fengying Sheng
- Department of Laboratory Medicine, Shanghai Eighth People's Hospital, Shanghai, 200040 China
| | - Xiaoqing Wei
- Department of Laboratory Medicine, Shanghai Eighth People's Hospital, Shanghai, 200040 China
| | - Yue Dai
- Department of Laboratory Medicine, Shanghai Eighth People's Hospital, Shanghai, 200040 China
| | - Guoting Li
- Lab of Reproductive Pharmacology, NHC Key Lab of Reproduction Regulation, Shanghai Institute of Planned Parenthood Research, Fudan University, Shanghai, 200032 China
| | - Shuwu Xie
- Lab of Reproductive Pharmacology, NHC Key Lab of Reproduction Regulation, Shanghai Institute of Planned Parenthood Research, Fudan University, Shanghai, 200032 China
| |
Collapse
|
3
|
Ren Z, Wang Y, Ren Y, Zhang Z, Gu W, Wu Z, Chen L, Mou L, Li R, Yang H, Dai Y. Enhancement of porcine intramuscular fat content by overexpression of the cytosolic form of phosphoenolpyruvate carboxykinase in skeletal muscle. Sci Rep 2017; 7:43746. [PMID: 28252054 PMCID: PMC5333075 DOI: 10.1038/srep43746] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Accepted: 01/30/2017] [Indexed: 11/15/2022] Open
Abstract
Intramuscular fat (IMF) content has been generally recognized as a desirable trait in pork meat because of its positive effect on eating quality. An effective approach to enhance IMF content in pork is the generation of transgenic pigs. In this study, we used somatic cell nuclear transfer (SCNT) to generate cloned pigs exhibiting ectopic expression of phosphoenolpyruvate carboxykinase (PEPCK-C) driven by an α-skeletal-actin gene promoter, which was specifically expressed in skeletal muscle. Using qRT-PCR and Western blot analysis, we demonstrated that PEPCK-C was functionally expressed and had a significant effect on total fatty acid content in the skeletal muscle of the transgenic pigs, while the n-6/n-3 polyunsaturated fatty acid (PUFA) ratio showed no difference between transgenic and control pigs. Thus, genetically engineered PEPCK-Cmus pigs may be an effective solution for the production of IMF-enriched pork.
Collapse
Affiliation(s)
- Zijian Ren
- Jiangsu Key Laboratory of Xenotransplantation, Nanjing Medical University, 101 Longmian Avenue, Nanjing, 211166, People's Republic of China
| | - Ying Wang
- Jiangsu Key Laboratory of Xenotransplantation, Nanjing Medical University, 101 Longmian Avenue, Nanjing, 211166, People's Republic of China
| | - Yuanyuan Ren
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, Heping District, Qixiangtai Road, Tianjin 300070, People's Republic of China
| | - Zhengwei Zhang
- Huaian First Hospital Affiliated with Nanjing Medical University, Huai'an, People's Republic of China
| | - Weiwang Gu
- Institute of Comparative Medicine and Center of Laboratory Animals, Southern Medical University, Guangzhou, People's Republic of China
| | - Zhaoting Wu
- State key laboratory of medicinal chemical biology, Key laboratory of bioactive materials, Ministry of education, Tianjin key laboratory of protein sciences and College of life sciences, Nankai University, Tianjin 300071, People's Republic of China
| | - Lingyi Chen
- State key laboratory of medicinal chemical biology, Key laboratory of bioactive materials, Ministry of education, Tianjin key laboratory of protein sciences and College of life sciences, Nankai University, Tianjin 300071, People's Republic of China
| | - Lisha Mou
- Shenzhen Xenotransplantation Medical Engineering Research and Development Center, Institute of Translational Medicine, Shenzhen Second People's Hospital, First Affiliated Hospital of Shenzhen University, Shenzhen, Guangdong, 518035, China
| | - Rongfeng Li
- Jiangsu Key Laboratory of Xenotransplantation, Nanjing Medical University, 101 Longmian Avenue, Nanjing, 211166, People's Republic of China
| | - Haiyuan Yang
- Jiangsu Key Laboratory of Xenotransplantation, Nanjing Medical University, 101 Longmian Avenue, Nanjing, 211166, People's Republic of China
| | - Yifan Dai
- Jiangsu Key Laboratory of Xenotransplantation, Nanjing Medical University, 101 Longmian Avenue, Nanjing, 211166, People's Republic of China
| |
Collapse
|
4
|
Abstract
Animal models are an important resource for studying human diseases. Genetically engineered mice are the most commonly used species and have made significant contributions to our understanding of basic biology, disease mechanisms, and drug development. However, they often fail to recreate important aspects of human diseases and thus can have limited utility as translational research tools. Developing disease models in species more similar to humans may provide a better setting in which to study disease pathogenesis and test new treatments. This unit provides an overview of the history of genetically engineered large animals and the techniques that have made their development possible. Factors to consider when planning a large animal model, including choice of species, type of modification and methodology, characterization, production methods, and regulatory compliance, are also covered. © 2016 by John Wiley & Sons, Inc.
Collapse
|
5
|
New insights and current tools for genetically engineered (GE) sheep and goats. Theriogenology 2016; 86:160-9. [PMID: 27155732 DOI: 10.1016/j.theriogenology.2016.04.028] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Revised: 12/08/2015] [Accepted: 03/14/2016] [Indexed: 01/20/2023]
Abstract
Genetically engineered sheep and goats represent useful models applied to proof of concepts, large-scale production of novel products or processes, and improvement of animal traits, which is of interest in biomedicine, biopharma, and livestock. This disruptive biotechnology arose in the 80s by injecting DNA fragments into the pronucleus of zygote-staged embryos. Pronuclear microinjection set the transgenic concept into people's mind but was characterized by inefficient and often frustrating results mostly because of uncontrolled and/or random integration and unpredictable transgene expression. Somatic cell nuclear transfer launched the second wave in the late 90s, solving several weaknesses of the previous technique by making feasible the transfer of a genetically modified and fully characterized cell into an enucleated oocyte, capable of cell reprogramming to generate genetically engineered animals. Important advances were also achieved during the 2000s with the arrival of new techniques like the lentivirus system, transposons, RNA interference, site-specific recombinases, and sperm-mediated transgenesis. We are now living the irruption of the third technological wave in which genome edition is possible by using endonucleases, particularly the CRISPR/Cas system. Sheep and goats were recently produced by CRISPR/Cas9, and for sure, cattle will be reported soon. We will see new genetically engineered farm animals produced by homologous recombination, multiple gene editing in one-step generation and conditional modifications, among other advancements. In the following decade, genome edition will continue expanding our technical possibilities, which will contribute to the advancement of science, the development of clinical or commercial applications, and the improvement of people's life quality around the world.
Collapse
|
6
|
Bosch P, Forcato DO, Alustiza FE, Alessio AP, Fili AE, Olmos Nicotra MF, Liaudat AC, Rodríguez N, Talluri TR, Kues WA. Exogenous enzymes upgrade transgenesis and genetic engineering of farm animals. Cell Mol Life Sci 2015; 72:1907-29. [PMID: 25636347 PMCID: PMC11114025 DOI: 10.1007/s00018-015-1842-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Revised: 01/15/2015] [Accepted: 01/16/2015] [Indexed: 01/14/2023]
Abstract
Transgenic farm animals are attractive alternative mammalian models to rodents for the study of developmental, genetic, reproductive and disease-related biological questions, as well for the production of recombinant proteins, or the assessment of xenotransplants for human patients. Until recently, the ability to generate transgenic farm animals relied on methods of passive transgenesis. In recent years, significant improvements have been made to introduce and apply active techniques of transgenesis and genetic engineering in these species. These new approaches dramatically enhance the ease and speed with which livestock species can be genetically modified, and allow to performing precise genetic modifications. This paper provides a synopsis of enzyme-mediated genetic engineering in livestock species covering the early attempts employing naturally occurring DNA-modifying proteins to recent approaches working with tailored enzymatic systems.
Collapse
Affiliation(s)
- Pablo Bosch
- Departamento de Biología Molecular, Facultad de Ciencias Exactas, Fco-Qcas y Naturales, Universidad Nacional de Río Cuarto, Río Cuarto, Córdoba Republic of Argentina
| | - Diego O. Forcato
- Departamento de Biología Molecular, Facultad de Ciencias Exactas, Fco-Qcas y Naturales, Universidad Nacional de Río Cuarto, Río Cuarto, Córdoba Republic of Argentina
| | - Fabrisio E. Alustiza
- Departamento de Biología Molecular, Facultad de Ciencias Exactas, Fco-Qcas y Naturales, Universidad Nacional de Río Cuarto, Río Cuarto, Córdoba Republic of Argentina
| | - Ana P. Alessio
- Departamento de Biología Molecular, Facultad de Ciencias Exactas, Fco-Qcas y Naturales, Universidad Nacional de Río Cuarto, Río Cuarto, Córdoba Republic of Argentina
| | - Alejandro E. Fili
- Departamento de Biología Molecular, Facultad de Ciencias Exactas, Fco-Qcas y Naturales, Universidad Nacional de Río Cuarto, Río Cuarto, Córdoba Republic of Argentina
| | - María F. Olmos Nicotra
- Departamento de Biología Molecular, Facultad de Ciencias Exactas, Fco-Qcas y Naturales, Universidad Nacional de Río Cuarto, Río Cuarto, Córdoba Republic of Argentina
| | - Ana C. Liaudat
- Departamento de Biología Molecular, Facultad de Ciencias Exactas, Fco-Qcas y Naturales, Universidad Nacional de Río Cuarto, Río Cuarto, Córdoba Republic of Argentina
| | - Nancy Rodríguez
- Departamento de Biología Molecular, Facultad de Ciencias Exactas, Fco-Qcas y Naturales, Universidad Nacional de Río Cuarto, Río Cuarto, Córdoba Republic of Argentina
| | - Thirumala R. Talluri
- Friedrich-Loeffler-Institute, Institute of Farm Animal Genetics, Biotechnology, 31535 Neustadt, Germany
| | - Wilfried A. Kues
- Friedrich-Loeffler-Institute, Institute of Farm Animal Genetics, Biotechnology, 31535 Neustadt, Germany
| |
Collapse
|